Доклад по технологии материалы

Обновлено: 28.04.2024

Мир разнообразных конструкций - промышленных, строительных, бытовых - разнообразен и многогранен, но он немыслим без материалов, из которых эти конструкции создаются. Конструкционные материалы содержат небольшое количество неизбежных примесей, образовавшихся естественным путём, причём основная часть примесей присутствует там намеренно.

Что такое конструкционные материалы?

Они отвечают трём требованиям – имеют определённую структуру и уровень свойств, а также пригодны для изготовления каких-либо изделий. Вещества, имеющие жидкую или пастообразную консистенцию, в эту группу не входят.

Большинство материалов для конструкций производятся искусственным способом из специально обработанных или подготовленных составляющих. Некоторые материалы являются веществами природного происхождения, основные свойства которых при обычной обработке не изменяются.

Разновидности конструкционных материалов

Основные конструкционные материалы подразделяют на металлические и неметаллические. Первая группа включает в себя чёрные (сталь, чугун) и цветные металлы и сплавы. Вторая более разнообразна: туда входят:

  • механические композиты (бетон, цемент);
  • древесина;
  • природный камень;
  • пластмассы, которые могут существовать в виде изомеров – атомов, соединённых между собой разными видами химических связей.

К отдельной группе относят химические композиты, в структуре которых одновременно присутствуют атомы металлов и неметаллов. Достижения современного материаловедения ежегодно приводят к созданию принципиально новых типов конструкционных материалов. Свойства композитов зависят от устойчивости соединения нескольких природных или искусственных веществ, которые получены в определённых условиях. Каждый из конструкционных материалов имеет определённые свойства, соответственно которым устанавливаются области его рационального применения.

Из чёрных металлов и сплавов главнейшее значение имеет сталь и её сплав с графитом – чугун. В качестве цветных металлов наибольшее распространение получили алюминий, медь, никель, титан и их сплавы. Они востребованы практически во всех отраслях промышленного производства, аграрном деле, строительстве, связи.

свойства конструкционных материалов

Типовым представителем механических композитов считается бетон, состоящий из смеси цемента, таких заполнителей, как песок, гравий или щебень, а также воды. Параметры бетона зависят от соотношений, используемых при расчете смеси. Поэтому поставщики бетона обычно предоставляют свойства материала и результаты испытаний для каждого конкретного случая.

Древесина считается конструкционным материалом, если потребительские свойства позволяют использовать её для производства компактной, долговечной продукции. Например, деревья-кустарники, хотя и имеют структуру древесины, могут использоваться только в качестве сырья для лесохимической или целлюлозно-бумажной промышленности.

Природные камни – граниты, базальт, кварц, представляют собой вещества магматического происхождения, образовавшиеся много тысячелетий тому назад вследствие извержения пород из недр Земли с их последующим застыванием. Возможна механическая (резание, шлифовка) или термохимическая (литьё) обработка природного камня.

Пластмассы – обширный класс искусственных веществ, которые создаются в результате контролируемого прохождения химических реакций. Номенклатура применяемых пластиков обширна и ежегодно пополняется новыми представителями.

Рассмотрим классификацию конструкционных материалов более подробно.

Металлические

Включают материалы, полученные переработкой руд чёрных и цветных металлов. Самородные структуры – золото, железо, свинец – в первичном виде не используются, поскольку не обладают теми потребительскими характеристиками, которые необходимы для долговечного применения.

виды конструкционных материалов

Ведущее место среди металлов принадлежит стали – сплаву железа с не более чем 2% углерода. Особенностями стали являются:

  • достаточно широкий диапазон марок;
  • возможность видоизменять характеристики под воздействием температуры;
  • доступность добычи исходного сырья;
  • способность к вторичной переработке.

Большинство металлических материалов может проявлять интерметаллидные свойства, образуя новые многокомпонентные соединения.

Поскольку все виды конструкционных материалов тверды, прочны и сохраняют свою форму при повышенных температурах (исключение составляют только олово и свинец, которые используются в качестве припоев), то основные области их применения – строительство, промышленность, средства связи, медицина.

Неметаллические

Получаются как природным, так и искусственным способом. Например, образование изделий из камня – это производство, основанное на переработке естественных заготовок. Остальные виды – керамика, дерево, пластик – получены в результате процессов с искусственно полученными веществами (например, с цементом для бетона), либо с природными компонентами (в частности, для изготовления керамики используют глину).

основные конструкционные материалы

Процессы, которые необходимы для получения неметаллов:

  1. Добыча исходного сырья – руды, древесины, химических соединений, используемых для производства пластических масс и т.д.
  2. Подготовка сырья к переработке. Для неорганических ископаемых сюда входят технологии обогащения, для органических (древесина, пластик) – различные механо-термические превращения.
  3. Получение продукции и её отделка, например, окраска, нанесение декоративных или технологических покрытий.

Конечные показатели материалов органического происхождения могут сильно отличаться от свойств исходного сырья, в то время как продукты из неорганических компонентов в целом сохраняют свои эксплуатационные показатели.

Композиционные

Композиты образуются только искусственными способами, для чего применяются механические (измельчение, дробление, резка), химические, термические и комбинированные операции.

В число последних входят:

  • нагрев;
  • уплотнение;
  • охлаждение;
  • растворение.

Нагрев и охлаждение используются для облегчения последующего формоизменения, уплотнение (прессование) – для преобразования заготовок в конечную продукцию, растворение – для ускорения обработки компонентов.

свойства конструкционных материалов

Для получения продукции, основой которой являются высокомолекулярные органические вещества, используют управляемые химические реакции, а для создания композитных конструкционных материалов с особыми свойствами - методы с применением высоких энергий. В результате направленного энергетического воздействия, например, лазерного луча или плазмы, исходная структура веществ необратимо изменяется. В результате образуется продукция, свойства которой в природном виде воспроизвести невозможно. Это направление материаловедения за последние годы развивается наиболее интенсивно, поскольку техника и потребности современного общества требуют материалов, которые обладали бы сочетанием нескольких противоречивых характеристик: например, высокой прочностью при малом весе.

Свойства конструкционных материалов

Их подразделяют на три группы – механические, физические и эксплуатационные.

Физические свойства конструкционных материалов - это параметры, которые можно измерить. Механические свойства считаются показателем поведения материала при различных условиях его нагружения. Эксплуатационные свойства определяют потребительскую ценность материала, например, долговечность и износостойкость.

Обычно все виды свойств рассматривают совместно.

Механические свойства

виды конструкционных материалов

Определяются химическим составом и внутренней структурой материала, например размером зерна или направлением волокон. На уровень этих свойств влияют условия обработки, особенно, если обработка сопровождается перестройкой внутренней структуры. Уровень механических свойств зависит от условий применения.

Многие механические свойства взаимозависимы: высокие характеристики в одной категории могут сочетаться с более низкими характеристиками в другой. Например, более высокая прочность может быть достигнута за счет более низкой пластичности. Таким образом, верное понимание среды, в которой работает изделие, приводит к выбору оптимального материала.

Основные механические свойства:

  • предельное сопротивление внешним нагрузкам – растяжению, сжатию, изгибу, сдвигу;
  • деформируемость без потери целостности;
  • упругость;
  • удельная вязкость разрушения.

Физические свойства

Наряду с механическими определяют способность материала удовлетворять производственным требованиям, однако в большинстве случаев мало изменяются от условий внешней обработки.

Основные физические свойства:

  • плотность;
  • электропроводность;
  • теплопроводность/теплоёмкость (иногда сюда же вносят температуропроводность);
  • температуры перехода в различное структурное состояние;
  • коэффициенты объёмного расширения.

Физические свойства могут измеряться непосредственно. Для каждого вида материала разработаны стандартные методики оценки, поэтому результат определяют узкие диапазоны значений. Выбор происходит обычно уже по заданным значениям физических параметров.

основные конструкционные материалы

Технологические свойства

Используются для определения способности материала к обработке. Включают в себя пластичность и жёсткость, причём численные нормируемые параметры здесь отсутствуют. Технологические свойства конкретизируются для определённых условий обработки и устанавливаются исключительно по результатам испытаний на специализированном лабораторном оборудовании.

Эксплуатационные свойства

Необходимы для оценки долговечности/износотойкости изделия, которое изготовлено из данного конструкционного материала. Износостойкость - это мера способности материала противостоять контактному трению, которое может принимать различные формы:

  • адгезию (сцепление;
  • истирание;
  • царапание, долбление;
  • температурный износ.

Управление фактическими эксплуатационными показателями входит в число обязательных этапов конструирования детали или узла.

Химические свойства

Более значимы для материалов, состав которых может изменяться под влиянием внешних условий. К таким свойствам относят:

  • стойкость против коррозии (для металлов);
  • химическая стабильность (для пластика;
  • инертность при воздействии внешних агрессивных сред.

Стабильность химических свойств имеет решающее значение при выборе типа композитов.

Нажмите, чтобы узнать подробности

На уроках технологии, в школе, я научился пользоваться множеством инструментов, необходимых для изготовления необходимых в быту изделий.

Верстак представляет собой прочный и большой стол, облегчающий

работу с деревом, вследствие наличия креплений, удерживающие

изделие во время обработки. В основном предназначен для эксплуатации в условиях мастерской, в основном его используют, как рабочее место для выполнения операций по обработке материалов, например, сверления, гибки металла, пайки и других действий.


Ножовка оказывает помощь в ручном распиливании изделия.

Продаются универсальные ножовки, которые функционируют во всех

направлениях, но скорость работы при этом очень низкая. Этим инструментом я научился выпиливать необходимые детали для изделия.

При работе с ножовкой нужно соблюдать правила техники безопасности при пилении:

1. Пилы (ножовки поперечные, лучковые и т. п.) должны быть правильно разведены и хорошо заточены.

2. Необходимо прочно зажимать обрабатываемый материал в тисках верстака или другими способами.

3. Не допускать резких движений в процессе работы, не держать левую руку близко к полотну.

4. Соблюдать правильную позицию и правильно держать инструмент; быть внимательным и аккуратным в работе.

5. Не сдувать опилки, не сметать их рукой. Пользуйся щеткой.

6. Не нажимать сильно на полотно при резании и ослаблять нажим в конце работы.

7. Класть ножовку на верстак полотном от себя.

8. Правильно заправлять пилку в лобзик.

9. Аккуратно вести пиление без рывков и изгибов пильного полотна в пропиле, во избежание разрыва полотна пилы.

10. Следить за тем, чтобы левая рука не попала под пилку.

11. Соблюдать порядок на рабочем месте.


Стамеска— плотничий или столярный ручной режущий инструмент. Используется для выборки небольших углублений в древесине, зачистки пазов, снятия фасок, рельефной и контурной резьбы. Её я использовал для резьбы по дереву, для того чтобы сделать красивый, резной рисунок.

Есть рекомендации по проведению работы со стамеской:

1.Перед непосредственной обработкой поверхности проводится нанесение требуемых размеров.

2.Инструмент выбирается в зависимости из предстоящего объема работ.

3.Рекомендуется брать инструменту в левую руку, а киянку в правую. Для начала следует делать легкие постукивания, так как инструмент может себя вести по-разному в зависимости от основных свойств материала.


4.После выполнения поставленной задачи следует провести очистку поверхности от материала.

Струбцина - один из видов вспомогательных инструментов, используемый для фиксации каких-либо деталей в момент обработки либо для плотного прижатия их друг к другу, например, при обработке напильником, либо сверлении.

Струбцина функционально напоминает тисы, а его способ крепления похож на фиксатор ручной мясорубки. Простейший ручной вариант — это изогнутая П-образно монолитная рамка, с одной стороны к ней приделаны подвижные фиксирующие детали. В качестве последних элементов чаще всего выступает винт, одна сторона которого оснащена рукояткой для удобства эксплуатации прибора, с другой стороны — плоская широкая тарелка. При вращении винта она воздействует на противоположную сторону рамы. Если между двумя частями поместить пару брусков или аналогичных деталей, после чего затянуть рабочую часть, они надежно зафиксируются. При помощи струбцин я закреплял древо или фанеру, для удобного распила.


Наждачная бумага (Шлифовальная шкурка) — гибкий абразивный материал, состоящий из тканевой или бумажной основы с нанесённым на неё слоем абразивного зерна.

Предназначена для ручной и машинной обработки поверхностей различных материалов (металл, дерево, стекло, пластик) — удаления старой краски, подготовки поверхности для грунтовки и окраски, шлифование окрашенных поверхностей и прочих подобных работ. Относится к вспомогательным материалам.

Её я использовал для придания гладкости и удаление неровностей изделию. Для того, чтобы облегчить работу сначала нужно начать выполнение шлифовки со шкурки имеющей крупные зерна. Она позволяет быстро удалить имеющиеся дефекты. После нее используется наждачная бумага с более мелким напылением. Плавный переход от крупных до мелких зерен, позволяет ускорить работу и добиться более качественного результата.

§ 24. Современные технологии обработки материалов

Создание новых технологий всегда связано, с одной стороны, с возникновением у людей новых потребностей, а с другой стороны, с уровнем развития науки, который даёт возможность развивать технику. Например, бурное развитие техники в конце XX в. требовало использования всё большей энергии, а успехи атомной и ядерной физики XX в. открыли возможность для появления новых источников энергии. В результате с середины XX в. началось строительство атомных электростанций.

Какие промышленные предприятия есть в вашем регионе? Что они производят? Люди каких профессий на них работают?

Для обеспечения человечества необходимыми продуктами труда: изделиями и энергией – используются сложные технологические системы, входящие в промышленные предприятия, которые образуют промышленность страны.

Для работы промышленности необходимо использовать специальные знания, которые называются промышленными технологиями . Наиболее важными промышленными технологиями являются следующие.

Технологии металлургии включают в себя знания о процессах получения металлов и сплавов из руд и других материалов, а также о процессах, связанных с изменениями состава и свойств металлических материалов (рис.1). Разновидностями технологий металлургии являются технологии получения стали, меди, бронзы.

https://i2.wp.com/1001student.ru/wp-content/uploads/2018/09/0_b6f91_41234a4f_XXL.jpg

Рис.1. Использование технологий металлургии:

а – добыча железной руды; б – процесс литья алюминия

Машиностроительные технологии включают разработку процессов конструирования и производства различных машин, приборов, проектирования машиностроительных заводов и организации производства на них (рис. 2).

https://for.ge/uploads/images/1592398262_188278.jpg
https://hevcars.com.ua/wp-content/uploads/2019/12/audi-e-tron-batteries-hevcars-3.jpg

Рис. 2. Использование машиностроительных технологий:

а – сборочный конвейер на автомобильном заводе;

б – автоматическая линия на машиностроительном заводе

Энергетические технологии – технологии производства, передачи и использования различных видов энергии, в первую очередь электрической. Современная техника позволяет осваивать новые, поистине неисчерпаемые источники энергии: солнечной, ветровой, энергии морских и океанских приливов и отливов (рис. 3).

https://experience-ireland.s3.amazonaws.com/thumbs2/1dc1dd2c-b03f-11e4-8c69-22000ad04020.800x600.jpg

Рис. 3. Использование энергетических технологий:

а – Красноярская гидроэлектростанция;

б – линии электропередачи

Биотехнологии – технологии использования живых организмов или продуктов их жизнедеятельности для решения технологических задач, а также создания живых организмов с необходимыми свойствами (рис. 4). Всемирная известность к шотландскому ученому, обладателю докторских степеней в медицине, биологии и генетике сэру Иэну Уилмуту пришла в 1997 году – с явлением миру первого в мире клонированного из взрослой клетки животного, которое окрестили овечкой Долли. Эксперимент команды исследователей под его руководством доказал, что для создания копий животных – их клонов могут быть использованы не только половые или стволовые, но также соматические клетки, то есть обычные. Биотехнологии с давних пор используются, например, для получения молочных продуктов.

https://www.patrasevents.gr/imgsrv/f/full/1385394.jpg

Рис. 4. Использование биотехнологий: первое клонированное животное – овечка Долли с сэром Иэн Уилмут

Биотехнологии используются в медицине для создания новых лекарств. Так, первый антибиотик — пенициллин — был создан в 1928 г. британским учёным Александром Флемингом (1881—1955) на основе продуктов жизнедеятельности плесневых грибов. До этого открытия десятки тысяч людей умирали от болезней, которые сейчас успешно лечат антибиотиками.

Технологии производства продуктов питания – технологии, связанные с производством, обработкой продуктов сельского хозяйства и получения из них продуктов, пригодных для питания человека (рис. 5).

https://airsprings.com.au/wp-content/uploads/2016/12/icecream-machine.jpg
https://zeny.osobnosti.cz/wp-content/uploads/2019/01/011.jpg

Рис. 5. Использование технологий производства продуктов питания:

а – линия по производству мороженного;

б – производство кондитерских изделий

Космические технологии – технологии, связанные с запуском объектов или живых существ в космос, спуском на Землю и с непосредственной работой в космосе. Эти технологии используются при создании космической техники.

Космической техникой являются все космические аппараты, в том числе спутники, космические телескопы, межпланетные автоматические станции, орбитальные станции, а также оборудование, которое на них расположено (рис. 6). Ракеты-носители, спускаемые аппараты и прочая техника, обеспечивающая работу космических аппаратов, но постоянно не работающая в космосе, также относится к космической технике. В конце XX в. началось промышленное освоение космоса. Кроме использования привычных уже спутников связи, сейчас на космических станциях при меняют уникальные биотехнологии, выращивают кристаллы. Учёные и инженеры изучают возможности строительства космических электростанций и промышленного освоения Луны для добычи на ней сырья, например железа, алюминия, титана, а также гелия, который может использоваться как топливо для перспективных атомных электростанций.

https://teletype.in/files/5b/12/5b1299ad-0d05-410e-8b3f-f7c6d569794a.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/%D0%A6%D0%9A%D0%A1_%D0%94%D1%83%D0%B1%D0%BD%D0%B0_%D0%93%D0%9F%D0%9A%D0%A1_-2.jpg/800px-%D0%A6%D0%9A%D0%A1_%D0%94%D1%83%D0%B1%D0%BD%D0%B0_%D0%93%D0%9F%D0%9A%D0%A1_-2.jpg

Рис. 6. Космические технологии:

а – Международная космическая станция;

Электрофизические и электрохимические методы

Под электрофизическими и электрохимическими методами размерной обработки понимается совокупность электрических, электрохимических, электромагнитных и ядерных процессов воздействия на твердое тело для придания ему заданной формы и размеров. Эти процессы действуют в различных сочетаниях с тепловыми, механическими и химическими процессами.

Электрофизические и электрохимические методы используются для формообразования поверхностей заготовок из труднообрабатываемых материалов (весьма вязких, твердых и очень твердых, керамических, металлокерамических) и позволяют обрабатывать сложные фасонные внешние и внутренние поверхности, отверстия малых диаметров и т. д.

Эти методы можно разделить на 6 групп:

  • электроэрозионные,
  • лучевые,
  • ультразвуковые
  • электрохимические,
  • плазменная обработка,
  • формование в магнитном поле.
  1. Электроэрозионные методы обработки применяют для всех токопроводящих материалов. Эти методы основаны на явлении электрической эрозии, т.е. разрушение поверхности электродов электрическим разрядом, проходящим между ними. Разрушение материала происходит путем его плавления с последующим выбросом из рабочей зоны в виде парожидкостной смеси. Основными методами электроэрозионной обработки являются электроискровая и анодно-механическая. Для этих методов характерны наличие жидкой диэлектрической среды между электродами и подачи энергии в форме импульсов. Жидкая среда повышает эффективность разрушения металла и является средством эвакуации продуктов эрозии из зоны обработки.

Электроэрозионный метод обработки токопроводящих металлов и сплавов основан на использовании преобразуемой в теплоту энергии импульсных электрических разрядов, возбуждаемых между инструментом и изделием. В зависимости от вида электрического разряда (искра, дуга), параметров импульсов тока, напряжения и других условий электроэрозионная обработка подразделяется на электроискровую, электроимпульсную, электроконтактную и анодо-механическую. Каждой разновидности электроэрозионной обработки свойственны определенные технологические характеристики, оборудование и область промышленного применения.

При электроискровом метоле обработки применяют импульсы длительностью 20…200 мкс. Электрическая эрозия проявляется наиболее интенсивно, если межэлектродное пространство заполнено диэлектрической жидкостью. В качестве такой жидкости используют керосин, минеральное масло, водные растворы электролитов и дистиллированную воду.

  1. Лучевой метод обработки, к которому относится обработка световым, электронным и ионным лучами, используют для обработки токопроводящих материалов и диэлектриков. Они основаны на съеме материала при воздействии на него сфокусированными лучами с высокой плотностью энергии. Съем материала осуществляется преобразованием этой энергии непосредственно в зоне обработке в теплоту.

Высокая плотность энергии сфокусированного электронного луча так же, как и светового луча лазера, позволяет проводить размерную обработку за счет нагрева и испарения материала с узколокального участка. Для этих методов характерна практическая независимость обрабатываемости материала от механических характеристик, поэтому как металлы, так и неметаллические материалы (магнитные материалы, керамика, полупроводниковые материалы, легированные стали и ферриты, твердые сплавы, корунд и т.д.) обрабатываются одинаково успешно.

Возможность точного дозирования энергии луча позволяет осуществлять широкий круг технологических процессов от местной термообработки, ионной очистки и сварки до механической обработки. В ряде случаев, когда для обработки особо миниатюрных деталей изготовление инструмента практически неосуществимо (например, для отверстий диаметром 5…10ики), лучевая обработка является единственно возможной.

  1. Ультразвуковой метод обработки заключается в механическом воздействии на материал. Он назван ультразвуковым благодаря тому, что частота ударов соответствует диапазону неслышимых звуков, т.е. выше 16 кГц. Ультразвуковым методом можно обрабатывать твердые и хрупкие материалы, частицы которых могут, как бы выкалываться при ударе.

Широко используют ультразвуковую очистку деталей. Ультразвуковые колебания, накладываемые на жидкость для очистки деталей, особенно малогабаритных и имеющих сложную конфигурацию, резко повышают скорость и качество очистки.

Для пайки алюминия и его сплавов применяют способ удаления окисленной пленки, основанный на ее механическом разрушении интенсивными ультразвуковыми колебаниями. При этом осуществляется процесс ультразвукового лужения. Сущность явлений, происходящих при ультразвуковом лужении, заключается в следующем. Излучаемые рабочей частью паяльника знакопеременные упругие колебания частотой 16…22 кГц вызывают периодические растяжения и сжатия частиц жидкого припоя. В результате чего образуются кавитационные процессы в расплавленном припое. При этом возникают большие ударные импульсы, воздействующие на жидкий припой и поверхность облуживаемых деталей и вызывающие разрушение окисной пленки. Раздробленные частицы окисной пленки, обладают меньшей плотностью, всплывают на поверхность припоя, и он беспрепятственно облуживает очищенную поверхность металла.

Процесс ультразвукового лужения позволяет облудить всю обрабатываемую поверхность, с которой сняты окисные пленки, в то время как при механическом удалении окисной пленки обслуживаются только отдельные зачищенные места поверхности.

  1. Электрохимические методы обработки материалов основаны на преобразовании электрической энергии в энергию химических связей, на превращении материала заготовки в легко удаляемые из зоны обработки химические соединения (анодное растворение). Электрохимическая обработка имеет две разновидности: обработка в среде проточного электрона и электроабразивная. В последнем случае происходит комбинированный электрохимический и механический съем металла.
  2. Плазмой называют ионизированный газ, перешедший в это состояние результате нагрева до очень высокой температуры или в следствии столкновении частиц газа с быстрыми электронами (в газовом разряде). При этом молекулы распадаются на атомы, от которых отрываются электроны и возникают ионы. Последние ионизируют газ и делают его электропроводным. Однако не всякий ионизированный газ можно назвать плазмой. Необходимым условие существования плазмы является ее электрическая квазинейтральность, т.е. она должна содержать в единице объема примерно равное количество электронов и положительно заряженных ионов. Наряду с ними в плазме может находиться некоторое количество неионизированных атомов или молекул.

На плазму могут воздействовать магнитные и электрические поля.

Внешнее магнитное поле позволяет сжимать струю плазмы, а также управлять ею (отклонять, фокусировать).

Большая степень ионизации обуславливает высокую температуру газоразрядной плазмы которая может достигать 5000˚С и выше. Свойство плазмы можно изменять путем применения различных газов (азота, карбона, водорода, гелия и др.).

Основным методом получения плазмы для технологических целей является пропускание струи сжатого газа через пламя электрической дуги. Современные плазменные горелки делят на горелки прямого действия (с внешней дугою) и косвенного действия (с внутренней дугой).

В качестве рабочего газа наиболее часто используют аргон, который ионизируется. Напряжение зажигания и рабочее напряжение при этом не большие и электрическая дуга получается стабильной и инертной. При использовании в качестве рабочего газа гелия скорость истечения при t=10000…15000˚С приблизительно равна звуковой. Плазменная грелка рассматриваемого типа потребляет мощность 50кВт и создает концентрацию мощности плотностью 3мВт/дм 2 .

Обычно промышленные технологии состоят из нескольких частей, которые называются производственными технологиями . Например, на электростанциях получают электрическую энергию. Для этого используют технологии производства электроэнергии. С помощью линий электропередачи электроэнергия передаётся потребителям. При этом используют технологии передачи электроэнергии. Затем электроэнергия может использоваться для освещения и обогрева помещений. Здесь применяются технологии использования электроэнергии. Таким образом, промышленные энергетические технологии состоят из следующих производственных технологий: производства, передачи и использования электроэнергии.

Основные понятия и термины:

промышленные технологии, производственные технологии, технологии металлургии, машиностроительные технологии, энергетические технологии, биотехнологии, технологии производства продуктов питания, космические технологии; электрофизические и электрохимические методы: электроэрозионные, лучевые, ультразвуковые, электрохимические, плазменная обработка.

? Вопросы и задания

1. Какие промышленные технологии вам известны?

2. Что включают в себя технологии металлургии?

3. Чем отличаются промышленные технологии от производственных технологий? Приведите примеры.

Найдите в Интернете примеры использования биотехнологий и проанализируйте их влияние на окружающую среду.

Поиск информации в Интернете о современных технологиях обработки материалов: ультразвуковая резка и ультразвуковая сварка; лазерное легирование, лазерная сварка, лазерная гравировка; плазменная наплавка и сварка, плазменное бурение горных пород .

Найдите в Интернете информацию о предприятиях вашего региона и профессиях людей, которые на них работают. Составьте таблицу.

Таблица. Предприятия моего региона

Вы можете изучить и скачать доклад-презентацию на тему Конструкционные материалы. Презентация на заданную тему содержит 20 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Что такое конструкционные материалы Конструкционные материалы — материалы , из которых изготавливаются различные конструкции, детали машин, элементы сооружений, воспринимающих силовую нагрузку. Определяющими параметрами таких материалов являются механические свойства, что отличает их от других технических материалов .

Металлы и сплавы Металлы — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, металлический блеск, температура плавления (железо, медь, свинец и т.д.) Сплавы — однородные металлические материалы, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов (сталь, бронза, дюралюминий)

Чёрные металлы Чёрные металлы — железо и его сплавы (стали, ферросплавы, чугуны) , в отличие от остальных металлов, называемых цветными. металлам также ей. Чёрные металлы составляют более 90 % всего объёма используемых в экономике металлов, из них основную часть составляют различные стали.

Сталь Сталь — сплав железа с углеродом и/или с другими элементами, содержащий до 2,14% углерода Углерод не придаёт сплавам железа прочность, но придает твердость.

Читайте также: