В чем заключается биологический смысл избыточности генетического кода кратко

Обновлено: 02.07.2024

В чём содержится биологический смысл избыточности генетического кода?

  • Егор Артецкий
  • Подготовка к ЕГЭ/ОГЭ
  • 2019-11-04 10:04:21
  • 2
  • 1

Избыточность кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (так как аминокислот 20, а триплетов 64). Исключение сочиняют метионин и триптофан, которые кодируются только одним триплетом. Не считая того, некие триплеты исполняют специальные функции. Так, в молекуле иРНК три из их УАА, УАГ, УГА являются терминирующими кодонами, т. е. стоп-сигналами, заканчивающими синтез полипептидной цепи. Триплет, подходящий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а исполняет функцию инициирования (возбуждения) считывания.
Избыточность кодирующих последовательностей ценнейшее свойство когда, так как она увеличивает устойчивость информационного потока к неблагоприятным воздействиям наружней и внутренней среды. При определении природы аминокислоты, которая обязана быть заключена в белок, 3-ий нуклеотид в кодоне не имеет настолько важного значения, как 1-ые два. Для многих аминокислот замена нуклеотида третьей позиции кодона не сказывается на его смысле.

Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода) .
Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка.
Другое свойство кода – его специфичность (однозначность) : один кодон кодирует только одну аминокислоту.

А недавно была высказана новая гипотеза.
Британские генетики из университета города Бат (University of Bath) предложили теорию, объясняющую избыточность генетического кода у всех живых организмов. Аминокислоты, из которых состоят белки, кодируются в генах фрагментами из трех нуклеотидов - триплетами.
Всего в генах встречается 64 различных триплета. Однако им соответствуют лишь 20 различных аминокислот, поэтому некоторые аминокислоты могут кодироваться несколькими разными триплетами. Избыточность делает генетический код более устойчивым и эволюционно гибким. Однако до сих пор не было убедительного объяснения происхождения этой избыточности. Новая теория основана на гипотезе, предложенной Фрэнсисом Криком (Francis Crick), одним из первооткрывателей структуры ДНК.
Предполагается, что первоначально аминокислотам соответствовали не тройки, а пары нуклеотидов, которые могли кодировать только 16 аминокислот. Когда размер кодона увеличился до трех нуклеотидов, живые организмы смогли использовать больше аминокислот, но пока их число выросло только до 20. Исследователи даже указывают, какие именно аминокислоты стали использоваться живыми организмами позже других.

может в дублировании некоторых важных участков кода, что обуславливает более надёжное и безошибочное деление и передачу кода от старых к новым клеткам.

Избыточность генетического кода – свойство, при котором некоторые аминокислоты кодируются несколькими триплетами.
Биологическое значение – это повышает надежность передачи генетической информации.

Как написать хороший ответ? Как написать хороший ответ?

  • Написать правильный и достоверный ответ;
  • Отвечать подробно и ясно, чтобы ответ принес наибольшую пользу;
  • Писать грамотно, поскольку ответы без грамматических, орфографических и пунктуационных ошибок лучше воспринимаются.

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Ранее мы подчёркивали, что нуклеотиды имеют важную для формирования жизни на Земле особенность ― при наличии в растворе одной полинуклеотидной цепочки спонтанно происходит процесс образования второй (параллельной) цепочки на основании комплементарного соединения родственных нуклеотидов. Одинаковое число нуклеотидов, в обоих цепочках и их химическое родство, является непременным условием для осуществления такого рода реакций. Однако при синтезе белка, когда информация с иРНК реализуется в структуру белка никакой речи о соблюдении принципа комплементарности идти не может. Это связано с тем, что в иРНК, и в синтезированном белке различно не только число мономеров, но и, что особенно важно, отсутствует структурное сходство между ними (с одной стороны нуклеотиды, с другой аминокислоты). Понятно, что в этом случае возникает необходимость создания нового принципа точного перевода информации с полинуклеотида в структуру полипептида. В эволюции такой принцип был создан и в его основу был заложен генетический код.

Генетический код ― это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств:

  • Триплетность.
  • Вырожденность или избыточность.
  • Однозначность.
  • Полярность.
  • Неперекрываемость.
  • Компактность.
  • Универсальность.

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет ― наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон ― наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет ― это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон ― характеризует элементарную смысловую единицу генома ― три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 43 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую-либо аминокислоту, их называют смысловые кодоны. Три триплета не кодируют.

Таблица 1.


Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами — УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин — двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит название вырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках. И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент — гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части ― глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит ген, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона, который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид ― первый, второй или третий.

Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около 400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только 100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете, кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка — глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные a-цепи и две b-цепи. Замена в гене, кодирующем b-цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” — приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту — тирозин. Фенотипически это проявится в тяжёлом заболевании. Аналогичная замена в 63 положении b-цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении b-цепи является причиной тяжелейшего заболевания — серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в b-цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам — они обе гидрофильны. Валин — гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина — у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту ― гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон ― аминокислота генетический код однозначен, в направлении аминокислота ― кодон ― неоднозначен (вырожденный).

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время, когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33, А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся. Неперекрываемость генетического кода связана с ещё одним свойством ― считывание информации начинается с определённой точки ― сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ. Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

Код един для всех организмов, живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

Для повторения:

Генетический код ― это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке. Генетический код имеет несколько свойств.

1. Триплетность. Триплет состоит из трёх нуклеотидов. 61 кодон ― смысловые, т.е. кодируют какую-либо аминокислоту, три ― бессмысленные, т.е. не кодируют аминокислоты.

2. Вырожденность или избыточность. Одна аминокислота может кодироваться несколькими кодонами.

3. Однозначность. Один кодон кодирует только одну аминокислоту.

4. Полярность. Считывание информации с ДНК и с иРНК происходит только в одном направлении.

Читайте также: