Доклад на тему излучение по физике 8 класс

Обновлено: 04.05.2024

Излучени е - перенос энергии путем испускания электромагнитных волн. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас. Эти лучи называют тепловым излучением. Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются. Все окружающие нас предметы излучают тепло в той или иной мере.

В каком платье летом жарко

При повышении температуры тела тепловое излучение увеличивается, т.е. чем выше температура тела, тем интенсивнее тепловое излучение . Как фантастично выглядел бы окружающий мир, если бы мы могли видеть недоступные нашему глазу тепловые излучения других тел !

ЗНАЕШЬ ЛИ ТЫ ? Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву .

Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения - тепловизорах .

приборы ночного видения тепловизоры

1) Какой из видов теплопередачи сопровождается переносом вещества А) Теплопроводность Б) Конвекция В) Излучение Тест по теме: виды теплопередачи

2 ) При теплопередаче излучением А) Энергия переносится струями и потоками вещества Б) Энергия передается через слои неподвижного вещества В) Энергию можно передать в безвоздушном пространстве

3 ) Каким способом осуществляется передача энергии от Солнца к Земле А) Теплопроводность Б) Конвекция В) Излучение

4) После включения настольного светильник а с лампой книга лежащая на столе нагрелась. Выберите правильное утверждение А) Книга нагрелась вследствие конвекции в воздухе Б) Книга нагрелась вследствие излучения В) Книга нагревается тем сильнее, чем светлее обложка

5) Теплопередача излучением и конвекцией возможна через А) Атмосферный воздух Б) Пуховое одеяло В) Металлическую пластину

6 ) От чего зависит интенсивность конвекции А) От скорости движения молекул Б) От разницы температур В) От силы ветра

7 ) Благодаря какому способу теплопередачи можно греться около костра? А) Теплопроводности Б) Конвекции В) Излучению

8 ) Какой вид теплопередачи НЕ сопровождается переносом вещества? А ) Конвекция и теплопроводность; Б) Излучение и конвекция; В) Теплопроводность и излучение

9 ) Как называется вид конвекции, при котором теплый воздух от батареи поднимается вверх А) Искусственная Б) Естественная В) Принудительная

10) Как называется вид конвекции, когда мы мешам ложкой горячий чай для охлаждения А) Искусственная Б) Естественная В) Принудительная

По теме: методические разработки, презентации и конспекты


Игра решает задачи воспитания, функциональных режимов психики и индивидуальных свойств личности учащихся. В разработке представлен сценарий интерактивной игры по физике для 11 класса "Суд над видимым .

"Виды излучений"

Урок физики для 11 класса был разработан, чтобы учащиеся ознакомились с данными видами излучений. Ученики смогут посмотреть и сравнить лучи различных частот. Презентация красочно демонстрирует премене.

Биологическое действие радиоактивного излучения

Презентация содержит 15 слайдов используется как дополнительный материал к уроку применение ядерной энергии.


Конспект метапредметного урока по теме:"Биологическое действие радиоактивных излучений"

Урок оценивается как метапредметный, т. к. рассматривается вопрос о влиянии техногенных катастроф на здоровье человека.

Фотосинтез.Преобразование энергии солнечного излучения в энергию химических связей.

Рассматривание процесса фотосинтеза как пластический обмен веществ у растений. На уроке дети раскрывают сущность световой и темновой фаз фотосинтеза.

О вреде сотовых телефонов и электромагнитного излучения

Материалы для родителей на тему "О вреде сотовых телефонов и электромагнитного излучения".

Влияние радиоактивных излучений на живые организмы. Защита от опасного воздействия на организм человека радиоактивных излучений.

Уро к изучения нового ма териала в 9 классе. Содержит конспект и презентацию к уроку.

В прошлых уроках вы познакомились с такими видами теплопередачи, как тепловодность и конвекция. И в одном, и во втором случае перенос энергии происходил за счет движения частиц или их групп. Значит, если нет вещества, то эти виды теплопередачи невозможны.

Основной источник тепла на нашей планете — это Солнце. Оно находится от нас на расстоянии $15 \cdot 10^7 \space км$. Это пространство содержит очень разреженное вещество, оно близко к вакууму. В такой ситуации невозможна ни конвекция, ни теплопроводность. Каким образом тогда передается тепло от Солнца?

Изучение — вот ответ на наш вопрос. В данном уроке мы познакомимся с процессом излучения на опыте, узнаем его свойства и применение.

Выявление процесса излучения

Рассмотрим следующий опыт (рисунок 1). У нас есть жидкостный манометр и теплоприемник. Соединим их резиновой трубкой между собой.

Нагреем до высокой температуры небольшой кусок металла. С помощью пинцета аккуратно поднесем его к темной стороне теплоприемника (рисунок 1, а).

Уровень жидкости в колене, соединенном с теплоприемником, снизился. Это значит, что воздух в теплоприемнике нагрелся и расширился.

Мы не воздействовали на теплоприемник никаким другим образом. Очевидно, что ему была передана энергия от нагретого куска металла.

Теплопроводность? Нет. Ведь мы не докасались куском металла до теплоприемника. Конвекция? Тоже нет. Нагретое тело находилось рядом с теплоприемником, но не под ним. Передача энергии в данном случае осуществлялась путем излучения.

Излучение — это вид теплопередачи, при котором перенос энергии происходит преимущественно без переноса вещества.

Этот перенос энергии осуществляется посредством электромагнитных волн. Об этом понятии вы подробнее узнаете в уроках для 9 класса.

Свойства излучения

  • Передача энергии путем излучения отличается от других видов теплопередачи.

Излучение может осуществляться в полном вакууме.

  • Все тела излучают энергию: и сильно нагретые, и слабо.

Чем выше температура тела, тем больше энергии оно передаёт путем излучения.

  • Излучаемая энергия частично поглощается окружающими телами и частично отражается
  • При поглощении энергии тела будут нагреваться по-разному. Это зависит от их поверхности.

Вернемся к нашему опыту (рисунок ). Сначала мы повернули теплоприемник к куску металла темной стороной. Теперь повернем его светлой стороной (рисунок 1, б). Теперь столбик жидкости в колене манометра повысился.

Тела с темной поверхностью лучше поглощают энергию, чем тела со светлой поверхностью.


Рисунок 2. Поглощение энергии телами с разной поверхностью.

  • Тела, которые излучают энергию, охлаждаются тоже по-разному.

Тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью.

Например, в белом чайнике горячая вода дольше сохранит высокую температуру, чем в черном.

Применение

Солнечное излучение используют для того, чтобы добыть использовать солнечную энергию. Солнечные батареи (рисунок 3) позволяют аккумулировать солнечную энергию, преобразовывать ее для дальнейшего использования человеком.

Крылья самолетов, поверхности воздушных метеозондов красят серебристой краской (рисунок 4). Так используют способность тел по-разному поглощать энергию. Делают это для того, чтобы уменьшить нагрев.

Излучение применяют для сушки и нагрева материалов, в приборах ночного видения, в медицине. Далее во время обучения вы более подробно рассмотрите природу этого явления.


Излучение - это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона - частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Излучение фотона атомом

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Спектр видимого излучения

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон - это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Микроволновая печь

Еще один пример излучения в быту - микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда - Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Биолюнинисценция светлячка

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выберите документ из архива для просмотра:

§ 05. Излучение

Описание презентации по отдельным слайдам:

§ 05. Излучение

В холодном помещении мы растапливаем камин и, устроившись напротив, получаем.

В холодном помещении мы растапливаем камин и, устроившись напротив, получаем удовольствие от тепла, идущего от него. Но как в данном случае передается к нам тепловая энергия? Ни теплопроводность, ни конвекция не могут быть причиной такой передачи энергии. Теплопроводность у воздуха очень мала. Конвекционные потоки движутся вверх

Существует еще один способ теплопередачи ‒ излучение, который возможен и там.

Существует еще один способ теплопередачи ‒ излучение, который возможен и там, где нет среды (например, в космосе). Излучением к Земле переносится теплота от такого мощного источника, как Солнце. Костер, натопленная печь, камин и др. ‒ все это примеры источников, которые наряду с конвекцией и теплопроводностью передают энергию более холодным телам посредством излучения

Любое тело излучает и поглощает энергию. В результате теплообмена перенос эне.

От чего зависит, насколько эффективно будет идти излучение? Проведем опыт. Дв.

От чего зависит, насколько эффективно будет идти излучение? Проведем опыт. Два теплоприемника соединим с коленами манометра. Поднесем их черными сторонами к сосуду с горячей водой, одна половина которого зачернена, а другая ‒ белая. Уровень жидкости в колене 1 манометра стал ниже, чем в колене 2. Значит, давление в теплоприемнике I выше, чем в теплоприемнике II. А это говорит о том, что воздух в теплоприемнике, обращенном к зачерненной поверхности сосуда, нагрелся сильнее. Следовательно, тела с темной поверхностью излучают больше энергии (теплоты), чем тела со светлой поверхностью. Поэтому тела с темной поверхностью остывают быстрее, чем со светлой. А есть ли различие в поглощении энергии этими телами? Видоизменим опыт. К сосуду с горячей водой, вся поверхность которого зачернена, повернем теплоприемники разными сторонами: I ‒ черной, II ‒ белой. Уровень жидкости в колене 1 манометра стал ниже. Значит, воздух в теплоприемнике, обращенном к сосуду черной стороной, поглотил больше энергии и нагрелся сильнее. Таким образом, тела с темной поверхностью поглощают больше энергии, чем тела со светлой поверхностью, а поэтому и нагреваются быстрее

Тело, которое больше поглощает энергии, больше и излучает. Самолеты, скафанд.

Тело, которое больше поглощает энергии, больше и излучает. Самолеты, скафандры космонавтов, холодильники, морозильные камеры окрашивают в серебристый или светлые цвета, чтобы они меньше нагревались. В жару носят светлую одежду. Бак для душа на дачном участке красят в черный цвет, чтобы использовать солнечную энергию для нагревания воды

Достаточно сильно излучают энергию тела человека и животных. Современные при.

Отметим важную роль площади излучающей (или поглощающей) поверхности. Так как.

Отметим важную роль площади излучающей (или поглощающей) поверхности. Так как тепловое излучение происходит с каждой единицы площади поверхности, то чем больше поверхность, тем больше излучается (поглощается) теплоты. Поэтому, например, радиаторы водяного отопления имеют сложную ребристую поверхность, хотя при производстве проще и дешевле было бы изготавливать радиаторы более простых форм (прямоугольной, цилиндрической). Большая площадь нагретого тела увеличивает теплопередачу и другими способами ‒ теплопроводностью и конвекцией Для любознательных

Главные выводы 1. Перенос энергии от более нагретых тел к более холодным може.

Главные выводы 1. Перенос энергии от более нагретых тел к более холодным может осуществляться излучением. 2. Излучение ‒ единственный способ теплопередачи, не требующий наличия среды. 3. Все нагретые тела не только излучают, но и поглощают энергию. 4. Тела, окрашенные в темные цвета, больше поглощают и больше излучают энергии, чем тела, имеющие светлую окраску

Контрольные вопросы 1. Как изменяется температура тела при излучении энергии.

Домашнее задание Измерьте температуру воздуха в вашей квартире у пола и потол.

Домашнее задание Измерьте температуру воздуха в вашей квартире у пола и потолка. Совпадают ли показания термометра? Почему?

7. Вагоны-рефрижераторы для перевозки скоропортящихся продуктов (мясо, рыба.

7. Вагоны-рефрижераторы для перевозки скоропортящихся продуктов (мясо, рыба, фрукты) имеют двойные стенки. Пространство между стенками заполняют пенопластом, а наружные поверхности окрашивают в белый или желтый цвет. Какие физические явления учтены в конструкции вагона-рефрижератора? 8. Маша доказывает, что в жару в белой одежде прохладнее, чем в черной, поскольку она меньше поглощает солнечной энергии. Дима считает, что лучше носить черную одежду, так как она больше излучает. Кто из ребят прав? Почему? 9. Почему поверхность цилиндров двигателя мотоцикла делают ребристой? 10. При горении верхняя часть широкой парафиновой свечи размягчается и плавится. Какие виды теплопередачи играют основную роль при передаче энергии от пламени к парафину? 11. Каким видом теплопередачи осуществляется: а) прогрев нижних слоев воды в озере в летний солнечный день; б) остывание воды в озере в летнюю прохладную ночь? Упражнение 4 1. Почему форточки делают в верхней части окна? 2. Как поступить, чтобы быстрее охладить бутылку минеральной воды: поставить ее на лед или обложить льдом сверху? 3. Подвал ‒ самое холодное место в доме. Почему? 4. В каком из кофейников одинакового объема вода закипит раньше? Остынет раньше? 5. Укажите причины, по которым снег в городе тает раньше, чем в деревне. 6. Лед, имеющий температуру t1 = −5 °С, поместили в морозильную камеру. Как будет изменяться его температура, если температура в камере: а) t2 = −10 °С; б) t3 = −5 °С; в) t4 = −1 °С? Почему?


На этом уроке мы изучим последний и, пожалуй, наиболее интересный способ теплопередачи – это излучение. Излучение явно отличается тем, что с его помощью тепло может передаваться даже в вакууме. Мы постараемся привести примеры из жизни, которые помогут понять, материал данного урока.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Излучение"

Как мы знаем, основным источником тепла для нашей планеты является Солнце.


Мы уже затрагивали тему о том, как передается тепло от Солнца. Оно передаётся посредством излучения. Основное отличие излучения от других способов теплопередачи, это то, что передача энергии излучением может происходить в полном вакууме. Все тела излучают энергию: Солнце, человек, электроприборы и так далее. Чем выше температура, тем больше энергии передается посредством излучения. Часть этой энергии поглощается другими телами, а часть — отражается. Процент поглощения энергии зависит от состояния поверхности тела, в частности от цвета. Наверное, все замечали, что предметы темного цвета больше нагреваются на солнце, чем светлые. Именно поэтому, в летний солнечный день в черной одежде значительно жарче, чем в белой.


Также, если черную и белую машины с закрытыми окнами на солнцепеке и сравнить температуру внутри через час, то температура в черной машине будет выше. Однако, темные тела сами излучают энергию быстрее, чем светлые. Подобных примеров существует великое множество. Рассмотрим, как знания об излучении применяются на практике.

Например, люди часто сушат бельё на солнце.


Или загорают. Лёжа на пляже, человек получает тепло с помощью излучения.


Правда сам загар появляется в результате воздействия ультрафиолетовых лучей, что является не только теплопередачей, но и облучением радиацией.

Наконец, существуют солнечные батареи, которые поглощают энергию солнечного излучения, чтобы потом преобразовать её в другие типы энергии.


Также, все знают, что находясь рядом с огнем, становится теплее. Если мы говорим о тепле над огнем, то мы наблюдаем явление конвекции. Однако, тепло распространяется от огня во все стороны. Это происходит в результате излучения.

Существует известная легенда о том, как Архимед сжег корабли римлян, используя зеркало.


Теперь мы знаем, что он использовал знания об излучении: серебристая поверхность зеркала отражает большую часть солнечного излучения. Этим он и воспользовался, направив огромное зеркало на корабли римлян. В результате, корабли получили большое количество теплоты и загорелись. Заметим, однако, что это только легенда, но она, несомненно, имеет под собой научную почву.

Наконец, существует лазерное излучение. В наши дни, лазер используют в медицине в области хирургии. Также, излучение лазера используется в экспериментах по оптике.


При достаточной концентрации энергии излучения с помощью линзы, например, есть возможность воспламенить тело. А это значит, что в перспективе, возможно изобретение лучевого оружия. Его принцип действия будет основан на мгновенной передаче большого количества энергии на расстояние, в результате чего цель будет воспламеняться или взрываться.

Подведем небольшой итог в разделе о теплопередаче. Рассмотрим наглядный пример из повседневной жизни, который объединяет все способы теплопередачи. Для того чтобы сохранить пищу или напиток горячим, люди придумали термос.


Чтобы максимально снизить потери тепла, нужно препятствовать всем способам теплопередачи. Термос имеет двойные стенки. Из пространства между этими стенками выкачан воздух (а освобожденное пространство обладает нулевой теплопроводностью). Горлышко термоса закупоривается пробкой, чтобы предотвратить конвекцию. Наконец, внутренняя поверхность стенок покрыта блестящим металлическим слоем, чтобы отразить максимальную часть излучения (а, значит, поглотить минимальную).

Читайте также: