В чем специфика астрономии по сравнению с другими науками кратко

Обновлено: 06.07.2024

Астрономия – наука, изучающая разнообразные небесные объекты с целью их исследования и познания окружающего мира и всей громадной Вселенной.

Астрономия является естественно-научной дисциплиной, и как многие прочие науки она связана с иными областями знаний.

Мы рассмотрим связь астрономии с такими дисциплинами как:

  • Философия
  • Математика
  • Физика
  • История

Астрономия и философия

С самого момента зарождения человеческой цивилизации многих людей интересовала проблема происхождения и зарождения всего сущего. Так зарождались первые зачатки философии, науки, изучавшей в древности всё, что окружало человека. Именно из этой науки и вышли позднее такие дисциплины как астрономия, математика, физика.

В философии, особенно античной, греческой, были широко представлены взгляды на происхождение и развитие Вселенной. Также в рамках древнегреческой философии велись первые астрономические наблюдения.

Нам известны имена таких философов как Гераклит, Фалес Милетский, Демокрит, Аристотель, Аристарх Самосский, Эратосфен, Клавдий Птолемей и многие другие, которые развивали представления об окружающем мире и занимались первыми наблюдениями за звездным небои.

Впоследствии, после наступления и победы христианства в Европе, а ислама в странах Ближнего Востока, центральной Азии и северной Африки, философия и астрономические изыскания стали рассматриваться как неотъемлемые части богословия.

Но если в Европе произошла утрата знаний, утвердилась приверженность буквальному толкованию библейского рассказа о сотворении мира, то в мире ислама первые века шло накопление и осмысление знаний античных авторов, а также разработка новых теорий о мире звезд.

Постепенно, вместе с развитием науки, ремесел, техники и распространением книгопечатания и грамотности в Европе происходит выделение астрономии как отдельной дисциплины.

При этом астрономия сохраняла и сохраняет непосредственную связь с философией. Поскольку одна из частей астрономии – это космология, дисциплина, которая отвечает на вполне философские вопросы о происхождении Вселенной и всего сущего, и будущего нашего мира.

Готовые работы на аналогичную тему

Астрономия и математика

Знание астрономии и математики важно для вычисления координат небесных тел или любой точки на Земле.

Потребность в определении местоположения существовала ещё в далеком прошлом, когда купцам и путешественникам требовалось уточнить собственное местоположение в море, в степи или горах.

Координатами является числовое или буквенное обозначение местоположения объекта.

Что бы узнать собственные координаты на местности необходимо знать широту и долготу. Так мы установим географические координаты.

Математиками была разработана специальная модель с помощью, которой можно описать расположение любой точки в пространстве. Такая модель получила название система координат.

В астрономии такая система используется для установления и описания местоположения нужной точки на небосводе. Результатом применения такого метода описания координат стали многочисленные открытия, последовавшие в результате развития астрономических знаний.

Уже в древности античные ученые использовали широту и долготу для определения той или иной географической точки. Однако, систему координат в её нынешнем виде создал французский ученый Рене Декарт.

В наше время огромную роль в деле определения координат играют системы ГЛОНАС (ГЛОбальная НАвигационная Система) и "GPS" (от английской аббревиатуры "Global Position System).

Отметим, что для точного определения координат космических тел и объектов созданы специальные астрономические каталоги. Данные каталоги представляют собою список нужных астрономических объектов, в которых описана их система координат и движения, соотнесенные к одной системе.

Таким образом, астрономические каталоги выполняют функцию фиксированиясистем координат на небесной сфере и могут сохранять данную систему в течение некоего промежутка времени.

Астрономия и физика

Эти дисциплины также являются тесно связанными. Астрономы, наблюдая космическое пространство и астрономические объекты, поставляют физикам новые задачи для решения. В результате физика определяет особенности строения, природу, происхождение и свойства тех ли иных объектов и космических явлений.

Примером связи физики и астрономии являются работы таких известных ученых как Галилео Галилей и Исаак Ньютон.

В результате тесного взаимодействия физики и астрономии, на их стыке появилась такая дисциплина как астрофизика.

Отметим, что такая известная теория как теория относительности Альберта Эйнштейна, была доказана астрономическими методами наблюдения. И заслуга в этом в основном принадлежит американскому астроному Эдвину Хабблу.

Ещё одним примером междисциплинарного синтеза является такой предмет как нейтринная астрономия.

С помощью данной дисциплины, возможно, узнавать о процессах, которые происходят в глубине изучаемых космических тел. Примером служит изучение недр нашего светила – Солнца.

Эта дисциплина появилась в результате успехов ученых-физиков в исследовании атомных ядер и элементарных частиц.

Астрономия и история

На первый взгляд может показаться странным, как могут быть связаны такие разные дисциплины. Однако, для исторической науки бывают крайне важны астрономические данные и наблюдения.

С помощью астрономических данных полученных, как из древних документов, так и путем наблюдений и вычислений, можно восстановить и реконструировать события прошлых столетий, канувших в Лету.

Однако, пытаясь восстановить хронологию древности, необходимо учитывать следующие особенности летоисчисления в прошлом. К таким особенностям следует отнести следующие моменты:

  1. Летоисчисление в античные так и в более древние времена было не линейным, а циклическим. То есть счёт велся в основном по годам правления владыки.
  2. С приходом нового правителя счет лет обнулялся и начинался заново.
  3. Также календарь мог быть лунным или солнечным.

Дошедшие же до нас астрономические наблюдения древних греков, китайцев, шумеров и т. д. позволяют свести воедино зачастую разрозненные данные о времени происходивших событий в древней истории.

Таким образом, получается, что фальсифицировать древнюю историю невозможно, поскольку различные источники описываю порою одни и те же как астрономические, так и исторические события.

К тому каждый документ является памятником своего времени и написан на языке диалекте той эпохи и конкретного исторического региона.

Астрономия – наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.

Эта наука является одной из наиболее древних. Ее первые задатки появились в Египте, Вавилоне и Китае. Тогда люди наблюдали и начали понимать, что на небе существует некоторое движение небесных объектов, и все они передвигаются по определенной траектории.

В современном обществе астрология имеет большое значение. Она применяется в навигации, авиации, космонавтике, геодезии, картографии. ГЛОНАСС и GPS также работают на фундаментальных основах астрономии. Эта наука позволяет определить движение планеты относительно Солнца и друг друга, выясняет негативное воздействие астероидов и комет.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Современная астрономия делится на ряд разделов, которые тесно взаимосвязаны между собой. Главными разделами астрономии являются:

  1. Астрометрия изучает видимые положения небесных тел, разрабатывает математические методы определения их движения с помощью систем координат.
  2. Сферическая астрономия занимается изучением положения, движения космических тел, решает задачи связанные с определением и положением светил на небесной сфере, составлением звездных карт и каталогов.
  3. Теоретическая астрономия определяет положение небесных тел по известным элементам их орбит.
  4. Практическая астрономия занимается выполнением таких задач, как вычисление и составление календарей, географических и топографических карт. Также эта сфера астрономии используется в авиации, мореплавании, космонавтике.
  5. Небесная механика изучает движения небесных объектов под действием сил всемирного тяготения, определяет их массу и форму, устойчивость системы.
  6. Астрофизика занимается изучением строения физических и химических свойств небесных тел. Она, в свою очередь, делится на практическую и теоретическую.
  7. Звездная астрономия исследует закономерности распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей в пространстве.
  8. Космохимия занимается изучением состава космических тел, законы распространенности и распределения химических элементов во Вселенной, процессы сочетания и взаимодействия атомов при образовании космического вещества.
  9. Космогония рассматривает вопросы происхождения и эволюции небесных объектов, в т.ч. и нашей планеты.
  10. Космология выявляет общие закономерности строения и развития Вселенной.

Таким образом, астрономия — это естественная наука о Вселенной. Предметом ее изучения являются космические явления, процессы и объекты. Благодаря ей, мы знаем о звездах, планетах, спутниках, астероидах и кометах. Также эта наука дает целостное представление о расположении небесных тел, движении и образовании их систем.

Особенности взаимодействия

Астрономия — это естественная наука, которая взаимодействует с другими областями знаний. К ним относятся такие дисциплины, как:

  • история;
  • химия;
  • литература;
  • обществознание;
  • биология;
  • математика;
  • География.

Астрономия и история. С помощью астрономических знаний можно реконструировать прошедшие события. Благодаря им мы знаем, что летоисчисление в античные времена было не линейным, а циклическим. Это значит, что счет велся в основном по годам правления владыки.

С приходом нового правителя цикл обнулялся и начинался новый. Календарь мог быть лунным и солнечным. Дошедшие до наших дней календари дают возможность сформировать целостное представление о времени происходивших событий в древней истории.

В древнем Вавилоне было составлено множество астрономических таблиц, в которых описывались первые созвездия. У шумеров появился первый Лунный календарь. Благодаря этим календарям и таблицам жрецы могли предсказывать время затмений.

Египтяне пронаблюдали, что разлив реки Нила приходится на начало лета, что связано с приходом первого восхода ярчайшей звезды неба — Сириуса. Среди стран Восточной Азии, наибольшее развитие древняя астрономия получила в Китае. Именно там содержится множество астрономических сведений.

Астрономия и химия. Эти две науки связывает химическая эволюция Вселенной. В ней затрагиваются вопросы исследований происхождения и распространенности химических элементов и их изотопов в космосе. Астрохимия тесно взаимосвязана с астрофизикой, космогонией и космологией.

Данная наука занимается изучением небесных тел, влиянием космических тел на протекание химических реакций во Вселенной. У ученых большой интерес вызывают исследования химических процессов, которые в силу своей сложности и масштабов невозможно производить в земных лабораториях.

Взаимодействие астрономии и химии позволили сделать много научных открытий, таких как:

  • открытие новых химических элементов в атмосфере звезд;
  • изучение химических свойств газов, из которых состоят небесные тела;
  • открытие в межзвездном веществе молекул, содержащих до девяти атомов;
  • доказательство существования сложных органических соединений метилацетилена и формамида.

Астрономия и литература. Астрономические явления несомненно оказывают сильное влияние на эмоциональное состояние человека, и именно их затрагивают авторы в своих произведениях. Например, описание неба, звездной системы, планет. Многие поэты, при написании своих работ, упоминали небесные тела.

Например, А.С.Пушкин писал:

"Надо мной в лазури ясной

светит звездочка одна —

справа запад звездно-красный,

слева близкая Луна".

Из этого четверостишия можно узнать очень много информации из области астрономии, а это значит, что поэт увлекался этой наукой. Также литературные произведения на тему звездного неба писали Марина Цветаева и А.М.Булгаков.

Астрономические наблюдения несут в себе мощный эмоциональный заряд, демонстрируют могущество человеческого разума и его способности познавать мир, воспитывают чувство прекрасного. Так появились древние мифы, легенда, литературные произведения, научно-фантастическая литература.

Астрономия и обществознание. Эта взаимосвязь определяется тем, что астрономия как наука имеет общечеловеческий, гуманитарный аспект и вносит наибольший вклад в выяснение места человека во Вселенной.

Астрономия и биология, или по-другому, астробиология — наука, которая занимается изучением происхождения эволюции и распространения жизни на других планетах во Вселенной. Данная наука осуществляется на пригодных для жизни мест обитания как в Солнечной Системе, так и за ее пределами.

Астрономию и биологию связывают;

  • проблемы возникновения и существования жизни на Земле и во Вселенной;
  • гипотезы происхождения жизни;
  • приспособляемость и эволюция живых организмов;
  • проблемы земной и космической экологии;
  • воздействие космических процессов на жизнь на Земле.

Астрономия и математика постоянно работают с системой координат. К ним относятся вычисление расположения звезд на небе, составление карт, запуски спутников, определение расстояния до звезд, их расположение на карте звездного неба, размеры галактики, скорость ее вращения, траектория движения планет и их размер.

Раньше для измерения расстояния от Земли до Солнца и Луны, ученым Райханом Беруни была придумана теория теней и метод параллакса. Сейчас для этого используется метод радиолокации. Все это подчинено математическим правилам и законам. В основу астрономии положен математический аппарат.

Астрономия и география. Благодаря взаимосвязи этих двух наук, люди в древние времена узнавали дату религиозных праздников, время разлива рек, что играло существенную роль для занятия земледелием. Они научились ориентироваться на местности с помощью небесных светил.

Птолемей, будучи астрономом и основоположником математической географии, создал 27 карт Земли. В 1492 году создан первый в мире глобус ученым Мартином Бехаймом, в котором были отмечены такие материки, как Европа, Азия, Африка.

В 17 веке Галилео Галилей создал зрительную трубу, через которую можно было рассмотреть небесные тела и определить их географические координаты. А позже учёный Снеллиус смог произвести первые измерения градуса с помощью созданного им метода триангуляции.

Схема с примерами

Связь астрономии с другими науками

Гелиобиология — раздел биофизики, который занимается изучением влияния изменений активности Солнца на земные организмы.

Ксенобиология — подраздел синтетической биологии, изучающий создание и управление биологическими устройствами и системами. Она описывает форму биологии, которая не знакома науке и не встречается в природе.

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI-III тысячелетия до н. э.).

Астрономия это наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Астрономия [греч. Астрон (astron) - звезда, номос (nomos) -закон] – наука, которая изучает движение небесных тел (раздел “небесная механика”), их природу (раздел “астрофизика”), происхождение и развитие (раздел “космогония”)

Астрономия – одна из самых увлекательных и древнейших наук о природе – исследует не только настоящее, но и далекое прошлое окружающего нас макромира, а также позволяет нарисовать научную картину будущего Вселенной. Человека всегда интересовал вопрос о том, как устроен окружающий мир и какое место он в нем занимает. У большинства народов еще на заре цивилизации были сложены особые - космологические мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется все, что окружает человека: небо и земля, горы, моря и реки, растения и животные, а также сам человек. На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе.

Оказалось, что периодическим изменениям в земной природе сопутствуют изменения вида звездного неба и видимого движения Солнца. Высчитать наступление определенного времени года было необходимо для того, чтобы в срок провести те или иные сельскохозяйственные работы: посев, полив, уборку урожая. Но это можно было сделать лишь при использовании календаря, составленного по многолетним наблюдениям положения и движения Солнца и Луны. Так необходимость регулярных наблюдений за небесными светилами была обусловлена практическими потребностями счета времени. Строгая периодичность, свойственная движению небесных светил, лежит в основе основных единиц счета времени, которые используются до сих пор, - сутки, месяц, год.

Простое созерцание происходящих явлений и их наивное толкование постепенно сменялись попытками научного объяснения причин наблюдаемых явлений. Когда в Древней Греции (VI в. до н. э.) началось бурное развитие философии как науки о природе, астрономические знания стали неотъемлемой частью человеческой культуры. Астрономия - единственная наука, которая получила свою музу-покровительницу - Уранию.

О первоначальной значимости развития астрономических знаний можно судить в связи с практическими потребностями людей. Их можно разделить на несколько групп:

  • cельскохозяйственные потребности (потребность в отсчете времени - сутки, месяцы, годы. Например, в Древнем Египте определяли время посева и уборки урожая по появлению перед восходом солнца из-за края горизонта яркой звезды Сотис - предвестника разлива Нила);
  • потребности в расширении торговли, в том числе морской (мореплавание, поиск торговых путей, навигация. Так, финикийские мореплаватели ориентировались по Полярной звезде, которую греки так и называли - Финикийская звезда);
  • эстетические и познавательные потребности, потребности в целостном мировоззрении (человек стремился объяснить периодичность природных явлений и процессов, возникновение окружающего мира).

Зарождение астрономии в астрологических идеях свойственно мифологическому мировоззрению древних цивилизаций.

Этапы развития астрономии

I-й Античный мир (до н. э). Философия →астрономия → элементы математики (геометрия). Древний Египет, Древняя Ассирия, Древние Майя, Древний Китай, Шумеры, Вавилония, Древняя Греция.

Археологами установлено, что человек владел начальными астрономическими знаниями уже 20 тыс. лет назад в эпоху каменного века.

Представление об астрономических познаниях греков этого периода дают поэмы Гомера и Гесиода: там упоминается ряд звёзд и созвездий, приводятся практические советы по использованию небесных светил для навигации и для определения сезонов года. Космологические представления этого периода целиком заимствовались из мифов: Земля считается плоской, а небосвод - твёрдой чашей, опирающейся на Землю. Главными действующими лицами этого периода являются философы, интуитивно нащупывающие то, что впоследствии будет названо научным методом познания. Одновременно проводятся первые специализированные астрономические наблюдения, развивается теория и практика календаря; в основу астрономии впервые полагается геометрия, вводится ряд абстрактных понятий математической астрономии; делаются попытки отыскать в движении светил физические закономерности. Получили научное объяснение ряд астрономических явлений, доказана шарообразность Земли.

II-ой Дотелескопический период. (наша эра до 1610г). Упадок науки и астрономии. Развал Римской империи, набеги варваров, зарождение христианства. Бурное развитие арабской науки. Возрождение науки в Европе. Современная гелиоцентрическая система строения мира.

Ученые, внесшие значительный вклад в развитие астрономии в данный период: Клавдий ПТОЛЕМЕЙ (Клавдиус Птоломеус)( 87-165, Др. Рим ), БИРУНИ, Абу Рейхан Мухаммед ибн Ахмед аль – Бируни (973-1048, совр. Узбекистан), Мирза Мухаммед ибн Шахрух ибн Тимур (Тарагай) УЛУГБЕК(1394 –1449, совр. Узбекистан), Николай КОПЕРНИК (1473-1543,Польша), Тихо (Тиге) БРАГЕ (1546- 1601, Дания).

III-ий Телескопический до появления спектроскопии (1610-1814гг). Изобретение телескопа и наблюдения с его помощью. Законы движения планет. Открытие планеты Уран. Первые теории образования Солнечной системы.

  • В начале 17 века (Липперсгей, Галилей, 1608 г) был создан оптический телескоп, многократно раздвинувший горизонт познания человечества о мире.
    • определяется параллакс Солнца (1671), что позволило с высокой точностью определить астрономическую единицу и определить скорость света,
    • открываются тонкие движения оси Земли, собственные движения звёзд, законы движения Луны,
    • в 1609- 1618 гг. Кеплер на основе этих наблюдений планеты Марс открыл три закона движения планет,
    • в 1687г. Ньютон опубликовал закон всемирного тяготения, объясняющий причины движения планет.
    • создаётся небесная механика;
    • определяются массы планет;
    • в начале ХIХ века (1.01.1801г.) Пиацци открывает первую малую планету (астероид) Цереру;
    • в 1802 и в 1804 годах были открыты Паллада и Юнона.

    IV-ый Спектроскопия и фотография. (1814-1900гг). Спектроскопические наблюдения. Первые определения расстояния до звезд. Открытие планеты Нептун.

    • В 1806 - 1817 гг И.Фраунтгофер (Германия) создаёт основы спектрального анализа, измеряет длинны волн солнечного спектра и линий поглощения, заложив таким образом основы астрофизики.
    • В 1845 г. И.Физо и Ж.Фуко (Франция) получили первые фотографии Солнца.
    • В 1845 - 1850 гг лорд Росс (Ирландия) открыл спиральную структуру некоторых туманностей
    • в 1846 г. И.Галле (Германия) по вычислениям У.Леверье (Франция) открыл планету Нептун, что явилось триумфом небесной механики
    • Внедрение в астрономию фотографии позволило получить фотоснимки солнечной короны и поверхности Луны, начать исследования спектров звёзд, туманностей, планет.
    • Прогресс в оптике и телескопостроении позволил открыть спутники Марса, описать поверхность Марса по наблюдениям его в противостоянии (Д. Скиапарелли)
    • Повышение точности астрометрических наблюдений позволило измерить годичный параллакс звёзд (Струве, Бессель, 1838г), открыть движение земных полюсов.

    V-ый Современный период (1900-наст.время). Развитие применения в астрономии фотографии и спектроскопических наблюдений. Решение вопроса об источнике энергии звезд. Открытие галактик. Появление и развитие радиоастрономии. Космические исследования.

    Будучи одой из самых древних и увлекательных наук, астрономия позволяет человечеству познать космическое пространство. Ученые-астрономы изучают небесные тела Вселенной, причем не только их настоящее, но и далекое прошлое. А полученные знания дают возможность создать научное представление о будущем окружающего макромира.

    План урока:

    Что такое астрономия

    Астрономия изучает как Вселенную в целом, так и ее объекты по отдельности. Это звезды, кометы, планеты, созвездия, галактики и т.д. Кроме этого ученые-астрономы посвящают свое время изучению черных дыр, туманности, системе небесных координат.

    Связь астрономии с другими науками

    Прослеживается тесная связь астрономи с другими науками. Математика, физика, химия, география, биология, механика, радиоэлектроника – это только часть наук, без которых не обходятся современные ученые-астрономы. Знания, полученные в процессе изучения этих предметов, обязательно облегчат и овладение астрономией как предметом.

    Для осуществления астрономических исследований, расчета координат, траекторий небесных тел, необходимо владеть математическими, географическими знаниями. Знания химии нужны для определения химического состава небесных светил, объяснения химических процессов, происходящих в космическом пространстве. Не обойтись без физики, которая поможет разобраться в физических процессах, которые осуществляются на звездах, а также изучить форму небесных светил. Исследовать значение и происхождение названий созвездий, звезд, планет поможет лингвистика. Научиться пользоваться телескопом, изучить его строение и производить исследования в космосе поможет радиоэлектроника, механика. Как влияет солнечный свет на все живое на планете, объясняет биология. История перенесет нас в далекое прошлое и поможет разобраться в происхождении небесных тел, познакомит с древними астрономами.

    Вселенная и ее масштабы

    Современная наука доказала, что Вселенная имеет свои границы. Ученые измеряют ее размер световыми годами и насчитывают их около 45.7 миллиардов. Если представить, что один световой год равен 10 триллионам километров, то попробуйте представить себе масштабы Вселенной.

    Какие тела заполняют Вселенную

    Вселенную наполняют различные небесные тела. Их еще называют космическими телами Вселенной. Среди них выделяют:

    • астероиды.
    • кометы;
    • метеороиды;
    • звезды;
    • планеты;

    Размеры небесных тел вселенского пространства могут быть как микроскопическими, так и гигантскими. Метеориты, астероиды и кометы относятся к малым телам Вселенной. Ученые продолжают изучать небесные тела и открыли самое большое тело во Вселенной. Им стала звезда UY Scuti. Ее радиус в 1700 раз превышает радиус Солнца.

    Познакомимся поближе с небесными телами и определим их характеристики.

    Астероиды – это глыбы из камня, которые образуют астероидный пояс. Он находится между орбитами Юпитера и Марса. Форма у астероидов неправильная, диаметр тел начинается от 30 метров и может достигать десятки километров. На данный момент ученые открыли более 97 853 768 этих малых космических тел Вселенной. Движение астероидов происходит по орбите вокруг Солнца.

    Кометы – состоят из твердого ядра. Приближаясь к Солнцу, ядро начинает нагреваться и происходит испарение веществ, из которых оно состоит. В результате этого происходит образование газовой оболочки, а потом возникает хвост. По мере удаления от Солнца хвост и оболочка исчезают. Изредка кометы можно наблюдать невооруженным взглядом. Последней кометой, которая за последние 7 лет четко просматривалась на ночном небе, была C/2020 F3 NEOWISE. Это произошло в июле 2020 года. В основном же эти небесные тела ученые изучают с помощью телескопа.

    Метеороиды – твердые небесные тела, размер которых больше атома, но меньше астероида. Они могут быть как первичными объектами, так и представлять собой фрагменты космических объектов, причем не только астероидов. Небесные тела, попавшие в атмосферу, называют метеорами. К ним относят осколки комет или астероидов.

    Часть метеороида, достигшая земной поверхности, принято называть метеоритом. Другими словами, метеорит – это любое тело космического происхождения, упавшее на поверхность другого небесного объекта.

    После падения метеориты оставляют след – кратер. На сегодняшний день крупнейший кратер Уилкса имеет диаметр 500 км.

    Кратер от метеорита

    Планеты – достаточно большие шарообразные объекты, вращающиеся вокруг Солнца по определенной оси и не являющиеся спутником другого космического тела. В Солнечной системе 8 планет:

    • Меркурий;
    • Венера;
    • Земля;
    • Марс;
    • Юпитер;
    • Сатурн;
    • Уран;
    • Нептун.

    Телескопы: наземные и космические

    Специальный прибор, который используют для наблюдения за космическими объектами, называется телескоп. Главная его задача – собрать как можно больше света от небесного тела и увеличить угол зрения, под которым это небесное тело можно изучать. Улавливаемый прибором свет пропорционален его объективу. Следовательно, чем больше объектив у телескопа, тем мельче объекты он может уловить.

    Первый телескоп появился благодаря ученому Галилео Галилею в 1609 году. Принцип его работы практически ничем не отличался от уже имеющихся на то время подзорных труб. Для своего прибора ученый использовал более мощные линзы, которые позволили увеличить изображение в 20 раз. Телескоп помог сделать первые важные открытия в космосе. Сейчас он хранится в одном из музеев Флоренции.

    С помощью наземных телескопов можно наблюдать за Солнцем, планетами, спутниками. Но вот изучить детально звезды не получится. Даже в самый мощный прибор они видны как маленькие мерцающие точки.

    Более детально познакомиться с космосом и Вселенной позволяют космические телескопы, расположившиеся на орбите. Это настоящие гиганты, они помогают даже в изучении истории Вселенной. Первый космический телескоп подняли в воздух в августе 1957 года. На высоте 25 км он сделал съемку Солнца в высоком расширении.

    Современные космические и наземные телескопы оснащены компьютерными программами. Они передают картинку на монитор, что позволяет увидеть изображение в таком виде, в каком оно представлено в действительности, без каких-либо искажений.

    Где находятся самые крупные оптические телескопы

    Как правило, телескопы устанавливают в отдаленных местах от городской суеты. Для этого подходят горные местности, либо бескрайние пустыни. К числу крупнейших телескопов мира относят:

    1. FAST – наибольший наземный телескоп на всем земном шаре. Его диаметр достигает 500 метров. Расположен на территории Китая. Прибор предназначен для изучения всего космоса и поиска инопланетного разума.
    1. Аресибо – одна из крупнейших обсерваторий, на территории которой расположен телескоп диаметром 305 м. Находится в Пуэрто-Рико. С помощью телескопа изучают планеты и Солнце.
    1. Эффельсбергский радиотелескоп – еще один прибор диаметром около 100 м. Находится в западной части Германии.
    1. Радиотелескоп имени Б. Ловелла – прибор был создан в середине ушедшего столетия. Название получил в честь своего создателя. Диаметр телескопа – 76 м.

    Самый крупный телескоп России БТА (Большой Телескоп Альт-Азимутальный) расположен в горах на высоте 2070 м в Карачаево-Черкесии. Диаметр его зеркала составляет 6 метров.

    Всеволновая астрономия

    Первые ученые-астрономы для изучения космического пространства использовали исключительно оптические телескопы. Следовательно, изучить и описать они могли лишь то, что непосредственно улавливал их взор. Сегодня же астрономия достигла значительных высот, ведь ученые могут вести свои наблюдения на различных длинах волн. Новые знания и технологии способствовали выделению совершенно новых дисциплин, таких как гамма-астрономия, радиоастрономия и рентгеновская астрономия.

    Каждый космический объект излучает ряд волн, невидимых для человеческого глаза. Но их можно измерить специальными приборами. Необходимость таких измерений неоценимо важна. Например, гамма- или рентгеновское излучение, которое приходит из космоса на Землю, рассказывает о грандиозных процессах, происходящих в самых глубинках Вселенной. Из-за гигантских расстояний человек не может наглядно изучить все космические объекты. Все знания человечества о космосе базируются на излучении, которое исходит от небесных тел. Так удалось определить расстояние между объектами во Вселенной, их состав, возраст, размер и т.д.

    Как развивалась отечественная космонавтика

    История развития отечественной космонавтики берет свое начало с середины ХХ столетия. В 1946 году основали Опытно-конструкторское бюро №1, его задачей стала разработка спутников, ракет-носителей и баллистических ракет. Спустя 10 лет силами бюро была спроектирована первая ракета-носитель, с помощью которой в космос был запущен первый искусственный спутник планеты Земля.

    После запуска искусственного спутника развитие космонавтики приобрело совершенно другие темпы. Спустя некоторое время в космическое пространство был запущен еще один спутник, но на его борту уже находилось живое существо – собака по имени Лайка.

    Запуски межпланетных станций позволили заняться исследованием Луны, а уже в 1959 году космический аппарат достиг поверхности спутника Земли. В это время Советский Союз получил снимки обратной стороны Луны, что позволило ученым присвоить названия практически всем основным формам рельефа на спутнике.

    Первая фотография обратной стороны Луны

    До 1991 года отечественная космонавтика радовала множеством открытий и достижений:

    Запуск первого искусственного спутника Земли

    4 октября 1957 года стал знаменательным для всей мировой космонавтики. В этот день был осуществлен запуск первого в мире искусственного спутника Земли. Это событие стало началом изучения космического пространства и открыло новые возможности в развитии не только отечественной, но и мировой космонавтики.

    Космодром Байконур, находящийся в Казахстане, стал площадкой для первого запуска первого искусственного спутника Земли. Для этого использовалась ракета-носитель Р-7. Спутник пребывал в космическом пространстве 92 дня, 1440 раз облетел вокруг Земли, что позволило ученым впервые произвести изучение верхних слоев ионосферы. Также была получена достаточно важная информация о работе аппаратуры в космических условиях и произведена проверка расчетов.

    Первый искусственный спутник Земли

    Современная космонавтика и ее достижения

    Огромный прорыв сделала современная космонавтика в своем развитии. Сегодня о космосе говорится как о реальном, а не как о чем-то сказочно далеком. Запуск современного космического корабля, полеты в космическое пространство стали хоть и дорогостоящими, но обычными явлениями в жизни российского государства.

    Не вызывает ни у кого удивления космический туризм, когда за определенную плату можно полетать на космическом корабле. На высоком уровне проходят космические исследования. Современные ученые работают над созданием солнечных электростанций, разрабатывают технологи влияния на климат Земли.

    Приоритетной задачей для России стало дальнейшее развитие отечественной космонавтики, изучение возможностей современной космической отрасли и выведение ее на передовые мировые рубежи.

    Огромные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии.

    Сведения о том, что происходит за пределами Земли в космическом пространстве, учёные получают главным образом на основе приходящего от этих объектов света и других видов излучения. Наблюдения — основной источник информации в астрономии. Эта первая особенность астрономии отличает её от других естественных наук (например, физики или химии), где значительную роль играют опыты, эксперименты. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идёт о проведении экспериментальных исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звёздой или галактикой.

    Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать происходящие изменения невозможно. Когда изменения происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звёзд. Основные сведения об эволюции звёзд получены именно таким способом. Более подробно об этом будет рассказано далее.

    Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью различить, какое из них находится ближе, а какое дальше от нас. На первый взгляд все наблюдаемые светила кажутся нам одинаково далёкими.

    Люди в древности считали, что все звёзды располагаются на небесной сфере, которая как единое целое вращается вокруг Земли. Уже более 2000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что этой сферы реально не существует.

    Построим небесную сферу и проведём из её центра луч по направлению к звезде A (рис. 1.1). Там, где этот луч пересечёт поверхность сферы, поместим точку A1, изображающую эту звезду. Звезда B будет изображаться точкой B1. Повторив подобную операцию для всех наблюдаемых звёзд, мы получим на поверхности сферы изображение звёздного неба — звёздный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направление на сами звёзды и на их изображения на сфере будет совпадать. Расстояния между звёздами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующими им дугами на поверхности сферы.

    Для приближённой оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звёздами ковша Большой Медведицы (a и b) составляет около 5° (рис. 1.2), а от a Большой Медведицы до a Малой Медведицы (Полярной звезды) — в 5 раз больше — примерно 25°. Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.



    Рис. 1.2. Оценка угловых расстояний на небе

    Рис. 1.1. Небесная сфера

    Только два светила — Солнце и Луну — мы видим как диски. Угловые диаметры этих дисков почти одинаковы — около 30ʹ, или 0,5°. Угловые размеры планет и звёзд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооружённого глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2—3ʹ. Это означает, в частности, что наш глаз различает каждую по отдельности светящуюся точку (звезду) в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

    О том, как на основании угловых измерений определяют расстояния до небесных тел и их линейные размеры, будет рассказано далее.

    Рис. 1.3. Система горизонтальных координат


    Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координатазимут и высота. Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления. Первое из них определяется с помощью отвеса и изображается на чертеже (рис. 1.3) отвесной линией ZZ ʹ, проходящей через центр сферы (точку O). Точка Z, расположенная прямо над головой наблюдателя, называется зенитом. Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность — истинный, или математический, горизонт. Высота светила отсчитывается по окружности, проходящей через зенит и светило M, и выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h. Высота светила, которое находится в зените, равна 90°, на горизонте — 0°. Положение светила относительно сторон горизонта указывает его вторая координата — азимут, обозначаемый буквой A. Азимут отсчитывается от точки юга в направлении движения часовой стрелки, так что азимут точки юга равен 0°, точки запада — 90° и т. д.

    Горизонтальные координаты указывают положение светила на небе в данный момент и вследствие вращения Земли непрерывно меняются. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами — теодолитами.

    Телескопы

    Основным прибором, который используется в астрономии для наблюдения небесных тел, приёма и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele — далеко и skopéо — смотрю.

    Рис. 1.4. Соб ирание света объективом телескопа


    Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

    Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра) (рис. 1.4). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм. Объектив телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. Это позволяет с помощью телескопа обнаружить звёзды и другие объекты, которые в 100 млн раз слабее объектов, видимых невооружённым глазом.

    Чем меньше размер изображения светящейся точки (звезды), которое даёт объектив телескопа, тем лучше его разрешающая способность. Если расстояние между изображениями двух звёзд меньше размера самого изображения, то они сливаются в одно. Вследствие дифракции изображение звёзды будет не точкой, а ярким пятном — дифракционным диском, угловой диаметр которого равен


    Рис. 1.5. Менисковый телескоп


    Рис. 1.6. Построение изображения в телескопе

    где l — длина световой волны, а D — диаметр объектива телескопа, 206 265 — число секунд в радиане. У школьного телескопа, диаметр объектива которого составляет 60 мм, теоретическая разрешающая способность будет равна примерно 2ʺ. Напомним, что это превышает разрешающую способность невооружённого глаза (2ʹ) в 60 раз. Реальная разрешающая способность телескопа будет меньше, поскольку на качество изображения существенно влияет состояние атмосферы, движение воздуха.

    Если в качестве объектива телескопа используется линза, то он называется рефрактор (от лат. refracto — преломляю), а если вогнутое зеркало, — то рефлектор (reflecto — отражаю).

    Помимо рефракторов и рефлекторов в настоящее время используются различные типы зеркально-линзовых телескопов, один из которых — менисковый — представлен на рисунке 1.5.

    У небольших телескопов объективом, как правило, служит двояковыпуклая собирающая линза. Как известно, если предмет находится дальше двойного фокусного расстояния, она даёт уменьшенное, перевёрнутое и действительное его изображение. Это изображение располагается между точками фокуса и двойного фокуса линзы. Расстояния до Луны, планет, а тем более звёзд так велики, что лучи, приходящие от них, можно считать параллельными. Следовательно, изображение объекта будет располагаться в фокальной плоскости.

    Построим изображение Луны, которое даёт объектив 1 с фокусным расстоянием F (рис. 1.6). Из рисунка видно, что угловых размеров наблюдаемого объекта — угол a — объектив не изменяет. Воспользуемся теперь ещё одной линзой — окуляром 2, поместив её от изображения Луны (точка F1) на расстоянии, равном фокусному расстоянию этой линзы — f. Фокусное расстояние окуляра должно быть меньше, чем фокусное расстояние объектива. Построив изображение, которое даёт окуляр, мы убедимся, что он увеличивает угловые размеры Луны: угол b заметно больше угла a.

    Если изображение, даваемое объективом, находится вблизи фокальной плоскости окуляра, увеличение, которое обеспечивает телескоп, равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра:

    Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звёзды из-за их колоссальной удалённости всё равно видны в телескоп как светящиеся точки.

    Имея сменные окуляры, можно с одним и тем же объективом получать различное увеличение. Поэтому возможности телескопа в астрономии принято характеризовать не увеличением, а диаметром его объектива. В астрономии, как правило, используют увеличения менее 500 раз. Применять бо́льшие увеличения мешает атмосфера Земли. Движение воздуха, незаметное невооружённым глазом (или при малых увеличениях), приводит к тому, что мелкие детали изображения становятся нерезкими, размытыми. Поэтому астрономические обсерватории, на которых используются крупные телескопы, размещаются в районах с хорошим астроклиматом: большим количеством ясных дней и ночей, с высокой прозрачностью и стабильностью атмосферы, на высоте нескольких километров над уровнем моря.

    Современный телескоп представляет собой сложное устройство, которое имеет предельно точную оптику огромных размеров, наилучшие из существующих приёмники излучения и обширный комплекс научной и обслуживающей аппаратуры. Все наиболее крупные современные телескопы — это телескопы-рефлекторы.

    Крупнейший в России телескоп-рефлектор (рис. 1.7), который имеет зеркало диаметром 6 м, отшлифованное с точностью до долей микрометра. Фокусное расстояние зеркала 24 м. Его масса около 40 т. Масса всей установки телескопа более 850 т, а высота 42 м. Управление телескопом осуществляется с помощью компьютера, который позволяет точно навести телескоп на изучаемый объект и длительное время удерживать его в поле зрения, плавно поворачивая телескоп вслед за вращением Земли. Телескоп входит в состав Специальной астрофизической обсерватории Российской академии наук и установлен на Северном Кавказе (близ станицы Зеленчукская в Кабардино-Балкарии) на высоте 2100 м над уровнем моря.

    Рис. 1.7. Шестиметровый телескоп-рефлектор


    Рис. 1.8. Радиотелескоп


    Астрономы уже давно не ведут визуальных наблюдений. На смену им в XIX в. пришла фотография, а в настоящее время её во многих случаях заменяют электронные приёмники света. Наибольшее распространение получили полупроводниковые приборы с зарядовой связью, сокращённо ПЗС. Матрицы ПЗС, которые применяются в современных цифровых фотоаппаратах, по своему устройству аналогичны тем, которые используются в астрономии. Важнейшим качеством ПЗС, в которых используется внутренний фотоэффект, является их высокая чувствительность. Они регистрируют практически каждый попавший на них фотон. Не менее важно и то, что запись полученных при этом изображений ведётся с помощью компьютера. Такая запись удобна для проведения различных исследований и передачи другим учёным. Некоторые телескопы используются для того, чтобы полученное изображение через компьютер передавать непосредственно пользователям Интернета. Это позволяет участвовать в наблюдениях за космическими объектами многим людям, которые интересуются астрономией, в том числе школьникам.

    В настоящее время астрономию называют всеволновой, поскольку наблюдения за объектами ведутся не только в оптическом диапазоне. Для этой цели используются различные приборы, каждый из которых способен принимать излучение в определённом диапазоне электромагнитных волн: инфракрасное, ультрафиолетовое, рентгеновское, гамма- и радиоизлучение.

    Только радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Остальные виды излучения сквозь земную атмосферу практически не проникают, она их рассеивает и поглощает. Поэтому телескопы для проведения исследований Вселенной в этих диапазонах длин волн устанавливаются на искусственных спутниках, орбитальных станциях и других космических аппаратах.

    Для приёма радиоизлучения различных космических объектов используются радиотелескопы. Основные элементы устройства радиотелескопа — это антенна, приёмник и приборы для регистрации сигнала. У большинства радиотелескопов антенны, которые достигают в диаметре 100 м, по форме такие же, как вогнутые зеркала телескопа-рефлектора (рис. 1.8), но собирающие не свет, а радиоволны. Ведь чем больше площадь антенны, тем более слабый источник радиоизлучения можно зарегистрировать.

    Антенна преобразует принятые ею электромагнитные волны в электрические сигналы, которые затем передаются к высокочувствительному приёмнику. В современных радиотелескопах для регистрации сигналов используется компьютер, который сначала запоминает их в цифровой форме, а затем представляет полученные результаты в наглядном виде.

    Существенно возрастают возможности радиотелескопов, если их антенны объединить в систему и использовать для изучения одного и того же объекта. Например, система, которая состоит из 27 антенн диаметром 25 м каждая, расположенных в определённом порядке, позволяет достичь углового разрешения 0,04ʺ. Это соответствует возможностям радиотелескопа с антенной диаметром 35 км.

    Вопросы 1. В чём состоят особенности астрономии? 2. Какие координаты светил называются горизонтальными? 3. Опишите, как координаты Солнца будут меняться в процессе его движения над горизонтом в течение суток. 4. По своему линейному размеру диаметр Солнца больше диаметра Луны примерно в 400 раз. Почему их угловые диаметры почти равны? 5. Для чего используется телескоп? 6. Что считается главной характеристикой телескопа? 7. Почему при наблюдениях в телескоп светила уходят из поля зрения?

    Упражнение 1 1. Каково увеличение телескопа, если в качестве его объектива используется линза, оптическая сила которой 0,4 дптр, а в качестве окуляра линза с оптической силой 10 дптр? 2. Во сколько раз больше света, чем телескоп-рефрактор (диаметр объектива 60 мм), собирает крупнейший российский телескоп-рефлектор (диаметр зеркала 6 м)?

    Задание 2 Подберите линзы, необходимые для изготовления простейшего телескопа-рефрактора. Измерив оптическую силу объектива и окуляра, определите, какое увеличение может обеспечить такой телескоп.

    Читайте также: