Далекое прошлое вселенной модели расширяющейся вселенной доклад

Обновлено: 02.07.2024

Наблюдаемая нами Вселенная, по данным современной науки, возникла в результате Большого взрыва около 15-20 млрд. лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной.

Все вещество Вселенной в начальном состоянии находилось в сингулярной точке: бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц. Затем последовал взрыв.

Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек. после начала Большого Взрыва во Вселенной появилась смесь легких ядер. Так появились не только материя и многие химические элементы, но и пространство и время.

Но теория Большого взрыва не может разрешить три фундаментальные проблемы: что было до начального момента, какова природа сингулярности и каким образом формировались галактики.

1. Гипотеза Большого Взрыва.

Большой Взрыв – начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Примерно 15 миллиардов лет назад, в гигантском взрыве началась Вселенная – горячий Большой взрыв! Её последующая эволюция от одной сотой секунды до сегодняшнего дня может быть надежно описана моделью Большого взрыва. Эта модель включает расширение Вселенной, возникновение легких элементов и реликтовое излучение от первоначального ядра, а также общие контуры понимания формирования галактик и других крупномасштабных структур. Фактически, модель Большого взрыва в настоящее время является настолько хорошо подтвержденной, что её называют стандартной космологией.

Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – около 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечную плотность и температуру – такое состояние называют сингулярностью 2 .

Согласно общей теории относительности, гравитация не является реальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной сингулярности искривление тоже было бесконечным. Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной.

По мере увеличения объема пространства расширяющейся Вселенной плотность материи в ней падает. С.Хокинг и Р.Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной 3 .

Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывного рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.

Изучая процессы, происходившие сразу после Большого взрыва, мы понимаем, что наши физические теории еще весьма несовершенны. Тепловая эволюция ранней Вселенной зависит от рождения массивных элементарных частиц – адронов, о которых ядерная физика знает еще мало. Многие из этих частиц нестабильны и короткоживущи.

Физик Р.Хагедорн считает, что может существовать великое множество адронов возрастающих масс, которые в изобилии могли формироваться при температуре порядка 1012 К, когда гигантская плотность излучения приводила к рождению адронных пар, состоящих из частицы и античастицы. Этот процесс должен был бы ограничить рост температуры в прошлом 4 .

Согласно другой точке зрения, количество типов массивных элементарных частиц ограничено, поэтому температура и плотность в период адронной эры должны были достигать бесконечных значений. В принципе это можно было бы проверить: если бы составляющие адронов – кварки – были стабильными частицами, то некоторое количество кварков и антикварков должно было сохраниться от той горячей эпохи. Но поиск кварков оказался тщетным; скорее всего, они нестабильны.

После первой миллисекунды расширения Вселенной сильное (ядерное) взаимодействие перестало играть в ней определяющую роль: температура снизилась настолько, что атомные ядра перестали разрушаться. Дальнейшие физические процессы определялись слабым взаимодействием, ответственным за рождение легких частиц – лептонов (т.е. электронов, позитронов, мезонов и нейтрино) под действием теплового излучения. Когда в ходе расширения температура излучения понизилась примерно до 1010 К, лептонные пары перестали рождаться, почти все позитроны и электроны аннигилировали; остались лишь нейтрино и антинейтрино, фотоны и немного сохранившихся с предшествующей эпохи протонов и нейтронов. Так завершилась лептонная эра.

Следующая фаза расширения – фотонная эра – характеризуется абсолютным преобладанием теплового излучения. На каждый сохранившийся протон или электрон приходится по миллиарду фотонов. Вначале это были гамма-кванты, но по мере расширения Вселенной они теряли энергию и становились рентгеновскими, ультрафиолетовыми, оптическими, инфракрасными и, наконец, сейчас стали радиоквантами, которые мы принимаем как чернотельное фоновое (реликтовое) радиоизлучение.

Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей 5 . Теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов.

Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А. Гуса было описано новое явление – сверх-быстрое инфляционное расширение Вселенной.

Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в XX веке, после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу проясняться.

Последние научные данные позволили сделать вывод, что наша Вселенная родилась 15 миллиардов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Созданная в конце XX века инфляционная теория появления нашего мира позволила существенно продвинуться в разрешении этих вопросов, и общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.

2. Модель расширяющейся Вселенной.

Вселенная началась около 15 миллиардов лет назад в яростном взрыве; в ранней сверхплотной фазе каждая частица бросилась прочь от каждой другой частицы. Тот факт, что галактики удаляются от нас во всех направлениях, является следствием этого начального взрыва, и он является первым обнаруженным Хабблом наблюдательным открытием.

Сегодня существуют прекрасные доказательства закона Хаббла, который утверждает, что скорость удаления v галактики пропорциональна расстоянию от нас до неё d , то есть, v = Hd, где H есть постоянная Хаббла. Мысленное продолжение траекторий галактик назад во времени показывает, что они сходятся в состояние с высокой плотностью – первоначальное ядро 6 .

Коперниковский или космологический принцип утверждает, что Вселенная одинакова во всех направлениях и в любой точке пространства. Это приводит к заключеию, что наше положение во Вселенной – по отношению к очень большим масштабам – ни в коей мере не является особенным.

Для такого утверждения существуют значительные наблюдательные основания, включая измеренные распределения галактик и слабых радиоисточников, хотя наилучшим доказательством является практически совершенная однородность реликтового космического микроволнового фонового излучения. Это означает, что любой наблюдатель, находящийся где-угодно во Вселенной будет наслаждаться во многом такими же видами, что и мы, включая наблюдение, что галактики удаляются от него.

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения 7 :

1) свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, – релятивистская.

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

1) принципом относительности, гласящим, что во всех инерциональных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга;

2) экспериментально подтвержденным постоянством скорости света.

Для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, то есть о расширении Мегагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

Возможные сценарии развития нашего мира

1. Пульсирующая модель Вселенной, при которой вслед за периодом расширения наступает период сжатия и все заканчивается Большим хлопком.

2. Вселенная со строго подогнанной средней плотностью, в точности равной критической. В этом случае наш мир Евклидов, и его расширение все время замедляется.

3. Равномерно расширяющаяся по инерции Вселенная. Именно в пользу такой открытой модели мира до последнего времени свидетельствовали данные о подсчете средней плотности нашей Вселенной.

4. Мир, расширяющийся со все нарастающей скоростью. Новейшие экспериментальные данные и теоретические изыскания говорят о том, что Вселенная разлетается все быстрее, и, несмотря на евклидовость нашего мира, большая часть галактик в будущем будет нам недоступна. И виновата в столь странном устроении мира та самая темная энергия, которую сегодня связали с некоей внутренней энергией вакуума, заполняющего все пространство.

ЗАКЛЮЧЕНИЕ

До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, что Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, одним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего.

Вселенная, рассматриваемая как единое целое, – физическая система со своими особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел. Эти свойства проявляются в явлениях самых больших пространственно-временных масштабов. Их изучает космология – наука, опирающаяся на астрокосмические наблюдения и общие законы физики. Вселенная – самый крупный по масштабу объект науки.

Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование. Не следует воспринимать термин "Большой взрыв" буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара 9 .

Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная. Модель Большого взрыва описывает лишь то, что случилось после него.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме.

Открытие расширяющейся Вселенной было одним из великих интеллектуальных переворотов двадцатого века.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Баренбаум А.А. Галактика. Солнечная система. Земля. М., 2002. – 234 с.

Ващекин Н.П. Концепции современного естествознания.- М.: МГУК, 2000, 189 с.

Вейнберг С. Гравитация и космология. Принципы и приложения общей теории относительности. – М.: 1975, 695 с.

Климишин И.А. Релятивистская астрономия. – М., Наука, 1989.

Концепции современного естествознания. / Под ред. С.И. Самыгина. – Ростов /нД: “Феликс”, 2002. – 448 с.

Кэри У. В поисках закономерностей развития Земли и Вселенной. – М., Мир. 1991.

Мэй Б., Мур П., Линтотт К. Большой взрыв. Полная история Вселенной. – М.: Ниола-Пресс, 2007. – 192 с.

Панасюк М.И. Странники Вселенной или эхо Большого взрыва. – М.: 2005, 267 с.

Пенроуз Р. Гравитационный коллапс и пространственно-временные сингулярности // Альберт Эйнштейн и теория гравитации. – М., 1979.

Силк Дж. Большой взрыв. Рождение и эволюция Вселенной. – М., Мир, 1982.

Френкель В.А., Чернин А.Д. От альфа-распада до Большого Взрыва. – М., Знание, 1990.

Хокинг С. От Большого взрыва до черных дыр (краткая история времени). – М., Мир, 1990.

1 Вейнберг С. Гравитация и космология. Принципы и приложения общей теории относительности. – М.: 1975, 695 с.

2 Силк Дж. Большой взрыв. Рождение и эволюция Вселенной. – М., Мир, 1982.

3 Хокинг С. От Большого взрыва до черных дыр (краткая история времени). – М., Мир, 1990.

4 Баренбаум А.А. Галактика. Солнечная система. Земля. М., 2002. – 234 с.

5 Кэри У. В поисках закономерностей развития Земли и Вселенной. – М., Мир. 1991.

6 Мэй Б., Мур П., Линтотт К. Большой взрыв. Полная история Вселенной. – М.: Ниола-Пресс, 2007. – 192 с.

7 Пенроуз Р. Гравитационный коллапс и пространственно-временные сингулярности // Альберт Эйнштейн и теория гравитации. – М., 1979.

8 Френкель В.А., Чернин А.Д. От альфа-распада до Большого Взрыва. – М., Знание, 1990.

9 Панасюк М.И. Странники Вселенной или эхо Большого взрыва. – М.: 2005, 267 с.

Похожие страницы:

Модель Большого взрыва и расширяющейся Вселенной (2)

Модель Большого Взрыва

Модель Большого Взрыва расширяющейся Вселенной Планеты, звёзды, галактики поражают . и вместе с этим период “большого взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 . начале, во время “большого взрыва”. Все события во Вселенной в тот период .

Современные космологические модели Вселенной (1)

. : Введение……………………………………………………………………. 3 Современная космология………………………………………………….. 4 Стандартная модель Вселенной…………………………………………. 6 Модель Большого взрыва и расширяющейся Вселенной……………….. 8 Инфляционная концепция………………………………………………. 10 Заключение .

Проблемы возникновения вселенной. Гипотеза Большого Взрыва

. , что вселенная имела начало. История Вселенной согласно стандартной модели Большого взрыва В нулевой момент времени Вселенная возникла . событий: вначале из флукту­аций плотности в расширяющемся первичном шаре сформиро­вались многочисленные (малые .

Особенности современной научной картины мира (2)

. на вопрос бытия Вселенной теорией Большого взрыва. При этом зарождение Вселенной выводится из ее . привели к научным революциям в XX в.: Астрономия: модель Большого взрыва и расширяющейся Вселенной. Геология: тектоника литосферных плит. Физика .

Модель расширяющейся Вселенной является наиболее известной в современной космологической науке. Данная модель была построена на основе общей теории относительности А. Эйнштейна. Основой модели однородной изотропной нестационарной горячей расширяющейся Вселенной являются следующие два предположения:

  • однородность и изотропность Вселенной. Согласно этому предположению, свойства Вселенной являются одинаковыми во всех точках и во всех направлениях. Данный космологический принцип был определен советским физиком М. Фридманом.
  • кривизна пространства и связь кривизны с плотность массы(энергии). Это предположение следует из уравнений Эйнштейна, описывающих гравитационное поле.

Космология, основанная на этих предположениях, называется релятивистской.

Главным принципом модели расширяющейся Вселенной является ее нестационарность. Данный принцип определяется двумя постулатами теории относительности:

  • Принципом относительности
  • Постоянством скорости цвета, подтвержденным экспериментально.

Принцип относительности заключается в том, что независимо от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга, во всех инерциональных системах все законы сохраняются.

Основываясь на космологический принцип, Фридман пришел к выводу, что уравнения Эйнштейна имеют и другие решения, нестационарные, и это означает, что Вселенная способна сжиматься либо расширяться. То есть, говорится о расширении всего пространства, об увеличении всех расстояний мира. согласно теории Фридмана, Вселенная схожа с мыльным шаром, у которого площадь и радиус постоянно увеличиваются.

Вывод, сделанный Фридманом, не был удостоен внимания и предложенная им модель расширяющейся Вселенной имела чисто теоретический характер ввиду отсутствия экспериментального подтверждения.

Готовые работы на аналогичную тему

Эффект Допплера— изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу.

Таким образом, красное смещение было зафиксировано для всех далеких источников света. Чем больше расстояние до источника света, тем больше красное смещение – выяснилось, что оно пропорционально расстоянию до источника. Все это означало, что гипотеза о расширении видимой части Вселенной справедлива.

Теоретическое предположение о нестационарности Вселенной, имеющей размеры около несколько миллиардов парсек в течение, как минимум, нескольких миллиардов лет, было подтверждено красным смещением.

Хаббл, подводя итоги своих исследований, обосновал вывод о том, что Вселенная является миром галактик, и что наша галактика – лишь одна из множества существующих галактик, которые разделены друг от друга большими расстояниями. Вместе с тем, такие расстояния, разделяющие галактики, не являются постоянными, а непрерывно увеличиваются. В результате таких исследований и предположений появилась новая концепция расширяющейся Вселенной.

Эволюция Вселенной прошла путь от сингулярного состояния до расширяющегося. Объясняя такой характер Вселенной, Фридман выделил два случая:

  • радиус кривизны вселенной, начиная с нулевого состояния, с течением времени непрерывно увеличивается
  • радиус кривизны меняется периодически, то есть Вселенная возвращается в сингулярное состояние, превращаясь в точку, потом из этого состояния увеличивает свой радиус, далее снова, обращается в точку, уменьшив радиус кривизны и так бесконечное количество раз.

Следствием расширения пространства Вселенной является разбегание галактик, наблюдаемое учеными. В результате такого расширения увеличиваются все расстояния во Вселенной.

Э. Хаббл доказал, что галактики разбегаются друг от друга со скоростью, которая постоянно увеличивается, что позволило прийти к выводу о расширении самой Вселенной. Следует иметь в виду, что расширяющаяся Вселенная является изменяющимся миром, которому характерно наличие своей истории, и который имеет начало и конец.

Оценить время, на протяжении которого осуществляется процесс расширения Вселенной, позволяет постоянная Хаббла. Согласно этому, это время составляет не менее 10 миллиардов лет, но не более 19 миллиардов лет, наиболее вероятным временем существования расширяющейся Вселенной считается приблизительно 15 миллиардов лет, то есть таким является примерный возраст нашей Вселенной.

Теория Фридмана является приближенной, имеет свои границы применимости – так же, как и любая другая научная концепция. Использование этой концепции в области очень малых пространственно-временных масштабов невозможно ввиду того, что ею не учитываются квантовые эффекты. В данном случае космологическая модель расширяющейся Вселенной дает парадоксальные результаты, к примеру, вывод, согласно которому Вселенная возникла из безразмерной точки, то есть из ничего.

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительно сти. Это связано с тем, что именно тяготение определяет взаимо действие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения — общая теория относительности. Эйнштейн допускал в своей космоло гической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизмен ность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной пони мается как отсутствие выделенных направлений, одинаковость Все ленной по всем направлениям. Однородность Вселенной понимает ся как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжи маться. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная — это мир галактик, что наша Галактика — не един ственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в естествознании появи лась концепция расширяющейся Вселенной.

Какое же будущее ждет нашу Вселенную? Фридман предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, что бы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов пре кращалось. После этого Вселенная начинала сжиматься. В этой мо дели пространство искривляется, замыкаясь на себя, образуя сферу.

Во второй модели Вселенная расширялась бесконечно, а про странство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бес конечное.

По какому из этих трех вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяго тения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной мо дели Вселенной называют открытой Вселенной.

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в ис ходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирую щей, или закрытой, Вселенной.

В граничном случае, когда силы гравитации точно равны энер гии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит со стояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

Когда Э. Хаббл показал, что далекие галактики разбегаются друг от друга со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная — это изменяющаяся Все ленная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не менее 10 млрд. и не более 19 млрд. лет. Наиболее вероятным вре менем существования расширяющейся Вселенной считают 15 млрд. лет. Таков приблизительный возраст нашей Вселенной.


Сегодня мы говорим об этой, ну как ее, Вселенной. Так уж получилось, что однажды она откуда-то появилась, и вот все мы здесь. Кто-то читает эту статью, кто-то готовится к экзамену, проклиная все на свете. Самолеты летают, поезда ходят, планеты крутятся, где-то всегда что-то происходит. Людям всегда было интересно знать один сложный ответ на простой вопрос. Как же все начиналось и как это мы докатились до того, что есть? Иными словами - как родилась Вселенная?

Итак, вот они - разные версии и модели происхождения Вселенной.

Креационизм: все создал Господь Бог


Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога. Например, Альберт Эйнштейн говорил:


Теория Большого Взрыва

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Во всяком случае, о ней слышал практически каждый. Что говорит нам Большой Взрыв? Однажды, лет эдак 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. В один прекрасный момент (если так можно сказать -времени-то не было) сингулярность не выдержала из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.


Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется. В 20-м веке существовало множество альтернативных теорий происхождения Вселенной. Одной из самых популярных была модель стационарной Вселенной, за которую ратовал сам Эйнштейн. Согласно этой модели, Вселенная не расширяется, а находиться в стационарном состоянии благодаря какой-то удерживающей ее силе.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения. Два этих явления - самые весомые доводы в пользу правильности теории. Возможно, кроме этого вам будет полезна статья о том, как создать презентацию в ворде.


Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория струн

Современное изучение эволюции Вселенной невозможно без согласования его с квантовой теорией. Так, например, в рамках теории струн (теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн), предполагается модель множественной Вселенной. Конечно, там тоже был Большой Взрыв, но он произошел не просто так и из ничего, а, возможно, в результате столкновения нашей Вселенной с какой-то другой, еще одной Вселенной.

Собственно, кроме Большого Взрыва, породившего нашу Вселенную, во множественной Вселенной происходит множество других Больших Взрывов, порождающих множество других Вселенных, развивающихся по своим, отличным от известных нам законам физики.


Скорее всего мы никогда не узнаем наверняка, как, откуда и почему появилась Вселенная. Тем не менее, размышлять об этом можно очень долго и интересно, а чтобы у Вас было достаточно пищи для размышлений, предлагаем посмотреть увлекательное видео на тему современных теорий происхождения Вселенной.

Проблемы развития Вселенной слишком масштабны. Настолько масштабны, что, по сути, даже не являются проблемами. Предоставим физикам-теоретикам ломать над ними головы и перенесемся из глубин Вселенной на Землю, где нас, возможно, ждет неначатый курсач или диплом. Если это так, мы предлагаем свое решение этого вопроса. Закажите отличную работу у авторов Zaochnik, вздохните спокойно, и будьте в гармонии с собой и Вселенной.

Читайте также: