Для чего нужны математические модели доклад

Обновлено: 16.05.2024

Математическая модель — концепция представления реальности математическим способом, вариант схемы как комплекса, изучение которого позволяет человеку обрести знания о некой другой системе.

Простой пример: график зависимости среднесуточной температуры от времени.

Математическая модель также была создана для того, чтобы проанализировать и предугадать поведение материального объекта. Однако у математической модели есть проблема, от которой не избавиться — идеализация.

Математическое моделирование — процесс создания, а также приемы построения и исследования математических моделей.

Все науки, которые используют для решения своих задач математический аппарат, практикуют математическое моделирование. То есть, заменяют объект своего исследования математической моделью и занимаются исследованием последней.

При помощи совокупности математических методов можно описать образцовый объект или процесс, который построен на стадии содержательного моделирования.

Как осуществляется связь математической модели и реальности?

  1. Эмпирические законы.
  2. Гипотезы.
  3. Идеализация.
  4. Упрощения.

Самые важные математические модели всегда обладают качеством универсальности. То есть, совершенно разные феномены могут быть описаны одной математической моделью.

Однако стоит помнить, что модель — объект, она может иметь собственные качества и свойства, которые могут не относиться к реальному моделируемому объекту.

Часто математические модели представляют в виде:

  1. Графика. Получить данные для решения задачи мы можем, посмотрев на данные графика.
  2. Уравнения. Данные для решения задачи зашифрованы в виде уравнения, под буквами x и y.

Представим основные понятия, которые важны для изучения данной темы:

  1. Реальный объект — исследуемый объект. Им может быть явление, система, либо процесс.
  2. Модель — нематериальный или материальный объект исследования, который является заменителем настоящего процесса\явления\системы.
  3. Моделирование — способ исследования предметов с помощью прототипов.

Виды математических моделей, классификация

Существует несколько классификаций математических моделей. Рассмотрим некоторые из них.

Формальная типология

Основа данной классификации — какие математические средства используются для создания модели. Для создания схем в формальной классификации часто используется прием дихотомии.

Дихотомия — раздвоение, разделение чего-то на две части. Например, графиков.

К известным типам дихотомии относятся:

ЛинейныеНелинейные
СосредоточенныеРаспределенные
ДетерминированныеСтохастические
СтатическиеДинамические
ДискретныеНепрерывные

Типология по методу представления объекта

В рамках данной классификации выделяют структурные и функциональные модели.

  • Структурная модель показывает объект как комплекс с механизмом и устройством функционирования.
  • Функциональные модели могут отражать поведение объекта, которое мы можем воспринимать внешне.

Содержательные, а также формальные модели

Многие авторы, которые описывают процесс моделирования в математике, отмечают, что для начала нужно построить специальную образцовую конструкцию, так называемую содержательную модель.

В разных учебных изданиях идеальный объект называется по-разному. Встречаются такие примеры как умозрительная модель, концептуальная модель, а также предмодель.

Конечная математическая схема будет назваться формальной моделью (математическая модель). Она получается в результате представления предмодели с помощью формального языка.

Построить умозрительную модель можно с помощью уже готового набора идеализаций. Например, в механике существуют идеальные пружины, маятники, твердые тела и тд, которые представляют собой готовые заготовки для построения содержательной модели.

Однако есть научные области, в которых сложно построить содержательные модели, потому что в них нет полноценных формализованных доктрин. К таким дисциплинам относятся биология, физика, психология, экономика и многие другие).

Содержательная типология

В работах английского физика Рудольфа Эрнста Пайерлса можно найти некоторые типологии математических моделей, которые используются в физике и других естественных науках. Советские ученые Александр Горбань и Рэм Хлебопрос расширили классификацию Пайерлса. Данная типология акцентирует свое внимание на процессе выстраивания содержательной модели. Итак, существуют следующие типы математических моделей:

Сложность моделируемой системы

Выделяются три уровня систем по сложности:

  • простые физические;
  • сложные физические;
  • биологические системы.

Советский академик Александр Андронов выделил три типа неустойчивых моделей:

  1. Неустойчивые к преобразованию начальных требований.
  2. Неустойчивые к небольшим преобразованиям условий, которые не вызывают никаких изменений в числе степеней свободы системы.
  3. Неустойчивые к небольшим преобразованиям условий, которые вызывают изменения в числе степеней свободы системы.

Неустойчивые модели называют негрубыми. Устойчивые модели — мягкие.

Какие еще бывают модели?

  1. Игровые (игры).
  2. Учебные (тренажеры).
  3. Опытные (уменьшенные копии чего-то).
  4. Исследовательские (для исследования процессов).
  5. Имитационные (представляют явления реальности).

Это ряд прототипов, которые выделяются по принципу применения.

Также выделяют материальные и информационные модели. Натуральные — муляжи, макеты. А информационные — прототипы, которые заменяют реальность формально (то есть словесно, графически и т.д.).

Какие параметры нужны для построения математической модели

Рассмотрим принципы построения математических моделей:

  1. Информационная достаточность. Невозможно построить схему без исследуемой информации. А при полноценном информационном обеспечении (когда все известно), построение не имеет никакого смысла. Поэтому для разработки математической модели важно иметь достаточное количество информации (не избыточное или недостаточное).
  2. Осуществимость проекта. Схема обязана гарантировать достижение определенной цели исследования.
  3. Множественность модели. Модель обязана отражать свойства реальных явлений, которые сказываются на эффективности исследования. Должны исследоваться лишь некоторые части реального объекта. Для полноценного исследования необходимо проанализировать некоторое множество (ряд) моделей.
  4. Агрегирование. Создание в рамках большой и сложной системы несколько подсистем, которые могут помочь решить задачу, поставленную в исследовании.
  5. Параметризация. Подсистема с определенным параметром выражается в числовой величине. Они не описывают процесс функционирования. Зависимость величины может быть задано таблицей, формулой, графиком. Служит для сокращения объема.

Также все математические модели должны отличаться следующими признаками адекватностью, конечностью, полнотой, упрощенностью, гибкостью.

Алгоритм составления, основные моменты

Для того чтобы составить математическую модель необходимо перевести данные задачи в вид математической формы. То есть переделать слова в формулу, уравнение и т.д. Необходимо установить математические связи между всеми условиями задачи.

Стоит помнить, что формула, уравнение математической модели должно полностью соответствовать тексту задачи, потому что иначе цель исследования изменится, а значит и задачу мы будем решать другую.

Представим алгоритм решения математической модели:

  1. Определяем цель исследования.
  2. Выделяем свойства системы.
  3. Выбираем средства, с помощью которых будем исследовать систему.
  4. Проводим исследование.
  5. Анализируем получившиеся результаты.
  6. Корректируем прототип.

Попробуем составить математическую модель на примере простой задачи:

Данный текст нужно представить в виде уравнения. Для этого необходимо установить математические связи между всеми условиями задачи.

  1. Обращаем внимание на главные математические данные. 10 тушек и 50%.
  2. Найдем скрытую информацию. Под 50% имеется в виду 50% от всего количества дичи.
  3. Представим главный вопрос — сколько дичи — в виде X. То есть, X — количество всей дичи, что есть у Ивана Федоровича.
  4. Процентное соотношение дичи из тундры нужно перевести в штуки, потому что в математических задачах важно все составлять в одинаковых значениях.
  5. Число дичи из тундры невозможно посчитать в штуках, поэтому переводим в уравнение 50% = 0,5*X. Данное уравнение верно для вычисления количества дичи из тундры.
  6. Какие данные у нас есть? 10 штук тушек зайцев из тайги, 0,5*X — дичи из тундры, а также X общее количество дичи.
  7. То есть, общее количество дичи будет равно сумме дичи из тайги и дичи из тундры. То есть, уравнение X = 10 + 0,5X.
  8. X = 10 + 0,5X — математическая модель.
  9. Далее решаем линейное уравнение и получаем, что дичи всего 20 штук.
  10. Ответ: 20.

Обобщение — для того, чтобы построить математическую модель, нужно выбросить всю ненужную информацию из задачи, оставить только нужное и заменяем на математический объект.

Тимур Гамилов

Неудивительно, что интерес к математическому моделированию в медицине и спорте растет: в США с 1961 по 2006 год процент бюджетных денег, которые тратятся на медицину, возрос с 4% до 20%. В других странах люди тоже хотят жить долго и хорошо, а готовность властей финансировать науку и текущий уровень развития технологий растут с каждым годом. Поэтому вместо того, чтобы проводить медицинские эксперименты на людях, в качестве подопытных кроликов ученые используют математические модели.

Модель для сборки: инструкция

Для построения любой математической модели необходимы данные. Базовые знания о строении и функционировании организма человека можно найти в анатомических атласах и другой справочной литературе. Но поскольку организм каждого человека уникален, врачи наблюдают за каждым пациентом индивидуально: проводят МРТ, компьютерную томографию, измеряют пульс, давление.

Представим, что перед командой ученых (биологов, математиков, физиков, программистов) стоит задача — помочь в постановке диагноза и поиске метода лечения пациентов со стенозом. Первым делом мы, ученые, должны понять, что такое стеноз, и расспрашиваем об этом врачей. Оказывается, стеноз — это возникновение бляшек на сосудах, которые создают разницу в давлении между участками сосуда. В результате сосуд может не выдержать такой нагрузки и порваться. Диагностируется заболевание двумя путями. Первый — качественный способ: нужно сделать снимок сосуда, найти бляшку и по ее виду сделать вывод. Второй — количественный: через бедренную артерию в нужные участки сосуда вводятся датчики, которые измеряют разницу давлений. Результаты количественного анализа — более точные. Это значит, что можно не оперировать пациента без надобности, а осложнения после лечения будут минимальными. Минусы этого способа — в цене и высоких рисках для пациента. Нужна дешевая и безопасная альтернатива, которая поможет поставить количественный диагноз и принять верное решение о лечении. Такой альтернативой может стать математическая модель процессов, происходящих в организме, связанных с развитием болезни.

http://news.nike.com/

В нашем случае нужно понять, по каким законам возникает разница в давлениях внутри сосудов, и записать эти законы в виде уравнений. Модели создаются под каждую проблему, болезнь или задачу. Для начала в уравнения (например, гидродинамики) вписывают величины, примерно одинаковые для всех пациентов — в науке они называются константами. Помимо констант, существуют параметры — показатели, которые учитываются для каждого человека индивидуально: длина, ширина сосудов, частота пульса, вид шума в сосудах. После того как мы вписали в уравнения константы, снимаем данные с пациента и записываем их в уравнения. Так ученые связывают параметры и константы с помощью формул: теперь в готовое уравнение мы подставляем разные значения для разных пациентов, чтобы получить необходимый результат — показатель разницы давлений между участками сосуда. Лечение стеноза, в зависимости от степени тяжести заболевания, врачи проводят либо медикаментозно (когда разница в давлениях небольшая), либо с помощью хирургического вмешательства (для более серьезных случаев).

После того как модель запрограммирована, работа не заканчивается. Во-первых, измерить большую часть параметров, которые нужно внести в уравнения, скорее всего, не получится без огромных затрат и дорогостоящих операций. Например, для детального определения структуры бляшек, упругих свойств сосуда и законов, по которым он меняется со временем, потребуется колоссальное количество сил и средств. Поставить такую технологию на поток вряд ли удастся.

Во-вторых, снятые параметры могут измениться через определенное время. Эластичность сосудов сильно меняется в зависимости от гормонов, которые на данный момент присутствуют в крови. А чтобы предсказать, сколько каких гормонов содержится в кровяном русле в интересующий нас период, нужно замоделировать в буквальном смысле весь организм человека, так как гормональный фон зависит от огромного количества факторов.

Врачи не знают математику, а математики — биологию, однако без диалога невозможна ни одна дисциплина на стыке наук

В-третьих, даже если мы сможем измерить все необходимые параметры и они не станут сильно меняться со временем, измерения, скорее всего, будут неточными. И чем больше параметров мы снимаем, тем активнее будет расти эта неточность. А поскольку в организме от небольшого изменения каждого параметра существенно меняются все остальные величины, такая неточность часто становится критичной. Например, даже несущественное количество введенного лекарства, растворяющего тромбы, может привести к передозировке, которая вызовет серьезное кровотечение.

Решаются эти проблемы путем упрощения модели: ученые по максимуму сокращают количество параметров и уравнений, стараются сделать их проще, или, как говорят математики, оптимизируют систему. Несмотря на технологическое несовершенство, метод математического моделирования уже работает и помогает людям. Благодаря математическому моделированию была создана известная модель токов в клетке Ходжкина — Хаксли, которая помогла описать, как распространяются электрохимические импульсы, передающие информацию в организме по нервным клеткам. Эта разработка считается одним из самых важных открытий неврологии XX века. За нее ученые получили Нобелевскую премию.

В помощь Усэйну Болту

Профессионалы рынка спортивных достижений шутят, что в 2015 году соревнования идут не между спортсменами, а между разработчиками программ тренировок. Чтобы исследовать живого спортсмена непосредственно во время тренировки, придется повесить на него кучу приборов: измерители пульса, давления, уровня сахара в крови — и еще, желательно, МРТ-аппарат. В таком обмундировании достичь высоких показателей (или хотя бы просто сдвинуться с места) нереально. А вот с помощью математической модели можно рассчитать интересующие показатели на компьютере: ученые заранее снимают параметры со спортсмена в состоянии покоя и составляют уравнения, из которых затем можно извлечь нужные параметры в состоянии физической нагрузки. Моделировать можно самые разные процессы: например, дыхание в клетках мышц футболиста во время бега до образования тромбов. Модели могут быть одномерными или трехмерными, а также учитывать большое количество параметров — например, степень упругости сосудов при моделировании сосудистой сети.


Математически смоделированные стратегии для тренировок — уже рутина для спортивной индустрии. Показатели великого бегуна Усэйна Болта почти совпадают с графиком кривой оптимального темпа для бега на 100 метров в каждый момент времени. На соревнованиях по прыжкам с трамплина на лыжах высота конструкции выбирается с использованием математической модели тел спортсменов так, чтобы нагрузки не стали критичны для организма.

Математика + медицина

Главная трудность в развитии метода пока заключается в том, что значительное количество разработок так и остаются теорией. В повседневное клиническое использование вводится крайне малая часть таких проектов. Ученые видят будущее моделей в их адаптации под реальные условия. Теоретические расчеты нужны и важны для понимания процессов, которые происходят в организме, но не менее важно научиться использовать такие расчеты глобально. Сильно упростит задачу, если пациентам будет легко и понятно снимать показатели самостоятельно.

Ученым из разных областей придется все чаще работать на стыке наук и сотрудничать с инженерами и врачами. Чтобы эти идеи не оставались на страницах научных журналов, а реально помогали людям, математики должны начать взаимодействовать с врачами, которые ставят перед ними конкретные медицинские задачи. Такое взаимодействие (из-за особенностей образования и способа мышления) часто дается обеим сторонам непросто: врачи не знают математику, а математики — биологию, все они пользуются разной терминологией и методами. Однако без подобного диалога невозможна ни одна дисциплина на стыке наук.

Математическое моделирование в технологии приборостроения используется в течение нескольких десятков лет при проектировании новых приборов и аппаратов. Вследствие развития ЭВМ, появление разработчиков специализированных знаний по программированию, в последние годы моделирование стало необходимым этапом при создании любого нового изделия или при разработке нового технологического процесса.

Содержание
Прикрепленные файлы: 1 файл

Математическая модель.docx

Министерство образования Ставропольского края

Государственное бюджетное образовательное учреждение

Высшего профессионального образования

Ставропольский государственный педагогический институт

Кафедра математики и информатики

студентка группы ПН1А

математики и информатики Кокорева В.В.

  1. Цель моделирования…………………………………………… ……………………..3
  2. Теория моделирования…………………………………………… ………………….4
  3. Этапы математической модели……………………………………………………5-6
  4. Пример, иллюстрирующий характерные этапы в построении математической модели……………………………………………………………… .7-8

Перспективы современного приборостроения связаны с разработкой устройств, обладающими малыми массой, габаритами, низкими себестоимостью и энергопотреблением и достаточно высокой надежностью и качеством.

Математическое моделирование в технологии приборостроения используется в течение нескольких десятков лет при проектировании новых приборов и аппаратов. Вследствие развития ЭВМ, появление разработчиков специализированных знаний по программированию, в последние годы моделирование стало необходимым этапом при создании любого нового изделия или при разработке нового технологического процесса.

В каждой области можно выделить свои способы построения моделей, однако в любом случае существует несколько обязательных этапов, без которых ни одна модель не имеет право на существование. Поэтому необходимо дать соответствующие определения понятиям, используемым при моделировании.

Математическая модель, приближённое описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой, а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Математическое моделирование, а в последние годы, часто сопровождающий его компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, многие современные технологии проводятся в условиях, в которых человек не способен непосредственно контролировать каждый этап. К таким технологическим процессам относятся процессы создания современных кристаллов для оптоэлектроники. Невозможно, также, полностью контролировать параметры современного самолета или ракеты в полете. Во многих случаях невозможно создать даже макетный образец прибора, предварительно не просчитав, как отдельные узлы будут влиять на работу в целом. Поэтому, не смотря на то, что, задача моделирования современного объекта или технологического процесса полностью, остается практически невыполнимой, оптимизация отдельных этапов его создания приобретает все более важное значение для современного производства. Стоит заметить, что в последнее время приобрели значимость математические модели, позволяющие оптимизировать все предварительные этапы разработки, начиная от самых первых шагов по изучению принципа действия, заложенного в прибор, и кончая этапами проектирования и производства.

Теорией моделирования является раздел науки, изучающий способы исследования свойств объектов-оригиналов, на основе замещения их другими объектами-моделями. В основе теории моделирования лежит теория подобия. При моделировании абсолютное подобие не имеет места и лишь стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же.

Этапы математической модели

Первый этап — формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах сформулированных качеств, представлений о связях между объектами модели.

Второй этап — исследование математических задач, к которым приводит математическая модель. Основным вопросом здесь является решение прямой задачи, то есть получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений. На этом этапе важную роль приобретают математический аппарат, необходимый для анализа математической модели, и вычислительная техника — мощное средство для получения количеств, выходной информации как результата решения сложных математических задач. Часто математические задачи, возникающие на основе математической модели различных явлений, бывают одинаковыми (например, основная задача линейного программирования отражает ситуации различной природы). Это даёт основание рассматривать такие типичные математические задачи как самостоятельный объект, абстрагируясь от изучаемых явлений.

Третий этап — выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики, то есть выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена — все параметры её были заданы, — то определение уклонений теоретических следствий от наблюдений даёт решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые её характеристики остаются не определёнными. Задачи, в которых определяются характеристики модели (параметрические, функциональные) таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений изучаемых явлений, называются обратными задачами. Если математическая модель такова, что ни при каком выборе характеристик этим условиям нельзя удовлетворить, то модель непригодна для исследования рассматриваемых явлений. Применение критерия практики к оценке математической модели позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам непосредственно явлений макро- и микромира.

Четвёртый этап — последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели. В процессе развития науки и техники, данные об изучаемых явлениях всё более и более уточняются, и наступает момент, когда выводы, получаемые на основании существующей математической модели, не соответствуют нашим знаниям о явлении. То, возникает необходимость построения новой, более совершенной математической модели

Развитие мореплавания поставило перед астрономией новые требования к точности наблюдений. Н. Коперником в 1543 была предложена принципиально новая основа законов движения планет, полагавшая, что планеты вращаются вокруг Солнца по окружностям ( гелиоцентрическая система). Это была качественно новая (но не математическая) модель Солнечной системы. Однако не существовало параметров системы (радиусов окружностей и угловых скоростей движения), приводящих количеств, выводы теории в должное соответствие с наблюдениями, так что Коперник был вынужден вводить поправки в движения планет по окружностям ( эпициклы).

Следующим шагом в развитии модели Солнечной системы были исследования И. Кеплера (начало 17 века), который сформулировал законы движения планет. Положения Коперника и Кеплера давали кинематическое описание движения каждой планеты обособленно, не затрагивая ещё причин, обусловливающих эти движения.

К 40-м годам 19 века выводы динамической модели, объектами которой были видимые планеты, вошли в противоречие с накопленными к тому времени наблюдениями. Именно, наблюдаемое движение Урана уклонялось от теоретически вычисляемого движения. У. Леверье в 1846 расширил систему наблюдаемых планет новой гипотетической планетой, названной им Нептуном, и, пользуясь новой моделью Солнечной системы, определил массу и закон движения новой планеты так, что в новой системе противоречие в движении Урана было снято. Планета Нептун была открыта в месте, указанном Леверье. Аналогичным методом, используя расхождения в теоретической и наблюдаемой траектории Нептуна, в 1930 была открыта планета Плутон.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Математическая модель – это совокупность математических объектов и соотношений между ними, адекватно отображающая свойства и поведение исследуемого объекта. Математика в самом общем смысле слова имеет дело с определением и использованием символических моделей. Математическая модель охватывает класс неопределяемых (абстрактных, символических) математических объектов таких, как числа или векторы, и отношения между этими объектами.

Математическое отношение – это гипотетическое правило, связывающее два или более символических объекта. Многие отношения могут быть описаны при помощи математических операций, связывающих один или несколько объектов с другим объектом или множеством объектов (результатом операции). Абстрактная модель с ее объектами произвольной природы, отношениями и операциями определяется непротиворечивым набором правил, вводящих операции, которыми можно пользоваться, и устанавливающих общие отношения между их результатами. Конструктивное определение вводит новую математическую модель, пользуясь уже известными математическими понятиями (например, определение сложения и умножения матриц в терминах сложения и умножения чисел).

Математическая модель будет воспроизводить подходящим образом выбранные стороны физической ситуации, если можно установить правило соответствия, связывающее специфические физические объекты и отношения с определенными математическими объектами и отношениями. Поучительным и/или интересным может также быть и построение математических моделей, для которых в физическом мире аналогов не существует. Наиболее общеизвестными математическими моделями являются системы целых и действительных чисел и евклидова геометрия; определяющие свойства этих моделей представляют собой более или менее непосредственные абстракции физических процессов (счет, упорядочение, сравнение, измерение)[2].

Определение моделирования

Моделированием называют построение модели того или иного явления реального мира. В общем виде модель - это абстракция реального явления, сохраняющая его существенную структуру таким образом, чтобы ее анализ дал возможность определить влияние одних сторон явления на другие или же на явления в целом. В зависимости от логических свойств и связей моделей с отображаемыми явлениями можно все модели разделить на три типа: изобразительные, аналоговые и математические.

Изобразительная модель отражает внешние характеристики явления и подобна оригиналу. Это наиболее простая и конкретная модель. Являясь в общем описательной моделью, она, как правило, не дает возможности установить причинные связи явления и соответственно определить или предсказать последствия изменений различных параметров явления. Характерная особенность такой модели - близкое совпадение ее свойств со свойствами отображаемого объекта. Эти свойства обычно подвергаются метрическому преобразованию, т.е. берется определенный масштаб.

В аналоговых моделях свойство данного явления отображается посредством свойств другого явления. Так, например, любая диаграмма представляет аналоговую модель некоторого явления. К аналоговым моделям относятся также морские карты, на которых совокупностью условных обозначений отображается совокупность свойств той или иной акватории. Преимущество аналоговой модели перед изобразительной состоит в том, что она позволяет отображать динамику явления. Другим преимуществом является большая универсальность этой модели: путем ее изменения можно отобразить различные процессы данного явления.

Математическая модель

Математическая модель является самой сложной и наиболее общей и абстрактной по сравнению с изобразительной и аналоговой. В ней для отображения свойств изучаемого явления используются символы математического или логического характера. Особые трудности возникают при решении задач с большой размерностью, расплывчатой постановкой, неопределенностью информации и т.д. В постановке таких задач появляются неклассические моменты, такие, как плохая формализуемость, нестандартность, противоречивость. Остановимся на понятии плохо формализуемой задачи, которое появляется в результате решения потока серьезных прикладных задач в самых различных областях. Это могут быть и формализованные правила рассуждений, и правила логического вывода. Математические модели служат отражению и анализу некоторых свойств действительных объектов. Рассмотрим один из видов математических моделей, характеризующихся простой структурой и широко применяющихся в приложениях. Модели такого вида содержат следующие элементы:

1. вектор x параметров, измеряемых на объекте x =[ x i . x n ], где x i - значение i -го параметра, которое является чаще всего вещественным числом. Можно назвать x вектором состояния объекта. Если изучается динамика моделируемого объекта во времени t , то считается, что состояние в каждой момент t описывается вектором x ( t )=[ x i ( t ). x n ( t )];

2. вектор y( t ) параметров, которые не могут быть непосредственно измеренными;

3. неизвестные связи между переменными координатами векторов x ( t ) и y( t ) ;

4. связи между переменными, являющиеся неизвестными;

5. математический аппарат исследования соотношений (связей).

В качестве примера можно привести имитационные модели, описывающие возможные пути развития сложных технико-экономических и природных систем.

1.3 Плохо формализуемые задачи

Поясним теперь, что понимается под плохо формализуемыми задачами: это задачи, условия которых определены не полностью, не все связи заданы в аналитической форме, при этом формулировка задачи может содержать противоречия, а также не все соглашения о понятии решения могут быть в наличии. Решению таких (плохо формализуемых) задач предшествуют этапы преобразования их формулировки, уточнений и упрощений. Результатом этих этапов является получение комплекса формализованных задач, имеющего некоторое отношение к исходной задаче.

Необходимо знание этого отношения, иначе точность, достигаемая формальными методами, может оказаться бесполезной. В сферу модели естественно также включить описание исходной задачи, выбираемый язык, критерии и ограничения, аппарат адекватности модели, средства интерпретации и подготовки к практическому внедрению, способы внемодельного анализа, учета плохо формализуемых факторов. Можно выделить следующие разновидности плохо формализуемых задач.

1. Нестационарные - эти задачи отличаются эволюцией информации об объекте и модельных представлений о нем.

2. Задачи с расплывчатым отражением некоторых зависимостей и плохо определенными ограничениями. Здесь для описания зависимостей и ограничений требуется использовать специальные процедуры диалога с экспертами, а также проводить целенаправленные серии экспериментов.

3. Задачи с несовместными системами условий и ограничений и неопределенным понятием решения (неособенные задачи). 4. Задачи, в которых оценка решения производится по системе несогласованных (противоречивых) критериев[3].

5. Задачи с неоднозначно определенным решением. 6. Неустойчивые или некорректные задачи.

1.4 Противоречивые модели

Противоречивые определения объектов и противоречивые модели иногда возникают в результате абсолютизации локальных свойств реально существующих объектов. Другая возможная причина появления противоречивых моделей - наличие различных несогласованных источников информации, которая служит основой моделирования.

В прикладной математике наблюдается заметный интерес к описанию противоречивых ситуаций; он вызван, вероятно, необходимостью повысить реальный результат применения математических моделей и методов к решению сложных практических задач. Примеры решения противоречивых задач можно видеть и в сфере оптимизации, и в сфере распознавания образов. В некоторых случаях содержательный смысл модели может диктовать такой вид работы с ней, как выделение ее непротиворечивых подмоделей, в других случаях возможно ослабление ограничений модели, приводящее к ее непротиворечивости[4].

1.5 Основы процесса выработки решений

В процессе выработки решений применимы такие конкретные методы, как анализ, синтез, индукция, дедукция, аналогия, абстракция и конкретизация.

Анализ - логический прием расчленения целого на отдельные элементы с рассмотрением каждого из них в отдельности. При этом в процессе выработки решения анализу подвергаются поставленная задача, данные обстановки.

Анализ неразрывно связан с синтезом - объединением всех данных, полученных в результате анализа. Синтез - это не простое суммирование результатов анализа. Задача его состоит в мысленном воспроизведении основных связей между элементами обстановки. Синтез дает возможность вскрыть сущность процессов, установить причинно-следственные связи, прогнозировать развитие действий.

Анализ и синтез тесно переплетаются с индукцией и дедукцией. Индукция - движение мысли от частного к общему, от ряда факторов к закону. Дедукция, наоборот, идет от общего к частному, от закона к отдельным его проявлениям. Индуктивный прием используется в тех случаях, когда на основе частного фактора можно сделать общие выводы, установить взаимосвязь между отдельными явлениями и каким-либо законом. Анализируя обстановку, необходимо следовать то от частного к общему (индукция), то от общего к частному (дедукция), стремясь установить взаимосвязь между явлениями обстановки и законом. В процессе выработки решения можно использовать абстрагирование - способность отвлечься от совокупности факторов и сосредоточить внимание на каком-либо одном вопросе. При абстракции хотя и достигаются частные цели, однако они не могут служить основанием для решения. Поэтому наряду с абстракцией должна применяться конкретизация - увязка того или иного явления с конкретными условиями.

Существенное значение в процессе выработки решений может сыграть аналогия - прием, в котором из сходства двух явлений в одних условиях делается вывод о сходстве этих явлений в других условиях. Однако, аналогия - не доказательство, она лишь дает почву для высказывания предположения о возможном развитии характера действий, дает толчок в мышлении.

В ходе выработки решения важно установить причинно-следственные связи между элементами. Причинность - одна из всеобщих форм объективной связи между предметами, явлениями и процессами реальной действительности.

1.6 Научный принцип исследования

Процесс исследования включает следующие основные этапы.

1. Постановка задачи.

2. Построение математической модели.

3. Нахождение решения с помощью модели.

4. Послемодельный анализ и корректировка полученного результата. Построение математической модели требует:

• выделения рассматриваемого объекта, отбрасывания всего несущественного и уяснения всего существенного;

• точного количественного описания ситуации, с тем чтобы это описание можно было перевести на математический язык;

• определение набора параметров, характеризующих как состояние системы, так и возможное управление системой;

• определение зависимости между параметрами состояния и управления;

• определение цели через параметры системы в терминах соответствующей математической модели.

Математическая модель устанавливает соответствие между значениями управляемых и неуправляемых переменных и определяет результаты решения.

Обычно речь идет о нахождении оптимума критерия эффективности при соблюдении данных ограничений.

Выбор метода решения зависит от вида модели. Существуют четыре типа методов нахождения решения: аналитический, численный метод, статистических испытаний и эвристический. Поскольку модель не может быть точным отображением реальности, полученное решение может оказаться неприемлемым для условий конкретной ситуации. Поэтому необходим анализ полученного в результате моделирования решения, который заключается в проверке адекватности модели, а также в корректировке решения при его использовании в качестве основы для выработки решения.

Нарушение адекватности отображения моделью реальности может произойти по следующим причинам.

1. Модель может неправильно отражать действительную зависимость, которая существует между результатом операции и переменными.

2. В модели могут не учитываться переменные, которые в действительности влияют на результат.

3. Значения переменных, входящих в модель, могут быть оценены неправильно.

Анализ результатов моделирования осуществляется для установления адекватности отображения моделью реальности, а в случае её нарушения - выявления причин нарушения и соответствующего изменения модели.

1.7 Критерии эффективности

Критерий эффективности как мера успешности решения задач. Выбор критерия эффективности является наиболее ответственным этапом всей постановки задачи. Основным требованием, предъявляемым к критерию эффективности, является установление строгого соответствия между ним и конечной целью. Если рассматривать применение критериев эффективности для оптимизации, то в самом общем виде оптимизация сводится к нахождению решений, соответствующих максимальному значению численного выражения избранного критерия эффективности[3].

1.8 Классификация математических моделей

Математические модели можно классифицировать по следующим признакам:

• по времени, как постоянного или переменного параметра;

• по числу сторон, принимающих решения;

• по наличию или отсутствию случайных (или неопределенных) факторов;

• по виду критерия эффективности и наложенных ограничений.

В зависимости от способа учета изменения времени математические модели делятся на два типа: статические и динамические. Статическая модель - это модель, в которой время не является переменной. В динамической же модели одной из переменных является время.

Математические модели в зависимости от числа сторон, принимающих решение, можно разделить на два типа: описательные и нормативные. В описательной модели нет сторон, принимающих решения. Формально число таких сторон в описательной модели равно нулю. Типичным примером подобных моделей является модели систем массового обслуживания. Для построения описательных моделей может также использоваться теория надежности, теория графов, теория вероятностей, метод статистических испытаний (метод Монте-Карло).

Для нормативной модели характерно множество сторон. Принципиально можно выделить два вида нормативных моделей: модели оптимизации и теоретико-игровые.

В моделях оптимизации основная задача выработки решений технически сводится к строгой максимизации или минимизации критерия эффективности, т.е. определяются такие значения управляемых переменных, при которых критерий эффективности достигает экстремального значения (максимума или минимума).

Для выработки решений, отображаемых моделями оптимизации, наряду с классическими и новыми вариационными методами (поиск экстремума) наиболее широко используются методы математического программирования

(линейное, нелинейное, динамическое).

Для теоретико-игровой модели характерна множественность числа сторон (не менее двух). Если имеются две стороны с противоположными интересами, то используется теория игр, если число сторон более двух и между ними невозможны коалиции и компромиссы, то применяется теория бескоалиционных игр n лиц.

Математические модели в зависимости от наличия или отсутствия случайных (или неопределенных) факторов можно разделить на следующие типы.

Детерминированная модель строится в тех случаях, когда факторы, влияющие на исход операции, поддаются достаточно точному измерению или оценке, а случайные факторы либо отсутствуют, либо ими можно пренебречь.

В стохастических моделях реальность отображается как некоторый случайный процесс, ход и исход которого описывается теми или иными характеристиками случайных величин: математическими ожиданиями, дисперсиями, функциями распределения и т.д. Построение такой модели возможно, если имеется достаточный фактический материал для оценки необходимых вероятностных распределений или если теория рассматриваемого

явления позволяет определить эти распределения теоретически (на основе формул теории вероятностей, предельных теорем и т.д.).

В теоретико-игровых моделях учитывается недостаточность информации о действиях противника и необходимость принимать решение в условиях неопределенности. Теоретико-игровой подход в том, по существу, и состоит, что выявляется наименее благоприятное вероятностное распределение значений неуправляемых переменных и определяется оптимальное действие в этих наименее благоприятных условиях.

Недостаток теоретико-игровой модели по сравнению со стохастической (точно так же, как и недостаток стохастической модели по сравнению с детерминированной) состоит в больших математических трудностях в теоретическом плане и в существенно большем объеме вычислительных работ в плане практическом.

Математические модели в зависимости от вида критерия эффективности и наложенных ограничений можно разделить на два типа: линейные и нелинейные. В линейных моделях критерий эффективности и наложенные ограничения являются линейными функциями переменных модели (иначе нелинейные модели).

Допущение о линейной зависимости критерия эффективности и совокупности наложенных ограничений от переменных модели на практике вполне приемлемо. Это позволяет для выработки решений использовать хорошо разработанный аппарат линейного программирования. Приведенная классификация математических моделей в определенной мере весьма условна и неполна.

Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Главная особенность моделирования в том, что этот метод опосредованного познания с помощью объектов – заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект.

Необходимость использования метода моделирования определяется тем, что многие объекты непосредственно исследовать или невозможно, или же это исследование требует много времени и средств.

ВложениеРазмер
npk.doc 144.5 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

Елабужского муниципального района

в теории и в жизни

ученица 8 класса

II. Экспериментальное исследование с использованием приемов математического моделирования………………………………………………………………………..….8

Решая математические задачи из учебника, они строят математическую модель.

Алгебра в основном занимается тем, что описывает реальные различные ситуации на математическом языке в виде математических моделей, а затем имеет дело уже не с реальными ситуациями, а с этими моделями, используя разные правила, свойства, законы, выработанные в алгебре.

В данной работе были поставлены следующие задачи:

- изучить научно-популярную литературу по данному вопросу;

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области знаний:

Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ век. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Процесс моделирования включает три элемента:

  1. Cубъект (исследователь);
  2. Объект исследования;
  3. Модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Главная особенность моделирования в том, что этот метод опосредованного познания с помощью объектов – заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект.

Необходимость использования метода моделирования определяется тем, что многие объекты непосредственно исследовать или невозможно, или же это исследование требует много времени и средств.

Для математического исследования процессов и явлений, реально происходящих в действительности, надо суметь описать их на языке математики, т.е. построить математическую модель процесса, явления. Математические модели и являются объектами непосредственного математического исследования.

Математической моделью называют описание какого-либо реального процесса или некоторой исследуемой ситуации на языке математических понятий, формул и отношений.

Математическая модель - это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. "Математическая модель, основанная на некотором упрощении, идеализации, не тождественна объекту, а является его приближённым отражением. Однако благодаря замене реального объекта соответствующей ему моделью появляется возможность сформулировать задачу его изучения как математическую и воспользоваться для анализа универсальным математическим аппаратом, который не зависит от конкретной природы объекта". Чарльз Лейв и Джеймс Марч дают такое определение модели: “Модель - это упрощенная картина реального мира. Она обладает некоторыми, но не всеми свойствами реального мира. Она представляет собой множество взаимосвязанных предположений о мире. Модель проще тех явлений, которые она по замыслу отображает или объясняет". В настоящее время построение, исследование и приложение математических моделей является, можно сказать, основным предметом деятельности математиков.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В – модель объекта А.

Модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала. Изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько специализированных моделей.

Можно выделить несколько основных этапов процессов моделирования.

Первый этап - постановка проблемы и ее качественный анализ. Главное здесь – четко сформулировать сущность проблемы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта, изучение структуры объекта, объясняющих поведение и развитие объекта.

На третьем этапе осуществляется перенос знаний с модели на оригинал – формирование множества знаний об объекте. Мы можем переносить какой-либо результат с модели на оригинал, если этот результат связан с признаками сходства оригинала и модели.

Следующий этап – численное решение. Этот этап включает разработку численного решения задачи, составление программ и непосредственное проведение расчетов.

Последний этап – анализ численных результатов и применение. На этом заключительном этапе встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Читайте также: