В каких пределах изменяется температура на солнце от его центра до фотосферы кратко

Обновлено: 04.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

СОЛНЦЕ, ВНУТРЕННЕЕ СТРОЕНИЕБагамалиева Альбина Башировна 10 класс

Описание презентации по отдельным слайдам:

СОЛНЦЕ, ВНУТРЕННЕЕ СТРОЕНИЕБагамалиева Альбина Башировна 10 класс

СОЛНЦЕ, ВНУТРЕННЕЕ СТРОЕНИЕ
Багамалиева Альбина Башировна

Энергия и температура Солнца

Энергия и температура Солнца

Солнце – центральное тело Солнечной системы – является типичным представител.

Солнце – центральное тело Солнечной системы –
является типичным представителем звезд,
наиболее распространенных во Вселенной тел.
Масса Солнца составляет 2•1030 кг.

Как и многие другие звезды, Солнце представляет собою огромный шар, который с.

Как и многие другие звезды, Солнце представляет собою огромный шар, который состоит из водородно-гелиевой плазмы
и находится в равновесии в поле собственного тяготения.

Солнце излучает в космическое пространство колоссальный по мощности поток изл.

Солнце излучает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет физические условия на Земле и других планетах, а также в межпланетном пространстве.
Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре.

Большинство источников энергии, которые использует человечество, связаны с Со.

Большинство источников энергии, которые использует человечество, связаны с Солнцем.
Тепло и свет Солнца обеспечили развитие жизни на Земле, формирование месторождений угля, нефти и газа.

Количество приходящей от Солнца на Землю энергии принято характеризовать солн.

Количество приходящей от Солнца на Землю энергии принято характеризовать солнечной постоянной.

Солнечная постоянная – поток солнечного излучения, который приходит на поверхность площадью 1 м2, расположенную за пределами атмосферы перпендикулярно солнечным лучам на среднем расстоянии Земли от Солнца (1 а.е.).
Солнечная постоянная равна 1,37 кВт/м2 .

Умножив солнечную постоянную на площадь поверхности шара, радиус которого 1 а.е., определим полную мощность излучения Солнца, его светимость, которая составляет
L = 4•1026 Вт.


Состав и строение Солнца

Состав и строение Солнца

Для изучения Солнца используются телескопы особой конструкции – башенные солн.

Для изучения Солнца используются телескопы особой конструкции – башенные солнечные телескопы.
Башенный солнечный телескоп Крымской астрофизической обсерватории БСТ-1 (1957 г.)
Система зеркал непрерывно поворачивается вслед за Солнцем и направляет его лучи вниз на главное зеркало, а затем они попадают в спектрографы или другие приборы, с помощью которых проводятся исследования Солнца.

Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно.

Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно получить изображение Солнца диаметром до 80 см и детально изучать происходящие на нем явления.
Они лучше видны на спектрогелиограммах – снимках Солнца, которые сделаны в лучах, соответствующих спектральным линиям водорода, кальция и некоторых других элементов.
Солнце в ультрафиолетовых лучах
Солнце в красных лучах излучения водорода
Солнце в рентгеновских лучах

Важнейшую информацию о физических процессах на Солнце дает спектральный анал.

Химический состав Солнца: водород составляет около 70% солнечной массы, гел.

Химический состав Солнца:
водород составляет около 70% солнечной массы,
гелий – более 28%,
остальные элементы – менее 2%. Количество атомов этих элементов в 1000 раз меньше, чем атомов водорода и гелия.
Диаграмма химического состава Солнца
Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму.
Средняя плотность солнечного вещества примерно 1400 кг/м3. Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

Используя закон всемирного тяготения и газовые законы, можно рассчитать услов.

Сделаем приближенный расчет величины давления для слоя, лежащего на расстояни.

Сделаем приближенный расчет величины давления для слоя, лежащего на расстоянии R/2 от центра Солнца.
При этом будем считать, что плотность вещества внутри Солнца всюду равна средней.
Сила тяжести на этой глубине определяется массой вещества, заключенной в радиальном столбике, высота которого R/2, площадь S, а также ускорением свободного падения на поверхности сферы радиусом R/2.

 Сделаем приближенный расчет величины давления для слоя, лежащего на расстоян.

Сделаем приближенный расчет величины давления для слоя, лежащего на расстоянии R/2 от центра Солнца.
При этом будем считать, что плотность вещества внутри Солнца всюду равна средней.
Сила тяжести на этой глубине определяется массой вещества, заключенной в радиальном столбике, высота которого R/2, площадь S, а также ускорением свободного падения на поверхности сферы радиусом R/2.
Подставив необходимые данные в формулу р = mg/S, получим, что давление равно примерно 6,6•1013 Па, т. е.
в 1 млрд раз превосходит нормальное атмосферное давление.


Более точные расчеты, проведенные с учетом изменения плотности с глубиной, да.

Более точные расчеты, проведенные с учетом изменения плотности с глубиной, дают результаты, лишь незначительно отличающиеся от полученных выше: р = 6,1•1013 Па, Т = 3,4•106 К.
Согласно современным данным, в центре Солнца температура достигает 15 млн К, давление 2• 1018 Па, а плотность вещества значительно превышает плотность твердых тел в земных условиях: 1,5 • 105 кг/м3 , т. е. в 13 раз больше плотности свинца.

При высокой температуре в центральной части Солнца протоны, которые преоблада.

При высокой температуре в центральной части Солнца протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой.
В результате такого взаимодействия происходит термоядерная реакция: четыре протона образуют альфа-частицу (ядро гелия).

Энергия гамма-квантов обеспечивает излучение Солнца.Все три типа нейтрино (эл.

Энергия гамма-квантов обеспечивает излучение Солнца.
Все три типа нейтрино (электронное, мюонное и таонное) столь слабо взаимодействуют с веществом, что свободно проходят сквозь Солнце и Землю.
Кинетическая энергия, которую приобретают образующиеся в ходе реакции частицы, поддерживает высокую температуру плазмы, и тем самым создаются условия для продолжения термоядерного синтеза.

Из недр Солнца наружу энергия передается двумя способами: излучением, т. е.

Из недр Солнца наружу энергия передается двумя способами:
излучением, т. е. самими квантами, и конвекцией, т. е. веществом.

Выделение энергии и ее перенос определяют внутреннее строение Солнца: ядро –.

Сразу за конвективной зоной начинается атмосфера, которая простирается далеко.

Сразу за конвективной зоной начинается атмосфера, которая простирается далеко за пределы видимого диска Солнца.
Ее нижний слой – фотосфера – воспринимается как поверхность Солнца.
Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо из космического пространства, либо при помощи специальных приборов с поверхности Земли.

Вопросы (с.142-143)Из каких химических элементов состоит Солнце и каково их с.

Вопросы (с.142-143)
Из каких химических элементов состоит Солнце и каково их соотношение?
Каков источник энергии излучения Солнца? Какие изменения с его веществом происходят при этом?
Какой слой Солнца является основным источником видимого излучения?
Каково внутреннее строение Солнца? Назовите основные слои его атмосферы.
В каких пределах изменяется температура на Солнце от его центра до фотосферы?
Какими способами осуществляется перенос энергии из недр Солнца наружу?


Солнце — центральное тело Солнечной системы — является типичным представителем звезд, наиболее распространен­ных во Вселенной тел. Масса Солнца составляет 2·10 30 кг. Как и многие другие звезды, Солнце представляет собою огромный шар, который состоит из водородно-гелиевой плазмы и находится в равновесии в поле собственного тяго­тения. Изучение физических процессов, происходящих на Солнце, имеет важное значение для астрофизики, поскольку эти процессы свойственны, очевидно, и другим звездам, но только на Солнце мы можем наблюдать их достаточно де­тально.

Солнце излучает в космическое пространство колос­сальный по мощности поток излучения, который в зна­чительной мере определяет физические условия на Земле и других планетах, а также в межпланетном пространстве. Земля получает всего лишь одну двух миллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре. Все источники энергии, которые использует человечество, связаны с Солнцем. Тепло и свет Солнца обеспечили разви­тие жизни на Земле, формирование месторождений угля, нефти и газа.

Количество приходящей от Солнца на Землю энергии принято характеризовать солнечной постоянной.

Солнечная постоянная — поток солнечного излучения, ко­торый приходит на поверхность площадью 1 м 2 , располо­женную за пределами атмосферы перпендикулярно солнеч­ным лучам на среднем расстоянии Земли от Солнца (1 a.е.).

Солнечная постоянная равна 1,37 кВт/м 2 . Умножив эту величину на площадь поверхности шара, радиус которого 1 а. е., определим полную мощность излучения Солнца, его светимость, которая составляет 4 · 10 26 Вт.

Знание законов излучения позволяет определить темпе­ратуру фотосферы Солнца. Энергия, излучаемая нагретым телом с единицы площади, определяется законом Стефана — Больцмана:

Светимость Солнца известна, остается узнать, какова площадь поверхности Солнца.

С Земли мы видим Солнце как небольшой диск, край кото­рого достаточно четко определяет фотосфера (и переводе с греческого — сфера света). Так называется тот слой, от кото­рого приходит практически все видимое излучение Солнца. Он имеет толщину всего 300 км и выглядит как поверхность Солнца. Угловой диаметр солнечного диска примерно 30′. Зная расстояние до Солнца (150 000 000 км), нетрудно вычис­лить его линейные размеры и площадь поверхности. Радиус Солнца равен приблизительно 700 000 км. Теперь можно уз­нать, какова температура фотосферы. Светимость Солнца

где σ = 5,67 · 10 -8 Вт/(м 2 · К 4 ). Отсюда

Подставив в эту формулу численные значения входящих в нее величин, получим Т = 6000 К, Очевидно, что такая тем­пература может поддерживаться лишь за счет постоянного притока энергии из недр Солнца.

2. Состав и строение Солнца

Для изучения Солнца используются телескопы особой конст­рукции — башенные солнечные телескопы (рис. 5.1). Система зеркал непрерывно поворачивается вслед за Солнцем и направ­ляет его лучи вниз на главное зеркало, а затем они попадают в спектрографы или другие приборы, с помощью которых прово­дятся исследования Солнца. Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно получить изображение Солнца диаметром до 80 см и детально изучать происходящие на нем явления. Они лучше видны на спектроге­лиограммах (см. цветную вклейку XII) — снимках Солнца, кото­рые сделаны в лучах, соответствующих спектральным линиям водорода, кальция и некоторых других элементов.

Современные данные о хими­ческом составе Солнца таковы: водород составляет около 70% солнечной массы, гелий — более 28%, остальные элементы — ме­нее 2%. Количество атомов этих элементов в 1000 раз меньше, чем атомов водорода и гелия. Эти со­отношения представлены на ри­сунке 5.2.

Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболо­чек и ставшие ионами, вместе со свободными электронами образу­ют плазму. Средняя плотность солнечного вещества примерно 1400 кг/м 3 . Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

Сила тяжести на этой глубине определяется массой веще­ства, заключенной в радиальном столбике, высота которого R/2, площадь 5, а также ускорением свободного падения на поверхности сферы радиусом R/2. Масса вещества в этом столбике равна:

а ускорение на расстоянии R/2 (согласно закону всемирного тяготения) выражается так:

так как объем этой сферы составляет 1/8 от объема всего Солн­ца. Подставив необходимые данные в формулу p = mg/S, полу­чим, что давление равно примерно 6,6 · 10 13 Па, т. е. в 1 млрд. раз превосходит нормальное атмосферное давление. Для вы­числения температуры воспользуемся уравнением Клапейро­на-Менделеева

где R — универсальная газовая постоянная, а М — молярная масса водородной плазмы. Если считать, что в состав вещест­ва входят в равном количестве протоны и электроны, то она примерно равна 0,5 · 10 -3 кг/моль. Тогда Т = 2,8 · 10 6 К. Более точные расчеты, проведенные с учетом изменения плотности с глубиной, дают результаты, лишь незначительно отличаю­щиеся от полученных выше: р = 6,1 · 10 13 Па, T = 3,4 · 10 6 К.

Согласно современным данным, температура в центре Солнца достигает 15 млн. К, давление 2·10 18 Па, а плотность вещества значительно превышает плотность твердых тел в земных условиях: 1,5 · 10 5 кг/м 3 , т.е. в 13 раз больше плот­ности свинца. Тем не менее применение газовых законов к веществу, находящемуся в этом состоянии, оправдано тем, что оно ионизовано. Размеры атомных ядер, потерявших свои электроны, примерно в 10 тыс. раз меньше размеров са­мого атома, а размеры самих частиц довольно малы по срав­нению с расстояниями между ними. Это условие, которому должен удовлетворять идеальный газ, для смеси ядер и электронов, составляющих вещество внутри Солнца, выпол­няется несмотря на его высокую плотность.

При высокой температуре в центральной части Солнца протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. В результате такого взаимодействия происхо­дит термоядерная реакция: четыре протона образуют аль­фа-частицу (ядро гелия) (рис. 5.4).

Термоядерная реакция включает такие этапы:

Из недр Солнца наружу эта энергия передается двумя способами; излучением, т.е. самими квантами, и конвекцией, т.е. веществом. Выделение энергии и ее перенос определяют внутреннее строение Солнца:

ядро — центральная зона, где при высоком давлении и температуре происходят термоядерные реакции;

наружная конвективная зона, где энергия от слоя к слою переносится самим веществом в результате перемешивания (конвекции).

Каждая из этих зон занимает примерно 1/3 солнечного радиуса (рис. 5.5).

Сразу за конвективной зоной начинается атмосфера, ко­торая простирается далеко за пределы видимого диска Солн­ца. Ее нижний слой — фотосфера — воспринимается как поверхность Солнца. Верхние слои атмосферы непосредствен­но не видны и могут наблюдаться либо во время полных сол­нечных затмений, либо из космического пространства, либо при помощи специальных приборов с поверхности Земли.

3. Атмосфера Солнца

Фотосфера — самый нижний слой атмосферы Солнца, в ко­тором температура довольно быстро убывает от 8000 до 4000 К, Следствием конвективного движения вещества в верх­них слоях Солнца является своеобразный вид фотосферы — грануляция (рис. 5.6). Фотосфера как бы состоит из отдельных зерен — гранул, размеры которых составляют в среднем не­сколько сотен (до 1000) километров. Гранула — это поток го­рячего газа, поднимающийся вверх. В темных промежутках между гранулами находится более холодный газ, опускающий­ся вниз. Каждая гранула существует всего 5 — 10 мин, затем на ее месте появляется новая, которая отличается от прежней по форме и размерам. Общая наблюдаемая картина при этом не меняется. Вещество фотосферы нагревается за счет энергии, поступающей из недр Солнца, а излучение, которое уходит в межпланетное пространство, уносит энергию, поэтому на­ружные слои фотосферы охлаждаются.

В самых верхних слоях фотосферы плотность вещества составляет 10 -3 — 10 -4 кг/м 3 . Здесь в условиях минимальной для Солнца температуры оказывается возможным существо­вание нейтральных атомов водорода и даже простейших мо­лекул и радикалов Н2, ОН, СН.

Температура короны резко возрастает по сравнению с тем­пературой хромосферы и достигает 2 млн. К. Возможно, что при­чиной такого разогрева являются выбросы плазмы из глубинных слоев Солнца. Для короны, кото­рую можно наблюдать во время полных солнечных затмений как жемчужно-серебристое сияние, характерна лучистая струк­тура с множеством сложных деталей — дуг, шлемов и т. д. (рис. 5.7). Солнечная корона (рис. 5.8) явилась для астрофи­зики уникальной природной лабораторией, в которой удаст­ся наблюдать поведение вещества в условиях, недостижимых на Земле. Высокая температура короны обеспечивает полную ионизацию легких элементов, а у более тяжелых сохра­няются электроны, находящиеся на самых глубоких элек­тронных оболочках, Высокоионизованную плазму короны часто называют электронным газом, имея в виду, что число электронов, потерянных атомами, существенно превосходит число образовавшихся при этом положительных ионов.

4. Солнечная активность

Как правило, в атмосфере Солнца наблюдаются многообраз­ные проявления солнечной активности, характер протекания которых определяется поведением солнечной плазмы в маг­нитном поле — пятна, вспышки, протуберанцы, корональные выбросы и т.п. Наиболее известными из них являются солнеч­ные пятна, открытые еще в начале XVII в. во время первых наблюдений при помощи телескопа. По изменению положе­ния пятен па диске Солнца было обнаружено, что оно враща­ется. Наблюдения показали, что угловая скорость вращения Солнца убывает от экватора к полюсам, а время полного обо­рота вокруг оси возрастает с 25 суток (на экваторе) до 30 (вблизи полюсов).

Общее магнитное поле Солнца по форме линий магнитной индукции отчасти напоминает земное. Пятна появляют­ся в тех сравнительно небольших областях фотосферы Солнца, где магнитное поле усиливается в не­сколько тысяч раз по сравнению с общим фоном, и его индукция мо­жет достигать 0,4 — 0,5 Тл, Усиле­ние магнитного поля, которое ох­ватывает также лежащие выше области хромосферы и короны, яв­ляется характерным признаком активной области (центра актив­ности).

Сначала пятна наблюдаются как маленькие темные участки диаметром 2000 — 3000 км. Боль­шинство из них в течение суток пропадают, однако некоторые увеличиваются в десятки раз.

Такие пятна могут образовывать большие группы и существовать, меняя форму и размеры, на про­тяжении нескольких месяцев, т.е. нескольких оборотов Солнца.

У крупных пятен вокруг наиболее темной центральной части (ее называют тень) наблюдается ме­нее темная полутень (рис. 5.9).

В центре пятна температура ве­щества снижается примерно до 4000 К, поэтому в спектре пятен наблюдаются полосы поглощения некоторых двухатомных молекул, например СО, TiO, СН, CN. По­нижение температуры в районе пятна связано с действием маг­нитного поля, которое нарушает нормальную конвекцию и препятствует притоку энергии снизу, Вместе с тем вблизи пятен, где магнитное поле слабее, конвективные движения усиливаются, и появляются хорошо заметные яркие образования — факелы.

Самыми мощными проявлениями солнечной активности являются вспышки, в процессе которых за несколько минут иногда выделяется энергия до 10 25 Дж (такова энергия при­мерно миллиарда атомных бомб). Вспышки наблюдаются как внезапные усиления яркости отдельных участков Солнца в районе пятен (см. рис. 3 на цветной вклейке XII). Продолжи­тельность вспышек обычно около часа, а слабые длятся всего несколько минут. По своей сути вспышка — это взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под действием магнитного поля и приводит к образованию плазменного жгута или ленты, достигающих в длину десятков и даже сотен тысяч километров. Солнечная плазма в этой области может нагреваться до температуры по­рядка 10 млн. К. Возрастает кинетическая энергия выбросов веществ, движущихся в короне и уходящих в межпланетное пространство со скоростями до 1000 км/с. Получают допол­нительную энергию и значительно ускоряются потоки элект­ронов, протонов и других заряженных частиц. Усиливается оптическое, рентгеновское, гамма- и радиоизлучение. Де­тальная теория сложного комплекса явлений, наблюдаемых во время вспышек, пока еще не разработана, но, по современным представлениям, они связаны с возникновением и происходящим затем быстрым выделением избытка энергии в магнитных полях активных областей.

Потоки плазмы, обусловленные солнечными вспышками и корональными выбросами, через сутки-двое достигают ок­рестностей Земли. Вещество, выбрасываемое из солнечной короны, представляют собой плазму с магнитным полем (так называемые магнитные облака). Взаимодействие такого об­лака с магнитосферой Земли вызывает аномальное возмуще­ние — магнитную бурю. Магнитные бури вызывают возму­щение ионосферы, что приводит к нарушениям в прохож­дении радиосигналов, в частности, от навигационных спутни­ков. Изменение геомагнитного поля приводит к появлению индуцированных токов в линиях электропередачи и трубо­проводах.

Число пятен и протуберанцев, частота и мощность вспы­шек на Солнце меняются с определенной, хотя и не очень строгой периодичностью — в среднем этот период составля­ет примерно 11,2 года (рис. 5.11). Отмечается определенная связь процессов жизнедеятельности растений и животных, со­стояния здоровья людей и погодно-климатических аномалий с уровнем солнечной активности, однако механизм воздейст­вия этих процессов на земные явления еще не вполне ясен.

Какая температура Солнца

Солнце

Космическое пространство содержит огромное количество звёзд с разными характеристиками. Для землян самым основным светилом является Солнце. Оно даёт энергию, греет и радует душу. Но какова температура Солнца? Ответ на этот вопрос будет изучен в статье.

Интересные факты

В составе звезды присутствуют следующие элементы:

  • водород в количестве 70%;
  • гелий в содержании 28%;
  • металлические вещества и соединения – 2%.

Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.

Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.

О температурных значениях

Температура Солнца, особенно в центральной части звезды, является крайне высокой. Её значение составляет 14 млрд. градусов. Дело в том, что в ядерной части светила наблюдаются существенные термические реакции, при которых происходит деление ядер в условиях повышенного давления. Это провоцирует выделение одного ядра и вместе с ним огромного количества энергии.

Если изучать вопрос, какая температура на Солнце, с логической точки зрения, по мере углубления она должна становиться всё больше и больше, и происходит это резко. Однако определить точные показатели можно только в теории. Если рассматривать эти колебания послойно, можно сделать следующие отметки:

Но это неточный ответ на вопрос, какая температура на Солнце. Дело в том, что в настоящее время большое количество учёных из разных стран мира занимаются проведением исследований, в отношении определения строения светила. В земных условиях они не прекращают попыток формирования явления термоядерного синтеза для получения информации о поведении плазмы в естественных условиях.

Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.

Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.

Атмосферные особенности

На самом деле, толщина этого слоя составляет 500 км и именуется как фотосфера. В ней регулярно происходят конвекционные процессы. Вследствие их течения тепловые потоки постепенно переходят в фотосферу из самых низких ярусов. Солнце способно вращаться, но делает это не так, как любая другая планета, обращающаяся вокруг него. Оно является нетвёрдым, что создаёт определённые особенности его вращения. Аналогичные траектории и эффекты можно наблюдать у газовых гигантов.

Условия в фотосфере

Условия в хромосфере

Температура Солнца в градусах присутствует и в области хромосферы. Она представляет собой следующий атмосферный уровень, который считается более холодным и имеет температурный показатель в 4320 градусов. В связи с тем, что она включает в состав внушительное количество водорода, с виду кажется красной. Повышение температуры происходит в короне, которая может быть обнаружена при затмении, во время протекания плазмы наверх.

Показатель мощности Солнца составляет 386 млрд. мегаватт. Ежесекундно, даже в течение каждой секундной доли происходит превращение водорода в гелий и энергию (гамма-лучи). Наряду с этим происходит испускание потока низкой плотности, который именуется солнечным ветром и распространяется по всем сопровождающим Солнце планетам на скоростном режиме в 450 километров в секунду. В итоге потоки текут в космос и направляются, в том числе, в сторону Земли.

Таким образом, в статье было рассмотрено, какая температура Солнца в градусах в разных его частях и в основных атмосферных слоях.

Солнце – ближайшая звезда к Земле. Это также и источник жизни на планете. На заре развития цивилизаций у многих народов именно бог Солнца был самым главным, а все другие божества только подчинялись ему. Характерно, что мифы разных народов по своему объясняли происхождение дневной звезды и ее роль. Сегодня же, в ХХI веке, астрономия может рассказать о Солнце куда больше, чем древние мифы. Поэтому в статье мы расскажем что же происходит внутри звезды и, самое главное: что же будет с ней спустя миллионы лет.

Звезда Солнце

Общая характеристика

Характеристики Солнца важны для понимания его места среди других подобных светил. Солнце являет собой огромный газовый шар, нагретый до невообразимо высоких температур. Диаметр Солнца – 1 млн. 392 тыс. 700 км. Эта величина в 109 раз больше земной. Масса Солнца внушительна и составляет около двух нонниллионов килограмм (1,98⋅1030 кг). Это в 332 946 раз больше земной массы. Интересно, что на массу всех планет, спутников, астероидов, комет, межпланетного газа и пыли, находящихся в Солнечной системе, приходится всего лишь 0,13%. Плотность Солнца несколько больше воды и равна 1,4 г/см3.

Мы наблюдаем Солнце как диск желтого цвета, но на самом деле оно так не выглядит. Звезда излучает белый цвет. Однако у поверхности Земли Солнце выглядит как диск желтого оттенка из-за рассеивания в атмосфере и поглощения части излучения.

В Млечном пути находятся сотни миллиардов таких же звезд, подобных Солнцу. Самая близкая к нашей планете звезда – Проксима Центавра находится на расстоянии свыше четырех световых лет (или около 40 трлн. км).

Если изобразить схему Солнечной системы и поместить внутри нее Бетельгейзе, то она будет простираться до орбиты Юпитера.

Размер Бетельгейзе

Расстояние до Солнца от Земли в среднем составляет 150 млн. км — оно равняется одной астрономической единице. Видимый угловой диаметр для наблюдателя с земной поверхности немногим превышает половину градуса. Звезда находится примерно в 26 тыс. световых лет от центра Млечного Пути. Скорость вращения Солнца вокруг центра галактики – 230 километров в секунду.

Источник тепла и света Солнца – термоядерные реакции. После слияния четырех протонов образуется один атом гелия и энергия. В недрах Солнца происходят и другие реакции, в результате которых, например, образуются атомы металлов.

Приблизительно до 150 астрономических единиц в космосе доминирует так называемый солнечный ветер.

Солнце обращается вокруг своей оси. Вращение это неодинаково. В районе экватора звезда делает один оборот за 25 суток, а в районе полюсов – за 34 суток.

Таблица основных физических характеристик Солнца

Значение Основные характеристики
Диаметр Солнца в километрах 1 миллион 392 тыс.
Протяженность экватора 4,37 млн. км
Масса приблизительно 2•1027 тонн
Площадь поверхности 6 трлн. кв. км
Объем Солнца 1,41•1018 км³
Температура поверхности 6000 °С
Температура в центре Солнца 15 700 000 °С
Экваториальный период вращения вокруг оси 25 суток
Период вращения вокруг оси на полюсах 34 суток
Наклон оси вращения к эклиптике 7,25°
Наименьшее удаление до Земли (перигелий) 147,098 млн. км
Наибольшее удаление до Земли (афелий) 152,098 млн. км
Вторая космическая скорость 617 км/с
Ускорение свободного падения 274 м/с2
Мощность излучения 3,828•1026 ватт

Состав Солнца

Строение Солнца

Ошибочно мнение, будто дневная звезда состоит только из одного разогретого вещества. Строение Солнца довольно сложное. В нем различают шесть слоев. Причем 3 из них внутренние, а 3 образуют так называемую атмосферу. Узнаем подробнее, из чего состоит Солнце.

Внутренние слои Солнца

Внутреннее строение Солнца долгое время было загадкой для астрономов. Только в ХХ веке ее удалось разгадать. Внутри Солнца находятся следующие слои.

Это центральная часть звезды. Здесь происходят реакции ядерного синтеза. Радиус ядра – примерно 150 тыс. км.

Температура внутри Солнца доходит до невообразимых 15 миллионов градусов Кельвина. Давление же здесь составляет около 300 миллиардов атмосфер (свыше 30 000 трлн. Па). Из-за этого плотность солнечного ядра достигает 150 кг/см3 (что в 6,67 раз больше наиболее тяжелого металла на Земле – осмия).

Указанные параметры идеально подходят для реакций ядерного синтеза. Именно здесь появляется энергия, необходимая для поддержания жизни всего живого на нашей планете. Все другие участки Солнца имеют высокую температуру из-за перехода энергии из ядра. Сами они эту энергию не продуцируют.

Зона лучистого переноса

Ее еще называют зоной радиации. Она находится непосредственно над ядром. Радиус внешней границы лучистого переноса составляет 490 тыс. км. Температура медленно снижается до 2 миллионов градусов. Из-за снижения температуры уменьшается давление, в результате чего плотность солнечного вещества достигает 0,2 г/ см3. Конвекционного перемещения в этой зоне нет.

Энергия в зоне лучистого переноса распространяется путем постоянных поглощений, излучений фотонов протонами. Частицы могут двигаться в любом направлении. Этот процесс довольно медленный: из ядра фотон выходит наружу приблизительно 170 тысяч лет. Иными словами, мы сейчас видим свет, образовавшийся на Солнце, когда на Земле была ледниковая эпоха.

Зона конвективного переноса

Толщина конвективной зоны составляет около 200 тыс. километров. Плотность вещества здесь уже невелика, и оно активно перемещается. То есть разогретое вещество интенсивно поднимается вверх, отдает тепло, охлаждается и идет вниз. Скорость конвекции доходит до 6 километров в час. Эти процессы способствуют образованию солнечного магнитного поля.

На поверхности температура Солнца достигает 6 тысяч градусов, а вот плотность примерно в 1000 раз ниже, чем у земной атмосферы.

Солнечная поверхность неоднородна и имеет области с меньшей яркостью. Они называются пятнами. Продолжительность существования пятен – несколько дней. Интересно, что на Солнце могут быть пятна, которые превышают диаметр Земли. На поверхности Солнца также существуют:

  • факулы – объекты с повышенной яркостью;
  • гранулы – области, покрывающие фотосферу и различимы с Земли;
  • супергранулы – объекты большого размера (порядка 35 тыс. км), обволакивающие поверхность Солнца.

Данные современных исследований показывают, что значение конвективных переносов чрезвычайно высоко. Именно в конвективной зоне происходят всевозможные движения солнечного вещества.

Строение Солнца

Атмосфера

Когда говорят об атмосфере Солнца, как правило, выделяют следующие 3 слоя: фотосферу, хромосферу и корону.

Фотосфера

Это самый нижний слой солнечной атмосферы. Это та область, которую мы видим с Земли, ведь Солнце излучает свет и тепло, распространяющиеся на все объекты в Солнечной системе. Толщина этого участка атмосферы – до 400 км.

Из фотосферы, или внешней излучающей поверхности Солнца на Землю попадает большинство излучения. Лучи из глубоко расположенных слоев к нам не поступают. Температура фотосферы снижается с 6000 градусов Кельвина до 4400. Эффективная температура рассчитывается по закону Стефана-Больцмана: мощность излучения абсолютно черного тела прямо пропорциональна температуре тела, возведенной в четвертую степень.

Фотосфера являет видимую поверхность нашей дневной звезды. По ней мы можем определить размеры Солнца и прочие параметры.

Хромосфера

Этот слой расположен над фотосферой. Толщина солнечной хромосферы составляет около 2 тыс. км. С Земли ее наблюдать довольно сложно из-за незначительной яркости. Хромосфера доступна земному наблюдателю во время солнечного затмения. В это время она светится красным светом.

В толщи этого слоя наблюдаются спикулы – плазменные столбы, которые выбрасываются из нижних слоев. Длина одного такого столба может достигать 20 тыс. км. По мере возрастания высоты температура хромосферы возрастает и достигает 20 тыс. градусов на верхней границе.

Корона

Это самый верхний слой солнечной атмосферы. Ее границы не определены. Солнечная корона характеризуется наличием крайне разреженного вещества. Температура этой области достигает нескольких миллионов градусов. В отдельных ее участках температура может достигать 20 миллионов градусов.

Солнечная корона видна только при полном затмении. Это объясняется тем, что плотность ее вещества крайне мала, а, следовательно, яркость слоя незначительна. Форма короны изменяется зависимо от фазы цикла. В максимум активности она приближается к кругу, а в минимум – вытягивается. Солнечная корона излучает ультрафиолетовые и рентгеновские лучи.

Проуберанец

Магнитное поле

Солнце имеет собственное магнитное поле. Различают глобальное и несколько локальных полей.

Кроме того, в различных участках Солнца наблюдаются локальные магнитные поля разной интенсивности. Их параметры могут быть разными. Редко когда время существования такого магнитного поля превышает 10 дней. Локальные поля чаще всего обнаруживаются возле солнечных пятен.

Магнитное поле Солнца

Жизненный цикл Солнца

Эволюция Солнца – вопрос, интересующий не одно поколение астрономов. Ученые оценивают возраст Солнца в 4,5 миллиарда лет. Оно возникло из газопылевого облака, сжимающегося под воздействием сил гравитации. Из такого же облака возникли и все остальные объекты Солнечной системы, в том числе и наша планета. Из-за сжатия начинает возрастать плотность и температура. Когда температура и давление возросли до необходимых значений, начались термоядерные реакции. Так, собственно, и начался жизненный цикл Солнца.

Масса нашей дневной звезды постепенно снижается из-за реакций ядерного синтеза. Ежесекундно 4 миллиарда тонн вещества Солнца превращается в энергию. Однако запасов водорода для поддержания протекания протон-протонной термоядерной реакции хватит на несколько миллиардов лет.

Температура светила увеличивается на 10 процентов каждые 1,1 млрд. лет. Это дает основания предположить, что раньше температура воздуха на планете была ниже, а на Венере, вероятно, могла бы существовать вода в жидкой фазе (сейчас температура Венеры такова, что на ней может плавиться свинец). Поскольку в будущем светимость Солнца будет возрастать, это приведет к увеличению температуры на Земле. Из-за высокой температуры испарятся океаны, молекулы воды, увлекаемые движением, улетучатся в космическое пространство и разложатся на атомы кислорода и водорода, а сама Земля превратится в безжизненное космическое тело.

Жизненный цикл Солнца

Однако рано или поздно выгорит гелий. Это произойдет примерно за 110 миллионов лет. В результате пульсаций внешние слои Солнца постепенно отделятся от ядра. Солнечное ядро превратится в белый карлик, и его диаметр будет примерно соответствовать нынешнему земному. Это при том, что масса ядра будет только вдвое меньше нынешнего Солнца.

Белый карлик будет медленно охлаждаться. В этом объекте не протекают ядерные реакции. Приблизительно через 10 миллиардов лет из Солнца останется черный карлик.

Орбита и место расположения Солнца в галактике Млечный Путь

Солнце, как и вся Солнечная система, обращается вокруг центра Млечного пути. В этом центре расположена большая черная дыра. Солнечная система совершает оборот вокруг этого центра приблизительно за 250 миллионов лет.

Расположение в Галактике

Солнце и Солнечная система, а также наша галактика находятся в рукаве Ориона. Скорость вращения галактики равна скорости вращения спиральных рукавов. Из-за этого Солнечная система не попадает под их влияние. Спиральные рукава излучают лучи, уничтожающие все живое на планете.

Солнечный ветер

Так называется поток ионизированных частиц, исходящих от Солнца. Его скорость может достигать 1200 километров в секунду. Потоки солнечного ветра пронизывают все пространство Солнца. Состав частиц в солнечном ветре – протоны, электроны и альфа-частицы.

Существует медленный и быстрый солнечный ветер. Медленный ветер движется со скоростью примерно 400 км/ч и нагрет примерно до полутора миллионов градусов. Его состав примерно отвечает солнечной короне. Быстрый ветер движется с большей скоростью, имеет более низкую температуру, его плотность вдвое выше.

Солнечный ветер

Ежесекундно Солнцем излучается примерно 1,3⋅1036 частиц, уносимых солнечным ветром. Следовательно, за год звезда теряет в массе примерно 2⋅10−14 массы. На Земле регулярно происходят природные явления, которые связаны с распространением солнечного ветра и его возмущениями (например, магнитные бури и северные сияния).

Солнечные циклы и активность

Солнечная активность – это совокупность явлений, связанных с образованием сильных магнитных полей. Их проявление видно в фотосфере как солнечные пятна. Магнитные поля провоцируют вспышки, потоки быстрых частиц, корональные выбросы, возмущения в солнечном ветре, изменения электромагнитного излучение, потоков космических лучей. На Земле эти поля провоцируют магнитные бури и другие явления.

Показателем уровня активности Солнца является число Вольфа. Оно показывает количество пятен на видимой с Земли части звезды. Оно меняется с периодом примерно 11 лет. За последние 300 лет длительность цикла находился в более широких пределах. Им приписывают последовательные номера. В декабре 2019 года начался 11-летний цикл, который продлится предположительно до 2030 года.

Ученые определяют также 22-летний цикл. Фактически, это изменение полярности магнитного поля. Вековой цикл длится примерно 70 – 100 лет. Наконец, радиоуглеродный анализ указывает на наличие 2300-летнего цикла.

Исследование Солнца

Человечество начало интересоваться Солнцем с незапамятных времен. Оно почиталось как божество. Однако уже в античные времена появились первые научные взгляды на звезду. Уже тогда высказывались мнения, что Солнце – центр, вокруг которого вращаются планеты. Такая теория была возрождена Коперником только в 16 веке.

Впервые солнечные пятна стали наблюдать в Китае во времена династии Хань. В 12 веке появились первые рисунки солнечных пятен.

Инструментальное исследование Солнца началось в 1610 г благодаря изобретению телескопа, гелиоскопа. Астроном Кассини вычислил приблизительное расстояние от Земли до Солнца.

В 19 веке был установлен состав Солнца благодаря спектроскопии. В ХХ веке было установлено, что источником энергии Солнца является термоядерная реакция. Впоследствии было установлено, что подобные реакции происходят во всех звездах. В 2020 году были сделаны самые точные снимки нашей дневной звезды.

Читайте также: