Гальванометры электродвигатели громкоговорители доклад

Обновлено: 05.05.2024

Гальванометр — это аналоговый измерительный прибор высокой чувствительности и точности, в основе которого лежит реакция на величину электромагнитного поля. Особенностью гальванических измерителей является, то что на его аналоговую шкалу возможно нанести деления для силы тока, напряжения, других условных физических величин или она может не иметь деления вообще.

История изобретения гальванометра

История создания гальванометра тесно связана с открытием понятия "электромагнитная индукция" и работой целой плеяды великих учёных мира, которые создавали новые варианты прибора и усовершенствовали его. Но о трёх эпохальных личностях в мире физики и гальванометров необходимо сказать отдельно:

  • Х.К. Эрстед;
  • Л. Гальвани;
  • М. Фарадей.

Датский учёный Ханс Кристиан Эрстед 15 февраля 1820 года, проводя эксперимент на лекции по электричеству, пропускал электрический ток через проводник, который лежал сверху корабельного компаса. В результате в момент включения цепи стрелка компаса отклонялась от своего начального положения. Проведя несколько аналогичных опытов с другими металлами и разным значением силы тока, Эрстед фактически доказал существование магнитного поля и электромагнитной индукции. А сам эксперимент (проводник, магнитная стрелка и источник питания) был заложен в основу первого гальванометра.

Луиджи Гальвани исследовал электричество, проходящее в живых и физически мёртвых организмах. Впоследствии на основе изучения "возвратного" удара были заложены условия для возникновения "гальванизма" — явления генерирования мышечных сокращений во время пропускания электрического тока. Это дало возможность создать и исследовать первые электрические индукции.

Майкл Фарадей в далёком 1831 году в конце августа (29), будучи в своей лаборатории, исследовал протекание электрического тока в проводнике и экспериментально доказал существование электромагнитной индукции, используя гальванометр для обнаружения этого явления. Которое перевернуло всю физику и фундаментальные законы природы, а именно наличие электромагнитного поля и индукции доказало существование нового вида материи.

Принцип работы системы гальванометра

Для работы обычного гальванометра необходимо наличие нескольких взаимосвязанных частей устройства:

  • катушка;
  • ось якоря (качелька);
  • стрелка-указатель;
  • источник питания;
  • провода.

Электрический ток проходит от источника питания по проводам в катушку. В ней генерируется магнитное поле, которое влияет на положения якоря, а соответственно и на отклонения стрелки.

Чем больше сила тока, тем больше магнитное поле: стрелка отклоняется дальше. В зависимости от направления протекания тока, стрелка может отклоняться влево или вправо.

Классификация гальванометров

За менее чем 200-летнюю историю было разработано огромное количество разнообразных гальванометров, которые отличаются размерами, принципом работы, шкалой измерений и многим другим.

Существует несколько групп гальванометров:

  • конструктивное оформление (переносные и зеркальные);
  • время действия тока (мгновенные, накопительные — кулонметры);
  • сфера использования (бытовые, исследовательские, промышленные и т.п.).

За принципом действия:

  • магнитоэлектрические, электромагнитные — вибрационные, баллистические;
  • тангенциальные — основаны на тангенциальном законе магнетизма;
  • тепловые — удлиняющийся (при нагреве от проходящего тока) проводник отклоняет стрелку;
  • зеркальные — падающий луч отклоняется от зеркала, которое поворачивается от действия магнитного поля.

фото гальванометра

Применение гальванометров

Трудно переоценить вклад от использования этого устройства в научно-исследовательскую деятельность. Но гальванометр нашёл своё применение в разных сферах:

  • высокочувствительные измерительные приборы (амперметры, вольтметры);
  • кино- и фотоиндустрия (экспонометры, датчики освещённости);
  • в электронике и электроэнергетике (нуль-индикаторы, измерители напряжений и токов);
  • детекция и рекордирование сигналов в разных сигнало-пишущих устройствах (осциллографы, осциллоскопы) и т. д.

Гальванометр — это целый класс высокоточного измерительного оборудования для исследования величины, проходящего через проводник, электрического тока и его физических характеристик.

Разновидность конструкций и принципов измерения позволяет использовать это устройство в самых распространённых бытовых и промышленных ситуациях, он является простым (можно сделать самостоятельно) и, в то же время незаменимым измерительным прибором для электроэнергетики, электротехники, электроники и остальных сфер деятельности человека связанных с электромагнитным полем.

2020 Electricalblog - электрика и электроэнергетика

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Гальванометры. Электродвигатели. Громкоговорители.Презентацию подготовила Уч.

Описание презентации по отдельным слайдам:

Гальванометры. Электродвигатели. Громкоговорители.Презентацию подготовила Уч.

СодержаниеГальванометрыОпределение Принцип действия гальванометра Изобретение.

Содержание
Гальванометры
Определение
Принцип действия гальванометра
Изобретение гальванометра

Электродвигатели
Громкоговорители
Определение
Конструкция электродвигателя

01.Гальванометры

Гальванометр — чувствительный магнитоэлектрический измерительный прибор, испо.

Гальванометр — чувствительный магнитоэлектрический измерительный прибор, используемый для измерения малых значений от электрического тока (обнаруживает даже миллионную долю ампера), его также можно использовать для сигнализации о состоянии равновесия электрического моста.
Определение

Принцип действия гальванометраГальванометр состоит из постоянного магнита, ка.

Принцип действия гальванометра
Гальванометр состоит из постоянного магнита, катушки из провода, которая смонтирована между полюсами магнита; очень легкого указателя, который присоединен к катушке и имеет одну ось вращения с ней; пружины, которая удерживает указатель на нуле, когда в катушке не течет ток. Когда ток течет через катушку, он создает магнитное поле вокруг нее. Взаимодействие магнитного поля катушки и магнитного поля, создаваемого постоянным магнитом, создает силу, которая заставляет катушку поворачиваться или вращаться.

Если магнитное поле катушки достаточно сильно, катушка преодолевает сопротивл.

Если магнитное поле катушки достаточно сильно, катушка преодолевает сопротивление пружины и старается расположиться между полюсами постоянного магнита. Когда катушка перемещается, указатель также перемещается. Количество движения катушки и указателя пропорционально количеству тока, протекающего через катушку.

Позади указателя на гальванометре имеется шкала, откалиброванная в единицах измерения электричества. Таким образом, положение указателя на шкале показывает величину измеряемого электрического параметра.

Изобретение гальванометра Гальванометр был изобретен в 1820 году немецким физ.

Гальванометр был изобретен в 1820 году немецким физиком Иоганном Саломо Кристофом Швайггером сразу после открытий Эрстеда и Ампера. и Ампера.
Гальванометр использовался английским физиком-экспериментатором Майклом Фарадеем в своих экспериментах. Он показал, среди прочего, что ток в проводнике течет только тогда, когда магнит входит в катушку или выходит из нее.

02.Электродвигатели

Электрический двигатель, сокращенно электродвигатель - электрическая машина.

Электрический двигатель, сокращенно электродвигатель - электрическая машина, с помощью которой электрическая энергия преобразуется в механическую, для приведения в движение различных механизмов. Электродвигатель является основным элементом электропривода.
Определение

Конструкция электродвигателя Основными компонентами вращающегося электродвига.

Основными компонентами вращающегося электродвигателя являются статор и ротор. Статор - неподвижная часть, ротор - вращающаяся часть.
У большей части электродвигателей ротор располагается внутри статора. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

03.Громкоговорители

Громкоговоритель — устройство для преобразования электрических сигналов в аку.

Громкоговоритель — устройство для преобразования электрических сигналов в акустические и излучения их в окружающее пространство (обычно — воздушную среду). Состоит из одной или нескольких излучающих головок, которые собственно и являются источниками звука, а также акустического оформления, необходимого для более эффективного излучения звука в заданной полосе частот.
Определение


С технической точки зрения громкоговоритель – электроакустический преобразова.

С технической точки зрения громкоговоритель – электроакустический преобразователь. Что это означает?
Его принцип работы основан на взаимодействии проводника с магнитным полем. При подаче тока полюса магнита образуют поле.
В нем находится проводник (чаще всего – катушка), на который воздействует электродинамическая сила. Она стремится вытолкнуть проводник из магнитного поля, создавая колебания.
Принцип работы


Согласно законам электродинамики, проводник с током, находящийся внутри магнитного поля, взаимодействует с ним. Это взаимодействие описывается законом Ампера. Поговорим кратко о применении закона Ампера в жизни человека.

Закон Ампера

Проявление магнитного поля заключается в появлении силы, действующей на проводник с током. Направление этой силы определяется мнемоническим правилом левой руки: если перпендикулярная составляющая индукции магнитного поля $B_<\perp>$ входит в ладонь левой руки, а четыре пальца указывают направление электрического тока, то большой палец будет указывать направление силы Ампера. При этом имеется ввиду однородное магнитное поле. Расчет силы Ампера для неоднородного поля значительно сложнее, требует отдельного доклада и выходит за рамки школьной программы по физике.

Если угол между линиями магнитного поля и направлением тока в проводнике составляет $\alpha$, то модуль силы Ампера, действующей со стороны магнитного поля индукцией $B$ на проводник длиной $Δl$, по которому течет ток силой $I$, равен:

$$F= I |\overrightarrow B| Δl sin \alpha$$

Эта формула называется законом Ампера. Из нее видно, что сила, действующая на проводник с током, прямо пропорциональна величине тока и индукции магнитного поля. Именно эта зависимость и предопределяет возможности использования закона Ампера в науке и технике.

Применение закона Ампера

Электродвигатели


Рис. 1. Устройство электродвигателя.

Измерительные приборы

Прямая зависимость силы Ампера от тока, проходящего через проводник, дает возможность построения электроизмерительных приборов.

Если рамку с током на пружинах поместить в магнитное поле, то угол ее поворота будет пропорционален току в рамке. Следовательно, пропустив исследуемый ток через эту рамку, можно оценить его величину. Именно так построены электроприборы магнитоэлектрической системы.


Рис. 2. Устройство прибора магнитоэлектрической системы.

Громкоговоритель

Наконец, широкое применение сила Ампера находит применение в динамических головках громкоговорителей.

Как известно в 11 классе, звук представляет собой колебания воздуха. Если взять катушку с током, поместить ее в поле постоянного магнита, а потом пропустить через нее переменный ток, то катушка в соответствии с направлением тока будет испытывать влияние силы Ампера. Причем величина этой силы будет пропорциональна величине тока. То есть, под действием переменного тока катушка придет в колебательное движение с частотой подведенного переменного тока.

Именно так работает громкоговоритель.


Рис. 3. Устройство громкоговорителя.

Что мы узнали?

В современном мире сила Ампера играет одну из важнейших ролей. Большая часть механического электрооборудования существует благодаря ей. Применение закона Ампера позволило создать человеку электродвигатели, измерительные приборы, громкоговорители и другие полезные устройства.

В электротехнике существуют различные измерительные приборы, с помощью которых можно выполнить замеры силы тока, напряжения и сопротивления. Соответственно, это амперметр, вольтметр и омметр. В некоторых случаях, когда требуется обнаружить и измерить очень малые электрические токи, напряжения и количество электричества, применяется гальванометр, обладающий высокой чувствительностью. Он также указывает на отсутствие напряжения или тока в цепях с различными электрическими параметрами.

Общее устройство и принцип работы

Конструкция простейшего гальванометра, созданного еще в начале 19-го века, включала в себя магнитную стрелку, подвешенную на тонкой нити и помещенную внутрь неподвижной проволочной катушки. При появлении в катушке электрического тока, стрелка начинает отклоняться от своей первоначальной позиции. Если же ток отсутствует, то стрелка будет находиться в одинаковом положении с меридианом этого места. То есть, она показывает нулевую отметку.

Гальванометр

Многие гальванометры являются магнитоэлектрическими приборами. В конструкцию стандартного прибора входит постоянный магнит, катушка, установленная между магнитными полюсами, облегченный указатель, соединенный с катушкой и образующий с ней единую ось вращения. Сам указатель фиксируется на нулевой отметке с помощью пружины при отсутствии в катушке электрического тока.

Практически каждый гальванометр имеет один и тот же принцип работы.

  • При прохождении электрического тока по катушке, вокруг нее создается магнитное поле. Оно взаимодействует с магнитным полем, которое создает постоянный магнит.
  • В результате, образуется сила, вызывающая поворот или вращение катушки.
  • Преодолев сопротивление пружины, она стремится занять свое место между полюсами постоянного магнита.
  • Одновременно с перемещением катушки, происходит и перемещение указателя.
  • Расстояние, на которое они переместились, составляет пропорцию с количеством тока, протекающим через катушку.

Все движения указателя отображаются на шкале, откалиброванной в нужных единицах измерения. Помимо единиц электрического тока, на нее могут быть нанесены и другие величины, например, милливольты. Нередко шкала гальванометра размечается довольно условно.

Характеристики и особенности конструкции

Устройства, используемые в цепях постоянного тока, могут быть переносными. Они имеют подвижную рамку, закрепленную на растяжках, встроенную шкалу и указатель стрелочного или светового типа.

Стационарный гальванометр устанавливается по уровню. На рамке закрепляется небольшое зеркальце. Эти приборы оборудуются выносной шкалой, обеспечивающей повышенную чувствительность и световым указателем. Угловое перемещение рамки контролируется положением отраженного от зеркала светового луча, отклоняющегося на шкале. Подобные рамочные устройства используются как нуль-индикаторы. В их помощью в лабораторных условиях проводятся измерения малых токов и напряжений.

Практически каждый гальванометр оборудован магнитными шунтами. Их положение регулируется с помощью ручки, выведенной наружу. За счет этого в рабочем зазоре изменяется величина магнитной индукции. Подобная регулировка позволяет изменять значения измеряемых величин как минимум в три раза в соответствии с требованиями стандартов. В маркировке и технической документации прибора эти величины указываются в обоих крайних положениях шунта – при полном вводе и при полном выводе. В схеме гальванометра предусмотрен корректор, с помощью которого указатель перемещается от нулевой отметки в ту или иную сторону.


Многие устройства оборудованы специальными защитными приспособлениями. В их число входит арретир, фиксирующий подвижную часть на подвесе во время переноски прибора. Высокочувствительные гальванометры требуют защиты от помех. Для стационарных устройств оборудуются специальные фундаменты, предотвращающие механические воздействия. Против утечек тока используется электростатическое экранирование.

Следует отдельно рассмотреть баллистический гальванометр. Данный прибор позволяет измерить количество электричества, передаваемого короткими токовыми импульсами в течение долей секунды. Для того чтобы получить точные данные, необходимо увеличить момент инерции подвижной части за счет установки специального диска.

Виды гальванометров

Несмотря на общий принцип работы, данные измерительные устройства отличаются между собой в соответствии с особенностями конструкции каждого из них. Например, магнитоэлектрический гальванометр выдает показания с помощью специальной электропроводящей рамки, закрепленной на оси и помещенной в поле действия постоянного магнита.

В нулевом положении ее удерживает специальная пружина. Когда по рамке протекает ток, происходит ее отклонение на определенный угол. На величину угла оказывает влияние не только сила тока, но и жесткость пружины, а также индукция магнитного поля. Показав высокую чувствительность, эти приборы позволяют получить максимально точные результаты.


Данные измерительные устройства бывают еще нескольких видов:

  • Электромагнитные. Отличаются простой конструкцией, в состав которой входит неподвижная катушка и подвижный сердечник или магнит, втягивающийся в катушку или поворачивающийся при наличии электрического тока. Недостатком считается нелинейная шкала и затруднения при ее градуировке.
  • Тангенциальные. В конструкции имеется компас, с помощью которого сравниваются магнитные поля тока и Земли. В катушке применяется медная изолированная проволока, намотанная на рамку из диэлектрического материала. Обмотка и стрелка компаса в плоскости должны совпадать между собой. Под действием электрического тока на оси катушки создается магнитное поле, перпендикулярное магнитному полю Земли. Угол отклонения стрелки получается равным тангенсу отношения обоих магнитных полей.
  • Зеркальные. Считаются наиболее точными и быстродействующими устройствами. Показания снимаются с помощью небольшого зеркальца и отраженного от него светового луча.
  • Тепловые. Представляют собой проводник и рычажную систему. Длина проводника увеличивается, когда по нему проходит ток. Рычажная система преобразует удлинение проводника в положение стрелки на шкале прибора.

Читайте также: