Доклад на тему что такое температура химия

Обновлено: 05.05.2024

В быту и на производстве мы часто обращаемся к "температуре" и "измерение температуры" "термометрами":

- меряем температуру тела;

- смотрим на уличный термометр за окном, чтобы решить как одеться;

- контроль технологических или химических процессов.

Обычно под температурой мы понимаем просто степень нагретости тела: горячо - жарко, холодно - тепло.

Для точного измерения температуры в рамках какого-либо технологического процесса необходимо создать измерительную систему с учетом всех влияющих факторов. Тот же процесс инкубации яиц, чтобы вывести яйца в инкубаторе необходимо регулировать температуру.

Из четырёх величин Международной системы единиц (СИ), неразрывно связанных с человеческой деятельностью: массой, длиной, временем и температурой, последняя оставалась полной загадкой для человечества вплоть до 18 века.

Но и сегодня не все , кто пользуется различными средствами измерения температуры, понимают , что же они измеряют .

То же давление легко воспринимается, так как оно связано с силой и может быть без труда определено количественно. С температурой невозможно связать количественную величину.

Теория (кратко).

В быту мы оцениваем температуру по ощущениям: горячо, тепло, холодно. Казалось бы, если одно тело горячее другого, то и его температура должна быть больше. Но это не так. Попробуйте взять в разогретой сауне в руку деревянный ковшик и металлический ковшик. Совершенно разные ощущения, хотя температура одна. Но если мы хотим сравнить температуру одинаковых по своей природе объектов, то можем сделать это с высокой точностью.

Рукой можно определить, повышена ли температура другого человека, фактически измерить её с точностью ±0,5⁰С. Также находясь в помещении можно с точностью до 1…2⁰С определить температуру воздуха. Человек хорошо чувствует этот физический параметр и в то же время мало кто сможет чётко сказать, что же это такое - температура.

Совершенно обратная ситуация с влажностью воздуха: очень трудно определить влажность воздуха по своим ощущениям. Однако эта характеристика прекрасно понимается в количественном выражении – это количество молекул воды в единице объёма.

Существуют несколько определений температуры. Одно из них наиболее близкое людям, занимающимся практическими измерениями и исходит из нулевого закона термодинамики:

если два тела находятся в состоянии теплового равновесия, то они имеют одинаковую температуру.

Таким образом, если мы обеспечим хороший тепловой контакт термометра с измеряемой средой, то по прошествии некоторого времени, необходимого для установления теплового равновесия, температуры термометра и среды будут одинаковы. Естественно, что данный вывод будет верен, только если наша система изолирована от других тел и не совершается никакой работы.

Ну а само понимание физической природы температуры приходит только после изучения статистической механики, где температура представлена как мера кинетической энергии тела.

Для корректного изложения вопросов измерения температуры необходимо дать ее точное физическое определение.

Температура — физическая величина, количественно характеризующая меру средней кинетической энергии теплового движения молекул какого-либо тела или вещества.

Из определения температуры следует, что она не может быть колличественно измерена непосредственно и судить о ней можно по изменению других физических свойств тел (объема, давления, электрического сопротивления, термоЭДС, интенсивности излучения и т.д.).

В зависимости от диапазона измеряемых температур различают две основные группы методов измерения:

  • контактные (собственно термометрия) - жидкостные, манометрические, термоэлектрические термометры, термометры сопротивления и др.
  • безконтактные (пирометрия или термометрия излучения), применяемые в основном для измерения очень высоких температур - для измерения криогенных температур используются также газовые, акустические и магнитные термометры.

Кроме того, в системах, не требующих высокой точности измерений, в определенном диапазоне температур широко используются полупроводниковые датчики температуры на диодах, транзисторах и специальных интегральных микросхемах.

Историческая справка.

Первое достоверно известное устройство для измерения температуры было создано Г. Галилеем около 1595 г. Этот прибор (термоскоп) использовал явление изменения объема газа при нагревании и охлаждении. Однако этот прибор (и последующие аналоги) имел большой недостаток: его шкала была относительной и показания не могли быть выражены в численной форме.

Крупным шагом в развитии термометрии было введение изобретателем ртутного термометра Г.Фаренгейтом (G. Fahrenheit) в начале 18 века первой температурной шкалы, названной его именем, опирающейся на две опорные точки. В качестве нижней опорной точки (0°F) он использовал температуру замерзания солевого раствора, самую низкую воспроизводимую в то время, а в качестве верхней точки температуру тела человека (96°F - в старину было удобнее считать дюжинами). Сам изобретатель определял вторую эталонную точку как температуру под мышкой здорового англичанина.

Привычная нам десятичная температурная шкала была предложена А. Цельсием (A. Celsius) в 1742 году. В качестве опорных точек для нее используются температура плавления льда (0°C) и температура кипения воды (100°C).

Наконец, в начале 19 века английским ученым лордом Кельвином (Kelvin) была предложена универсальная абсолютная термодинамическая температурная шкала, ставшая стандартной в современной термометрии. Одновременно Кельвин обосновал понятие абсолютного нуля температуры.

Перевести температуру из одной шкалы в другую можно с помощью следующих простых соотношений:

0°C соответствует 32°F и 273,15 К,

а 100°C — 212°F и 373,15 К.

Выбор между этими опорными точками 100 делений у шкалы Цельсия и 180 делений у шкалы Фаренгейта является чисто условным (как, впрочем, и выбор самих опорных точек).

Для обеспечения единства измерений температуры в качестве международного стандарта в 1968 году принята Международная Практическая Температурная Шкала МПТШ68 (в настоящее время в качестве стандарта принята уточненная в 1990 году версия шкалы ITS90), использующая в качестве опорных точек температуры изменения агрегатного состояния определенных веществ, которые могут быть воспроизведены. Кроме того, стандарт определяет типы образцовых средств измерения во всем диапазоне температур.

Перечень основных фиксированных точек МПТШ68

Наименование Температура, К Образцовое средство измерения
Точка затвердевания золота 1337,58 свыше 1337,58 К - спектральный пирометр
Точка затвердевания серебра 1235,08 от 903,89 К до 1337,58 К - термопара платина/платина%родий (10% Rh)
Точка затвердевания цинка 692,73 от 13,81 К до 903,89 К - платиновый термометр сопротивления
Точка кипения воды 373,15
Тройная точка воды 273,16
Точка кипения кислорода 90,188
Тройная точка кислорода 54,361
Точка кипения неона 27,102
Точка кипения равновесного водорода 20,28

Температура - параметр, который можно измерить только косвенно, по изменению других физических параметров. Термометрию различают на первичную и вторичную. В первичной термометрии температура явно описывается через другие физические параметры, например для газовых термометров это давление и объём. Примерами вторичных термометров являются термометры сопротивления и термопары. В промышленности термометры сопротивления и термопары являются основными средствами контроля температуры, закрывая диапазон измерения от минус 200 до + 2500⁰С и более.

В последнее время платиновые термосопротивления активно начали вытеснять медные и термопары . Связано это с появлением на рынке недорогих платиновых плёночных термочувствительных элементов, которые в отличие от медных являются более стабильными и работают в более широком диапазоне температур. А по сравнению с термопарами - обеспечивают более высокую точность измерения и не требуют использования дорогого термокомпенсационного кабеля.

Однако в России медные термометры до сих пор находят широкое применение. Одно из основных преимуществ меди - это очень хорошая линейная зависимость её сопротивления от температуры в диапазоне от минус 50 до + 200⁰С и более высокая чем у платины чувствительность. Свыше 200⁰С медь начинает очень быстро окисляться на воздухе, поэтому обычно верхний предел измерения для медных термосопротивлений устанавливается до 180⁰С. При производстве используется проволока диаметром от 30 до 80 мкм. При дальнейшем уменьшении диаметра стоимость проволоки резко возрастает, а изготовление термосопротивления с заданными параметрами становится проблематичным.

Также следует обращать внимание на максимальный измерительный ток. Например, для термометров сопротивления, изготовленных из проволоки диаметром 30 мкм уже при токе 0,2мА становится заметным явление саморазогрева от протекающего тока, а значит, использование таких термометров с большинством измерительных приборов становится невозможным. Обычно диаметр используемой проволоки определяется исходя из диаметра зонда, в который будет устанавливаться проволочный чувствительный элемент. Например, для зонда диаметром 2 мм используют проволоку диаметром 30 мкм, 4 мм – 40 мкм, 5…6 мм – 50 мкм, 8…10 мм- 80 мкм.

Большое значение имеет схема соединения проводников термосопротивления. Различают три основных схемы: 2-х, 3-х и 4-х проводную.


При двухпроводной схеме к сопротивлению ЧЭ добавляется сопротивление внешних проводов, что приводит к появлению дополнительной погрешности измерения. Ясно, что такой способ можно использовать только для ЧЭ с большим сопротивлением. Из наиболее употребляемых - это Pt1000. Легко подсчитать, что для обеспечения точности измерения 0,1⁰С общее сопротивление внешних проводников не должно быть больше 3,8 Ом.

В трёхпроводной схеме подключения автоматически из полного сопротивления вычитается сопротивление внешних проводов. Но это только в случае, если сопротивление проводников 1 и 2 трёхпроводной схемы равны между собой. Тем не менее, 3-х проводная схема подключения термосопротивлений на сегодняшний момент является самой популярной. Практически все вторичные приборы (измерители, регуляторы) имеют входные цепи, рассчитанные под эту схему. Трёхпроводная схема позволяет увеличить расстояние от датчика до прибора до 50…100 метров. При этом не обязательно, чтобы сам термометр сопротивления был изготовлен по 3-х проводной схеме. Можно использовать и датчики с двумя клеммами, подключив к одной клемме один провод, а ко второй – два.

Четырёхпроводная схема используется в основном только для точных измерений и в эталонных приборах. Данная схема позволяет автоматически компенсировать влияние на результат измерения не только сопротивления проводников, но и ЭДС в местах контактов.

Советы при выборе и монтаже термометров сопротивления


Есть банальные истины, которыми нужно руководствоваться при выборе подходящего датчика температуры. Конечно же, нужно в первую очередь обратить внимание на диапазон измерения и точность. Во-вторых, нужно решить вопрос с основным конструктивным исполнением: в клеммной головке, или с кабельным выводом. Датчики с кабельным выводом более миниатюрны и менее инерционны. Они уже полностью готовы к подключению к вторичному прибору. Но вышеперечисленные преимущества одновременно являются и их недостатками. Миниатюрный корпус – следовательно, небольшой размер чувствительного элемента и малый измерительный ток. Жёстко присоединённый кабель несёт за собой худшую, чем для датчиков в клеммной головке степень защиты от воды. Эти датчики заведомо дороже из-за высокой стоимости применяемого высокотемпературного кабеля. Они менее надёжны при механических воздействиях опять-таки из-за наличия кабеля. С термосопротивлением в клеммной головке не обязательно использовать высокотемпературный кабель. Минус этих датчиков в одном – габаритных размерах, что бывает важно в ряде случаем.


При монтаже датчика температуры нужно максимально увеличить его тепловой контакт с контролируемой средой и одновременно уменьшить отток тепла от места подключения. Необходимо помнить, что чувствительный элемент имеет конечную длину, поэтому глубина погружения датчика должна быть как минимум на несколько диаметров зонда больше, чем длина ЧЭ. При монтаже датчиков контроля поверхности очень важно место соединения предварительно смазать каким-либо вязким веществом. Также важно обеспечить тепловой контакт кабеля с контролируемым объектом, чтобы минимизировать отвод тепла от ЧЭ датчика по кабелю. Ещё лучше, если и датчик и подводящий кабель будут закрыты хорошим теплоизолятором, например пенополиуретаном, или пенополиэтиленом.

Датчики температуры воздуха лучше устанавливать в тех местах помещения, которые наиболее важны для контроля. При плохой конвекции воздуха в помещении градиент температуры может составить до 5-ти и более градусов.

По сравнению с термометрами сопротивления термопары обладают рядом очень больших преимуществ и таких же больших недостатков. По большому счёту эти два класса приборов очень органично дополняют друг друга. И задача киповца - определить, какой датчик температуры ему нужен для той или иной задачи.

Термопары имеют очень большой диапазон рабочих температур. При этом, чем больше максимальная рабочая температура термопары, тем меньше её чувствительность. С этим фактом связан большой ассортимент применяемых термопар. При помощи термопар можно измерять температуру очень маленьких объектов. Для этого достаточно сварить между собой две термоэлектродные проволоки маленького диаметра. Естественно, что такая термопара имеет и очень незначительную инерционность. Термопара из недрагоценных металлов малой длины дешевле термосопротивления. Однако при увеличении длины стоимость её значительно возрастает. В то же время термопары значительно уступают термосопротивлениям в точности измерения. Связано это с рядом причин. Сигнал с термопары значительно более нелинеен. Для получения абсолютной измеренной температуры необходимо знать температуру холодного спая термопары. А это означает, что общая погрешность измерения сложится из двух: погрешности измерения разности температур рабочего и холодного спая термопары и погрешности измерения температуры холодного спая. На практике же всё ещё сложнее. Очень непросто измерить с хорошей точностью температуру выводов термопары на входе вторичного прибора. На практике эта погрешность составляет около 1⁰С. При измерении высоких температур значение данной погрешности несколько нивелируется.

Советы по выбору и применению термопар

Для использования в диапазоне до +200⁰С лучше применять платиновые или медные термосопротивления. В случае контроля температуры очень небольшого объекта малой теплоёмкости можно использовать термопару медь-константан, которая замечательна тем, что очень легко сваривается над поверхностью раствора медного купороса, имеет самую высокую чувствительность и очень низкую стоимость.

Для диапазона до +800⁰С в России используется термопара ХК(L) хромель-копель. Данные термопары имеют очень высокую чувствительность в широком диапазоне начиная от -200⁰С. В других странах данный тип термопары не применяется. Самыми популярными в промышленности являются термопары типа ХА(К) хромель-алюмелевые. Теоретический диапазон их использования составляет от -200 до +1300⁰С. Термопары типа К замечательны хорошей линейностью характеристики от 0 до 1000⁰С. В реальности наиболее высокотемпературные термопары работают до 1100⁰С. Так как при высокой температуре от +800⁰С термоэлектродные проволоки начинают активно окисляться, то единственным путём увеличить срок службы термопары и температуру эксплуатации является увеличение диаметра термоэлектродных проволок до 2…3 мм. При температуре выше 800⁰С нержавеющую сталь кожуха меняют на специальную высокотемпературную сталь или керамику.

Для измерения температуры вплоть до +1700⁰С применяют термопары, изготовленные из драгоценных металлов платиновой группы. Они отличаются высокой стабильностью параметров, но имеют крайне низкую чувствительность при низких температурах и очень высокую стоимость. Наиболее высокотемпературные термопары – вольфрам-рениевые. Но они не могут работать в окислительной атмосфере при температуре уже выше 500⁰С. Оболочку этих датчиков необходимо наполнять инертным газом. Так как герметичный корпус для высоких температур изготовить проблематично, то для продолжительной работы по внутренней полости этих термопар постоянно пропускают инертный газ.

Для контроля температуры поверхности или воздуха лучше применять гибкую термопару без защитного чехла. Для контроля поверхности нужно обеспечить хороший тепловой контакт с поверхностью не только рабочего конца термопары, но и термоэлектродов на расстоянии не менее 50 мм, чтобы уменьшить теплоотвод от места контроля. При использовании термопары при высокой температуре в окислительной или агрессивной атмосфере может наблюдаться деградация параметров, связанная с окислением и изменением химического состава термоэлектродов. Необходимо периодически контролировать качество термопары хотя бы по её полному сопротивлению постоянному току. Для использования в экстремальных условиях в течение непродолжительного времени существуют ТП разового применения и ТП кратковременного применения.

ТЕМПЕРАТУРА (от лат. temperatura- надлежащее смешение, нормальное состояние), термодинамич. параметр, характеризующий состояние термич. равновесия макроскопич. системы. Наряду с давлением, хим. потенциалом и др. параметрами состояния, температура относится к интенсивным величинам, т.к. не зависит от массы системы. Согласно принципу термич. равновесия, две фазы А и В, адиабатически изолированные от окружающей среды (внутр. энергии фаз соотв. Е А + Е В = const), могут находиться в состоянии равновесия, к-рое характеризуется определенными значениямии(р А , р B -давления;, -молярные объемы фаз). Экспериментально установлено, что если фаза А находится в равновесии с фазой В, а В-с С, то А и С также находятся в равновесии. Из принципа термич. равновесия следует, что каждая фаза обладает эмпирической температурой q -измеримым св-вом такого рода, что из q А (р A ;) = q B (р B ;) и q B (р B ;) = q C (р C ;) следует q А (p А ;) = q с (р с ;).

Если две фазы с разл. q приведены в тепловой контакт друг с другом через пов-сть раздела и q А > q В , возникает поток теплоты от А к В, т. е. от более нагретой фазы к менее нагретой. При q А = q В тепловой поток отсутствует. Принцип термич. равновесия впервые сформулирован Дж. Блэком в кон. 18 в. В термодинамику он введен, однако, позднее первого и второго начал термодинамики, поэтому его часто называют нулевым началом термодинамики.

Существует множество ф-ций q (p,), удовлетворяющих нулевому началу. Конкретный вид q (p,) определяется используемым измерит. прибором-термометром и способом построения термометрич. шкалы.

Понятие абсолютной температуры введено У. Томсоном (лордом Кельвином) в 1848 на основании теоремы Карно, согласно к-рой все обратимые тепловые машины, где рабочее тело совершает круговой процесс между нагревателем с эмпирической температурой q 1 и холодильником с эмпирической температурой q 2 , имеют одинаковый кпд h , независимо от природы рабочего тела:

4103-39.jpg

4103-40.jpg

где Q 1 - тепло, отбираемое рабочим телом от нагревателя, Q 2 -тепло, передаваемое холодильнику. Значения q 1 и q 2 можно измерить с помощью произвольной шкалы температуры, величиныи h при смене шкалы остаются постоянными. Абсолютная температура вводится соотношением:

4103-41.jpg

где T 1 и Т 2 -абсолютные температуры нагревателя и холодильника соотв., причем T 1 есть ф-ция только q 1 , а T 2 -только q 2 . Для построения шкалы абсолютной температуры достаточно приписать определенное значение Т, одному известному термич. состоянию. В настоящее время по международному соглашению принято, что абсолютная (термодинамич.) Температура плавления воды при нормальном давлении равна 273,15 К (точно). Абсолютный нуль температуры (или нулевая абсолютная температура) имеют ясный физ. смысл как температура холодильника в цикле Карно, при к-рой кпд тепловой машины h = 1. Тело, находящееся при нулевой температуре, не способно передавать теплоту к.-л. другому телу. Единица измерения абсолютной температуры в системе СИ-градус Кельвина (Кельвин, К). Конкретные измерения абсолютной температуры осуществляются с помощью набора спец. термометров (подробнее см. Термометры, Термометрия).

Согласно строгой формулировке второго начала термодинамики (аксиоматика Каратеодори), абсолютная температура вводится как интегрирующий делитель для бесконечно малого кол-ва теплоты d Q, полученного системой, обладающей внутренней энергией Е, в обратимом процессе. Величина d Q/T является полным дифференциалом ф-ции состояния S, наз. энтропией. Абсолютная температура выражается соотношением:

4103-42.jpg

X 1 , X 2 , Х 3 , . -экстенсивные термодинамич. переменные (объем V, электростатич. индукция D, магн. индукция В и т.п.). Абсолютная температура и эмпирическая температура q связаны аналит. зависимостью для систем, у к-рых E является ф-цией только Ти V:

4103-43.jpg

4103-44.jpg

Аналит. связь p,и Т для фазы наз. уравнением состояния. В статистической термодинамике аналогом ур-ния (1) служит соотношение:

4103-45.jpg

где W— термодинамич. вероятность, k-постоянная Больц-мана. Термодинамич. вероятность W(E)равна числу возможных состояний системы, при к-рых последняя обладает внутр. энергией Е. Термодинамич. вероятность связана с энтропией соотношением Больцмана S = kln W. Для обычной макроскопич. системы величина W- быстро возрастающая ф-ция Е и, следовательно, абсолютная температура положительна.

Термич. равновесие двух систем А и В (E А + Е B = const), определяемое равенством т-р T А = Т B , соответствует наиб. вероятному распределению энергии между А и В. Если В представляет собой обширный тепловой резервуар (Е В >> E А ), то абсолютная температура определяет плотность вероятности Р(Е) для системы А находиться в состоянии с заданной энергией E A,r при термич. равновесии с системой В:

4103-46.jpg

4103-47.jpg

где, суммирование ведется по всем значе ниям энергии E A.r (r = 1,2. , п) подсистемы А (канонич. распределение Гиббса). Частными случаями канонич. распределения являются распределения молекул идеального газа по энергиям и скоростям (распределения Больцмана и Максвелла).

Практически все физ.-хим. величины зависят от температуры. Важными примерами являются температурные зависимости:

4103-48.jpg

4103-49.jpg

4103-50.jpg

где R-газовая постоянная, -стандартная энтальпия р-ции.

3) Теплового эффекта хим. р-ции при постоянном давлении ( D H) и постоянном объеме ( D U):

( 9 D Н/ 9 Т) р = D С р , ( 9 D U/ 9 Т) V = D С V ,

где H и U-энтальпия и внутр. энергия системы, С р и С V -теплоемкости при постоянном давлении и постоянном объеме соотв. (см. Кирхгофа уравнение).

4103-51.jpg

4103-52.jpg

где -изменение молярного объема при переходе в-ва из фазы 1 в фазу 2 (см. Клапейрона -Клаузиуса уравнение).

5) Стандартной электродвижущей силы E 0 гальванич. цепи:

4103-53.jpg

6) Объемной плотности r v излучения абсолютно черного тела с частотой v (ф-ла Планка):

4103-54.jpg

где с-скорость света, h-постоянная Планка.

Полной объемной плотности излучения по всем частотам (закон Стефана - Больцмана):

4103-55.jpg

7) Степени ионизации a газа, состоящего из атомов А:

4103-56.jpg

где E i -энергия ионизации атома, m-масса электрона; g i , g А -статистич. веса ионов и атомов (ур-ние Саха).

Понятие температуры, сформулированное для равновесного состояния системы в целом, используется и для характеристики локального термодинамич. равновесия, если система в целом неравновесна и ее температура рассматривается как непрерывная ф-ция координат и времени. При локальном термодинамич. равновесии малые элементы объема приближенно рассматриваются как равновесные, обладающие каждый своей температурой, и учитывается обмен энергией (энтропией) между ними. Локальное термодинамич. равновесие-одно из осн. понятий термодинамики необратимых процессов. В ряде физ. задач неравновесная система м. б. разбита на подсистемы, в к-рых время установления термич. равновесия много меньше времени достижения равновесия системой в целом. Подобная ситуация м. б. охарактеризована тем, что каждой из подсистем соотносится своя температура, отличная от температур других подсистем. Напр., в полупроводниках температура электронов проводимости в сильном электрич. поле много выше температуры решетки; в плазме отдельно рассматривают температуру электронов и температуру ионов.

4103-57.jpg

В нач. 50-х гг. 20 в. сформулировано понятие отрицательных абсолютных температур. Такие температуры могут возникать в системах, если с ростом энергии Е термодинамич. вероятность W (или энтропия S)не возрастает, а убывает, в результате чего производная становится меньше нуля (см. ф-лы 1 и 2). Подобная ситуация реализуется для таких систем, в к-рых энергия Е ограничена снизу и сверху. Так, двухуровневая система, состоящая из N ядерных спинов во внеш. магн. поле (напр., ионы Li + в кристалле LiF), имеет миним. энергию N E 1 , максимальную NE 2 , где E 1 и Е 2 -энергии спина ядра на нижнем и верхнем уровнях. Начиная с энергии, равной N (E 1 + E 2 )/2, термодинамич. вероятность W убывает с ростом энергии, что позволяет говорить об отрицательной температуре подсистемы (ионы Li + ), но не для системы в целом. Рассматриваемая подсистема должна быть термически слабо связана с системой в целом, для к-рой отсутствуют ограничения по энергии.

При физ.-хим. исследованиях условно выделяют область низких температур (см. Криохимия) и область высоких температур (обычно 500-3000 К), к-рую рассматривают как химию высоких температур, или просто высокотемпературную химию. Температуры в интервале 500-3000 К получают методами радиационного и лазерного нагрева, электронной и ионной бомбардировки. Объекты высокотемпературной химии, как правило,-неорг. соединения. Характерными чертами высокотемпературных хим. процессов являются: 1) сравнительно малая роль констант скорости, энергий активации и т. п. кинстич. факторов, поскольку скорость р-ций высока и в системе быстро устанавливается равновесие; 2) увеличение роли газовой (паровой) фазы из-за интенсивных процессов испарения; 3) необходимость учета влияния заряженных частиц-ионов и электронов, возникающих в результате термодиссоциации (см. Ионы в газах, Ионно-молекулярные реакции). Высокотемпературными процессами являются мн. металлургич. произ-ва, процессы напыления пленок, монокристаллов выращивания из газовой фазы и др.

Процессы в области температур 3000-5000 К изучаются плазмохимией.

Лит.: Кричевский И. Р., Понятия и основы термодинамики, 3 изд., М., 1962; Рей Ф., Статистическая термодинамика, пер. о англ., М., 1986.

Содержание

Введение
Глава 1. Термопреобразователи для измерения криогенных температур
1.1. Медь-константановый термопреобразователь
1.2. Термопреобразователи из сплавов Кондо в паре с обычными термоэлектродами
Глава 2. Государственная поверочная схема
2.1. Эталоны
2.1.1. Государственный первичный эталон
2.1.2. Вторичные эталоны
2.2. Рабочие эталоны
2.2.1. Рабочие эталоны 1-го разряда
2.2.2. Рабочие эталоны 2-го разряда
2.2.3. Рабочие эталоны 3-го разряда
2.3. Рабочие средства измерительной техники
Заключение
Список использованных источников

Введение

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой, потому что суммарная энтропия при этом возрастает.

Температура играет важную роль в повседневной жизни, в познании природы, исследовании новых явлений, а ее единица — кельвин К — является одной из семи основных единиц, на которых основана Международная система единиц. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия[1]. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один Кельвин. Поэтому после введения в 1967 г. нового определения Кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C. Существуют также шкалы Фаренгейта и некоторые другие. Согласно статистическим данным около 40 % всех измерений приходятся на температурные [1]. В некоторых отраслях народного хозяйства эта доля значительно выше. Так, в энергетике температурные измерения составляют до 70 % общего количества измерении. Огромное значение имеет температура при контроле, автоматизации и управлении технологическими процессами. Точность соблюдения температурного режима часто определяет не только качество, но и принципиальные возможности применения продукции в определенных целях, например при выращивании полупроводниковых монокристаллов. В современных условиях технологические требования к точности поддержания температуры.

Глава 1. Термопреобразователи для измерения криогенных температур

Характерной особенностью термоэлектрического метода измерения низких температур является то, что с убыванием температуры ухудшаются условия генерирования термоэлектродвижущей силы (ТЭДС) [3].

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

1.1. Медь-константановый термопреобразователь

Медь-константановый термопреобразователь в практике измерения низких температур получил наиболее широкое применение. Условное обозначение номинальных статических характеристик (НСХ) преобразования в соответствии с ДСТУ 2837-94 [4]: МК (М) с термоэлектродами медь (М1) и сплав копель МНМц 43…0,5 (56 % Cu – 44 % Ni) для диапазона измеряемых температур -200…+400 ºС (70…670 К). В отличие от электродов из чистых металлов сплавы часто выходят за рамки требований по однородности, предъявляемых к термоэлектродам. Особенно это относится к константану, выбор которого для измерения низких температур требует особой тщательности и внимания. Для термопреобразователей пригоден только термопарный константан. Обычная электротехническая медь удовлетворяет требованиям по однородности [5]. ТЭДС медь-константанового термопреобразователя убывает с температурой и при 20 К становится меньше 5 мкВ/К. При температурах ниже тройной точки водорода (13,81 К) используются сплавы Кондо, значительно более эффективные, чем медь-константановые термопреобразователи в диапазоне температур 2…20 К [6].

1.2. Термопреобразователи из сплавов Кондо в паре с обычными термоэлектродами

Такие термопреобразователи эффективны при измерениях температур ниже тройной точки водорода. Сплавы Кондо представляют твердые растворы, в которых в обыкновенном металле в очень небольших количествах растворены переходные или редкоземельные металлы. Молярное содержание растворов составляет от нескольких тысячных до нескольких десятых долей процента. Для них характерна очень большая по сравнению со всеми остальными металлами и сплавами ТЭДС. Наиболее исследованы растворы железа, кобальта, марганца, серебра, меди [7]. На рис. 1.1 и 1.2 представлены температурные зависимости полной и дифференциальной ТЭДС для термопар, которые составлены из термоэлектродов, изготовленных из сплава золота и кобальта (молярное содержание 2,1 %), и других металлов [8].

Разброс значений ТЭДС для 15 произвольно выбранных термоэлектродов одной и той же катушки имеет наибольшее значение при 4,2 К и соответствует ± 0,2 % [11].

Для измерений в диапазоне температур 1…80 К рекомендуются термопреобразователи, у которых электроды изготовлены из сплавов серебро-золото (молярное содержание 0,37 %) и золото-железо (молярное содержание 0,03 %) в соответствии с ДСТУ 2857-94 [12]. С понижением температуры чувствительность повышается и составляет 10 мкВ/К при 2 К, 14 мкВ/К при 10 К и 8 мкВ/К при 40 К. При индивидуальном установлении номинальной статической характеристики ее погрешность достигает 0,1 К в соответствии с ДСТУ 2837-94 [4].

Глава 2. Государственная проверочная схема

Государственная поверочная схема средств измерений температуры в диапазоне от 13,8 К до 303 К изложена в соответствии с ДСТУ 3742-98 [14].


Тепловое движение α-пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого атома так и среднюю потенциальную энергию многих колебаний. Серые, красные и синие шары обозначают атомы углерода, кислорода и азота, соответственно; маленькие белые шарики представляют атомы водорода.

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия [1] . На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один Кельвин. Поэтому после введения в 1967 г. нового определения Кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C [2] .

Существуют также шкала Фаренгейта и некоторые другие.

Содержание

Термодинамическое определение

Существование равновесного состояния называют первым исходным положением термодинамики. Вторым исходным положением термодинамики называют утверждение о том, что равновесное состояние характеризуется некоторой величиной, которая при тепловом контакте двух равновесных систем становится для них одинаковой в результате обмена энергией. Эта величина называется температурой. [3]

История термодинамического подхода

В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой.

Свойства температуры изучает раздел физики — термодинамика. Температура также играет важную роль во многих областях науки, включая другие разделы физики, а также химию и биологию.

Определение температуры в статистической физике

В статистической физике температура определяется по формуле

 T = \frac<dE></p>
<p>
,

где S — энтропия, E — энергия термодинамической системы. Введённая таким образом величина T является одинаковой для различных тел при термодинамическом равновесии. При контакте двух тел тело с большим значением T будет отдавать энергию другому.

Измерение температуры



Для измерения термодинамической температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры. Классическим примером термодинамического термометра может служить газовый термометр, в котором температуру определяют методом измерения давления газа в баллоне постоянного объёма. Известны также термометры абсолютные радиационные, шумовые, акустические.

Термодинамические термометры — это очень сложные установки, которые невозможно использовать для практических целей. Поэтому большинство измерений производится с помощью практических термометров, которые являются вторичными, так как не могут непосредственно связывать какое-то свойство вещества с температурой. Для получения функции интерполяции они должны быть отградуированы в реперных точках международной температурной шкалы.

Средства измерения температуры часто проградуированы по относительным шкалам — Цельсия или Фаренгейта.

На практике для измерения температуры также используют

Самым точным практическим термометром является платиновый термометр сопротивления [5] . Разработаны новейшие методы измерения температуры, основанные на измерении параметров лазерного излучения [6] .

Единицы и шкала измерения температуры

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Абсолютная температура. Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что равно −273.15 °C.

Шкала температур Кельвина — это шкала, в которой начало отсчёта ведётся от абсолютного нуля.

Важное значение имеет разработка на основе термодинамической шкалы Кельвина Международных практических шкал, основанных на реперных точках — фазовых переходах чистых веществ, определенных методами первичной термометрии. Первой международной температурной шкалой являлась принятая в 1927 г. МТШ-27. С 1927 г. шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же — основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек) [7] и методы интерполяции.

Используемые в быту температурные шкалы — как Цельсия, так и Фаренгейта (используемая, в основном, в США), — не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина, а другая — абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что цена одного деления по шкале Кельвина равна цене деления шкалы Цельсия, а цена деления шкалы Ранкина эквивалентна цене деления термометров со шкалой Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K, 0 °C, 32 °F.

Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от неё зависит постоянная Больцмана. Это создаёт проблемы с точностью интерпретации измерений высоких температур. Сейчас МБМВ рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки. [8] .

Шкала Цельсия

В технике, медицине, метеорологии и в быту используется шкала Цельсия, в которой температура тройной точки воды равна 0,008 °C, [9] и, следовательно, точка замерзания воды при давлении в 1 атм равна 0 °C. В настоящее время шкалу Цельсия определяют через шкалу Кельвина: цена одного деления в шкале Цельсия равна цене деления шкалы Кельвина, t(°С) = Т(К) — 273,15. Таким образом, точка кипения воды, изначально выбранная Цельсием, как реперная точка, равная 100 °C, утратила свое значение, и по современным оценкам температура кипения воды при нормальном атмосферном давлении составляет около 99,975 °C.Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а 100 градусов Цельсия — 212 градуса Фаренгейта.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F — 32), t °F = 9/5 t °С + 32. Предложена Г. Фаренгейтом в 1724 году.

Шкала Реомюра

Предложена в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному.

… современное понятие абсолютного нуля не есть понятие абсолютного покоя, наоборот, при абсолютном нуле может быть движение — и оно есть, но это есть состояние полного порядка …

П. Л. Капица (Свойства жидкого гелия)

Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остаётся в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1·10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, — это температура абсолютного нуля (Т = 0К).

Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)·10 −12 К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ [источник не указан 972 дня] . При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.

Температура и излучение

Излучаемая телом энергия пропорциональна четвёртой степени его температуры. Так, при 300 К с квадратного метра поверхности излучается до 450 ватт. Этим объясняется, например, ночное охлаждение земной поверхности ниже температуры окружающего воздуха. Энергия излучения абсолютно чёрного тела описывается законом Стефана — Больцмана

Переходы из разных шкал

Пересчёт температуры между основными шкалами
из Цельсия (° C) в Цельсий
Фаренгейт (°F) [°F] = [°C] × 9⁄5 + 32 [°C] = ([°F] − 32) × 5⁄9
Кельвин (K) [K] = [°C] + 273.15 [°C] = [K] − 273.15
Rankine [°R] = ([°C] + 273.15) × 9⁄5 [°C] = ([°R] − 491.67) × 5⁄9
Delisle [°De] = (100 − [°C]) × 3⁄2 [°C] = 100 − [°De] × 2⁄3
Newton [°N] = [°C] × 33⁄100 [°C] = [°N] × 100⁄33
Réaumur [°Ré] = [°C] × 4⁄5 [°C] = [°Ré] × 5⁄4
Rømer [°Rø] = [°C] × 21⁄40 + 7.5 [°C] = ([°Rø] − 7.5) × 40⁄21

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273,15 −459,67 0 559,725 −90,14 −218,52 −135,90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255,37 −17,78 0 459,67 176,67 −5,87 −14,22 −1,83
Температура замерзания воды (Нормальные условия) 273,15 0 32 491,67 150 0 0 7,5
Средняя температура человеческого тела ¹ 310,0 36,6 98,2 557,9 94,5 12,21 29,6 26,925
Температура кипения воды (Нормальные условия) 373,15 100 212 671,67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела — 36,6 °C ±0,7 °C, или 98,2 °F ±1,3 °F. Приводимое обычно значение 98,6 °F — это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная [10] .

Некоторые значения в этой таблице являются округлёнными.

Характеристика фазовых переходов

Для описания точек фазовых переходов различных веществ используют следующие значения температуры:


Температура. Шкала Цельсия

Молекулярная физика в отличие от механики изучает системы (тела), состоящие из большого числа частиц. Эти тела могут находиться в различных состояниях, которые называются параметрами состояния. К параметрам состояния относят давление, объём, температуру. Возможно такое состояние системы, при котором параметры, характеризующие его, остаются неизменными сколь угодно долго при отсутствии внешних воздействий. Это состояние называется тепловое равновесие. Так, объём, температура, давление жидкости в сосуде, находящейся в тепловом равновесии с воздухом в комнате, не изменяются, если для этого не будет каких-либо внешних причин.

Тепловое равновесие

Температура

Состояние теплового равновесия системы характеризует такой параметр, как температура. Особенностью его является то, что значение температуры во всех частях системы, находящейся в состоянии теплового равновесия, одинаково. Если опустить в стакан с горячей водой серебряную ложку (или ложку из любого другого металла), то ложка будет нагреваться, а вода — остывать. Это будет происходить до тех пор, пока не наступит тепловое равновесие, при котором ложка и вода будут иметь одинаковую температуру, т.е. придут в тепловое равновесие.


Температура — это физическая величина, которая характеризует тепловое состояние тела. Так, температура горячей воды выше, чем холодной; зимой температура воздуха на улице ниже, чем летом.

Единицей температуры является градус Цельсия (°С). Температуру измеряют термометром.

В основе устройства термометра и соответственно способа измерения температуры лежит зависимость свойств тел от температуры, в частности свойство тела расширяться при нагревании. В термометрах могут быть использованы разные тела: и жидкие (спирт, ртуть), и твёрдые (металлы) и газообразные. Их называют термометрическими телами. Термометрическое тело (жидкость или газ) помещают в трубку, снабжённую шкалой, её приводят в соприкосновение с телом, температуру которого хотят измерить.

Температура. Шкала Цельсия

Повышение температуры газа означает увеличение средней скорости хаотического движения его молекул. Аналогично с повышением температуры возрастает скорость перемещения молекул жидкости и возрастает амплитуда колебаний атомов твердых тел.

Шкала Цельсия. Шкала Кельвина

Существуют разные температурные шкалы. Одной из наиболее распространённых в практике шкал является шкала Цельсия. Основными точками этой шкалы служат температура таяния льда и температура кипения воды при нормальном атмосферном давлении (760 мм рт. ст.). Первой точке приписали значение 0 °С, а второй — 100 °С. Расстояние между этими точками разделили на 100 равных частей и получили шкалу, называемую шкала Цельсия. За единицу температуры по этой шкале принят 1 °С.

шкала цельсия

Помимо шкалы Цельсия широко используется температурная шкала, названная абсолютной (термодинамической) шкалой температур, или шкала Кельвина. Температура любого тела не может опуститься ниже -273,15 °С. При такой температуре движение молекул полностью прекращается. За ноль по шкале Кельвина принята температура -273,15 °С. Эта температура названа абсолютным нулём температур и обозначается 0 К. Единицей температуры является один кельвин (1 К); он равен 1 градусу Цельсия. Соответственно температура таяния льда по абсолютной шкале температур — 273 К, а температура кипения воды — 373 К.

Температуру по абсолютной шкале обозначают буквой Т. Связь между температурой по абсолютной шкале (Т) и температурой по шкале Цельсия (t°) выражается формулой:

Т = t° + 273.

 Шкала Цельсия

Читайте также: