Сущность спектрального анализа кратко

Обновлено: 07.07.2024

СПЕКТРА́ЛЬНЫЙ АНА́ЛИЗ, по­лу­че­ние ин­фор­ма­ции об эле­мент­ном или мо­ле­ку­ляр­ном со­ста­ве ве­ще­ст­ва на ос­но­ве ин­тер­пре­та­ции его спек­тров из­лу­че­ния, по­гло­ще­ния или ком­би­на­ци­он­но­го рас­сея­ния. С. а. по­зво­ля­ет оп­ре­де­лять как осн. ком­по­нен­ты ве­ще­ст­ва, так и при­ме­си с кон­цен­тра­ция­ми до 10 –8 –10 –9 %. На­ча­ло С. а. бы­ло по­ло­же­но в 19 в.: в 1814 Й. Фра­ун­го­фер ис­сле­до­вал ли­нии по­гло­ще­ния в спек­тре Солн­ца, в 1859 Г. Кирх­гоф и Р. Бун­зен от­кры­ли ин­ди­ви­ду­аль­ные спек­тры ис­пус­ка­ния разл. хи­мич. эле­мен­тов. С. а. по­лу­чил ши­ро­кое рас­про­стра­не­ние в ме­тал­лур­гии, гео­ло­гии, ме­ди­ци­не, био­ло­гии и др. об­лас­тях, стал не­отъ­ем­ле­мой ча­стью мн. слож­ных тех­но­ло­гич. про­цес­сов.

Сущность спектрального анализа. Методы молекулярной спектроскопии, методы фотометрирования спектров. Схемы построения спектрофотометров. Основное назначение спектрофотометров в полиграфической отрасли. Гетеродинная схема приема светового излучения.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.04.2014
Размер файла 73,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство сельского хозяйства Российской Федерации

Федеральное государственное образовательное учреждение высшего профессионального образования

Российский государственный аграрный университет - МСХА имени К.А. Тимирязева

на тему: Спектральный анализ

Спектральный анализ -- совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и другие.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа.

Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

Под названием спектральный анализ мы понимаем физический метод анализа химического состава вещества, основанный на исследовании спектров испускания и поглощения атомов или молекул. Эти спектры определяются свойствами электронных оболочек атомов и молекул, колебаниями атомных ядер в молекулах и вращением молекул, а также воздействием массы и структуры атомных ядер на положение энергетических уровней; кроме того они зависят от взаимодействия атомов и молекул с окружающей средой. В соответствии с этим спектральный анализ использует широкий интервал длин волн -- от рентгеновых до микрорадиоволн. В спектральный анализ не входят масспектроскопические методы анализа, как не относящиеся к области использования электромагнитных колебаний.

Задача ограничивается пределами оптических спектров. Однако и эта область достаточно широка, она охватывает вакуумную область ультрафиолетовых излучений, ультрафиолетовую, видимую и инфракрасную области спектра. В практике современный спектральный анализ использует излучения с длиной волны примерно от 0,15 до 40--50нм.

Различные типы спектрального анализа следует рассматривать с трех точек зрения.

1. По решаемым задачам:

элементный, когда устанавливается состав пробы по элементам;

изотопный, когда устанавливается состав пробы по изотопам;

молекулярный, когда устанавливается молекулярный состав пробы;

структурный, когда устанавливаются все; или основные структурные составляющие молекулярного соединения.

2. По применяемым методам:

эмиссионный, использующий спектры излучения, главным образом атомов. Однако возможен эмиссионный анализ и молекулярного состава, например в случае определения состава радикалов в пламенях и газовом разряде. Особым случаем эмиссионного анализа является люминесцентный анализ;

абсорбционный, использующий спектры поглощения, главным образом молекул и их структурных частей; возможен анализ по спектрам поглощения атомов;

комбинационный, использующий спектры комбинационного рассеяния твердых, жидких и газообразных проб, возбуждаемые монохроматическим излучением, обычно -- светом отдельных линий ртутной лампы;

люминесцентный, использующий спектры люминесценции вещества, возбуждаемые главным образом ультрафиолетовым излучением или катодными лучами;

рентгеновский, использующий а) рентгеновские спектры атомов, получающиеся при переходах внутренних электронов в атомах, б) дифракцию рентгеновых лучей при прохождении их через исследуемый объект для изучения структуры вещества;

радиоспектроскопический, использующий спектры поглощения молекул в микроволновом участке спектра с длинами волн больше 1 мм.

3.По характеру получаемых результатов:

1) качественный, когда в результате анализа определяется состав без указания на количественное соотношение компонентов или дается оценка -- много, мало, очень мало, следы;

2) полуколичественный, или грубо количественный, или приближенный. В этом случае результат выдается в виде оценки содержания компонентов в некоторых более или менее узких интервалах концентраций в зависимости от применяемого метода приближенной количественной оценки. Этот метод благодаря его быстроте нашел широкое применение при решении задач, нетребующих точного количественного определения, например при сортировке металла, при оценке содержания геологических проб при поисках полезных ископаемых;

3) количественный, при котором выдается точное количественное содержание определяемых элементов или соединений в пробе.

Все эти типы анализа, за исключением качественных, используют упрощенные или точные методы фотометрирования спектров.

По способу регистрации спектров различаются следующие методы:

1. Визуальные при наблюдении спектров в видимой области с помощью простых или специализированных спектроскопов (стилоскоп, стилометр). В ультрафиолетовой области .возможно наблюдение сравнительно ярких спектров с помощью флуоресцирующих экранов, располагаемых вместо фотографической пластинки в кварцевых спектрографах. Применение электронно-оптических преобразователей позволяет визуально наблюдать спектры в ультрафиолетовой и ближней инфракрасной областях (до 12000А).

2. Фотографические, использующие фотографическую пластинку или пленку для регистрации спектров с последующей обработкой.

4. Термоэлектрические для инфракрасной области, в том числе далекой, с использованием термоэлементов, болометров и других типов термоэлектрических приемников.

Рассмотренные выше типы спектрального анализа имеют ряд общих черт, поскольку все они используют спектры атомов или молекул как средство для проведения анализа. Действительно, во всех случаях необходимо в первую очередь получить спектр пробы, затем расшифровать этот спектр по таблицам или атласам спектров, т. е. найти в этом спектре линии или полосы, характерные для определяемых атомов, молекул или структурных элементов молекул. Этим ограничивается качественный анализ. Для получения количественной величины концентрации надо, кроме того, определить интенсивность этих характерных линий или полос (фотометрировать спектр), затем определить величину концентрации, используя зависимость между концентрацией и интенсивностью линий или полос. Зависимость эта "должна быть получена либо на основании теоретических соображений, либо эмпирическим путем в виде аналитической кривой, построенной на основе набора проб с заданными концентрациями (эталоны).

Применение абсорбционной спектроскопии основано на след. законах.

Закон Бугера-Ламберта: если среда однородна и слой в-ва перпендикулярен падающему параллельному световому потоку, то I = I0 exp (-- kd), где I0 и I-интенсивности соотв. падающего и прошедшего через в-во света, d-толщина слоя, k-коэф. поглощения, к-рый не зависит от толщины поглощающего слоя и интенсивности падающего излучения. Для характеристики поглощат. способности широко используют коэф. экстинкции, или светопоглощения; k' = k/2,303 (в см-1) и оптич. плотность А = lg I0/I, а также величину пропускания Т= I/I0. Отклонения от закона известны только для световых потоков чрезвычайно большой интенсивности (для лазерного излучения). Коэф. k зависит от длины волны падающего света, т.к. его величина определяется электронной конфигурацией молекул и атомов и вероятностями переходов между их электронными уровнями. Совокупность переходов создает спектр поглощения (абсорбции), характерный для данного в-ва.

Закон Бера: каждая молекула или атом независимо от относит. расположения др. молекул или атомовпоглощает одну и ту же долю энергии излучения, т.е., где с-концентрация в-ва. Если с выражена вмоль/л, наз. молярным коэф. поглощения. Отклонения от этого закона свидетельствуют об образовании димеров, полимеров, ассоциатов, о хим. взаимодействии поглощающих частиц.

Объединенный закон Бугера-Ламберта-Бера:

Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием в-ва. Спектр разреженных атомарных газов - ряд узких дискретных линий, положение к-рых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов - полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетич. уровнями молекул. Спектр в-ва в конденсиров. фазе определяется не только природой составляющих его молекул, но и межмол. взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос разл. интенсивности. Иногда в нем проявляется структура колебат. уровней (особенно укристаллов при охлаждении). Прозрачные среды, напр. вода, кварц, не имеют в спектре полос поглощения, а обладают лишь границей поглощения.

По спектрам поглощения проводят качеств. и количеств. анализ в-в Абсорбционная спектроскопия широко применяют для изучения строения в-ва. Она особенно эффективна при исследовании процессов в жидких средах; по изменениям положения, интенсивности и формы полос поглощения судят об изменениях состава и строения поглощающих свет частиц без их выделения из р-ров.

Для наблюдения за процессами, происходящими в течение короткого промежутка времени (от неск. с до ~ 10 -12 с), широко применяют методы кинетич. спектроскопии. Они основаны на регистрации (с помощью фотопластинок или фотоэлектрич. приемников) спектров поглощения или испускания исследуемой системы после кратковременного воздействия на нее, напр. быстрого смешения с реагентами или возбуждения внеш. источником энергии - светом, потоком электронов, электрич. полем и т.п. Спектром сравнения служит спектр "невозбужденной" системы. Методы кинетич. спектроскопии используют для изучения механизма р-ций (в частности, для установления состава промежут. продуктов), количеств. определения скоростей р-ций.

Методы молекулярной спектроскопии

Аналитическая абсорбционная молекулярная спектроскопия (спектрофотометрия) в УФ и видимой области спектра.

Объединенный закон Бугера-Ламберта-Бера:

Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием в-ва. Спектр разреженных атомарных газов - ряд узких дискретных линий, положение к-рых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов - полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетич. уровнями молекул. Спектр в-ва в конденсиров. фазе определяется не только природой составляющих его молекул, но и межмол. взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос разл. интенсивности. Иногда в нем проявляется структура колебат. уровней (особенно у кристаллов при охлаждении). Прозрачные среды, напр. вода, кварц, не имеют в спектре полос поглощения, а обладают лишь границей поглощения.

Для наблюдения за процессами, происходящими в течение короткого промежутка времени (от неск. с до ~ 10 -12 с), широко применяют методы кинетич. спектроскопии. Они основаны на регистрации (с помощью фотопластинок или фотоэлектрич. приемников) спектров поглощения или испускания исследуемой системы после кратковременного воздействия на нее, напр. быстрого смешения с реагентами или возбуждения внеш. источником энергии - светом, потоком электронов, электрич. полем и т. п. Спектром сравнения служит спектр "невозбужденной" системы. Методы кинетич. спектроскопии используют для изучения механизма р-ций (в частности, для установления состава промежут. продуктов), количеств. определения скоростей р-ций.

Отклонения от закон Бера:

1.истинные - выполняется для слабых растворов

2.физические -связаны с немонохроматичностью

3.химические - полимеризация, диссоциация молекул

4.ошибки анализа идут при оптической плотности не в интервале от 0,1 до 0,6.

Спектральный анализ -- совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

Применяется в колориметрии и спектральном анализе.

Спектрофотометры могут работать в различных диапазонах длин волн -- от ультрафиолетового до инфракрасного. В зависимости от этого приборы имеют разное назначение.

Молекулярная абсорбция в видимом и УФ свете является самой распространённой. Используется спектр поглощения, он интегральный развернутый.

Основное назначение спектрофотометров в полиграфической отрасли -- проведение точной линеаризации и калибровки процессов печати. Спектрофотометры компаний [Электрокомплект] и других производителей предоставляют возможность проведения точечных и автоматизированных измерений для создания высококачественных ICC-профилей.На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

спектроскопия молекулярная спектрофотометр

Измеряемый образец освещается белым светом. Монохроматор расположен в исходящем потоке. Для улучшения характеристик и точности измерений в современных спектрофотометрах также используются двойные монохроматоры

Измеряемый образец освещается монохроматическим светом.

Есть две схемы построения спектрофотометров: спектрофотометр в виде клиновидной пластинки и с применением гетеродинной схемы приема светового излучения.

В виде клиновидной пластинки

Спектрофотометр в виде клиновидной пластинки

Спектрофотометр (рис.1) выполнен в виде клиновидной пластинки, на одну из поверхностей которой нанесен тонкий, частично пропускающий слой, а на другую поверхность нанесено отражающее покрытие, частично пропускающее световое излучение.

Принцип работы спектрофотометра основан на регистрации интерференционных полос стоячей световой волны путём проецирования изображения системы интерференционных полос на фоточувствительные линейки. При этом метод обработки сигнала отличается от традиционной Фурье-спектроскопии лишь тем, что преобразованию подвергаются сигналы не временной, а пространственной частоты. Спектрофотометр обладает высокой помехоустойчивостью к некогерентному световому излучению.

Гетеродинная схема приема светового излучения.

Для этого спектрофотометр снабжают вторым лазером с частотой излучения, отличающегося от первого на частоту светового биения (рис.2). При этом от излучения второго лазера образуются интерференционные полосы практически с тем же периодом d, а на тонком слое, как на смесителе, возникают световые биения. Полученные электрические сигналы регистрируют и подвергают двухмерному преобразованию Фурье.

В полиграфии могут использоваться следующие светофильтры:

POL -- поляризационный фильтр. Используется для получения предположительного спектра после закрепления краски.

D65 -- применяется для имитации источника излучения D65.

UV-cut применяется при измерении оптических плотностей бумаг, в которых используются флюоресцентные оптические отбеливатели.

No -- обозначение отсутствия светофильтра. Обычно используется прозрачное стекло, защищающее спекрофотометр от пыли.

Основными источниками излучения являются:

А (свет лампы накаливания, 2856 К);

С (непрямой солнечный свет, 6774 К);

D (дневной свет, 5000 К);

D65 (дневной свет, 6500 К);

F11 (флуоресцентное излучение узкого диапазона отвечающее трубке Philips TL84) и т. п.

Цветности теория, теория о связи цвета химических соединений с их строением. Ощущение цвета возникает при воздействии на зрительный нерв электромагнитных излучений с энергией в пределах от 2,5Ч10 -12 до 5Ч10 -12 эрг (длины волн от 400 до 760 нм). При этом совместное действие электромагнитных излучений во всём указанном интервале (называется видимой частью спектра) вызывает ощущение белого света, а раздельное действие узких пучков излучений или совокупности излучений, оставшихся после изъятия (поглощения) некоторых из них,-- окрашенного (см. табл.).

Сущность спектрального анализа заключается в следующем. К очищенному от грязи, краски и окалины участку испытуемого изделия размером 20 X 20 мм приближают электрод с таким расчетом, чтобы между изделием и электродом возникла электрическая дуга. Химические элементы исследуемой стали испаряются под действием высокой температуры электрической дуги. Свечение паров различных элементов ( хрома, молибдена и др.) дает спектральные линии различного цвета. По цвету, видимому в оптический прибор, судят о наличии того или другого легирующего элемента в проверяемой стали. [1]

Сущность спектрального анализа заключается в следующем. К очищенному от грязи, краски и окалины участку испытуемого изделия размером 20X20 мм приближают электрод с таким расчетом, чтобы между изделием и электродом возникла электрическая дуга. Химические элементы исследуемой стали испаряются под действием высокой температуры электрической дуги. Свечение паров этих элементов просматривают в оптический прибор стило-скопа. Свечение паров различных элементов ( хрома, молибдена и др.) дает спектральные линии различного цвета. По цвету, видимому в оптический прибор, судят о наличии того или другого легирующего элемента в проверяемой стали. [2]

Сущность спектрального анализа состоит в том, что каждый элемент в раскаленном парообразном состоянии испускает определенные лучи света, отличные от лучей света всех остальных элементов. Точнее эту мысль нужно сформулировать так: каждый элемент в раскаленном парообразном состоянии испускает световые колебания определенной длины волны. Когда мы возбудим дугу между анализируемой деталью и угольным электродом и часть металла под дугой превратится в пар, то все элементы металла детали начнут испускать световые лучи разной длины волны. [3]

Сущность спектрального анализа состоит в следующем. [4]

Сущность спектрального анализа заключается в возбуждении между электродом прибора ( стилоскопа) и испытываемым объектом электрической дуги или искры, получении свечения паров металла и рассмотрении спектра возникающего свечения. [5]

Спектральный анализ производится стшюскопом, который состоит из генератора дуги переменного тока и оптического прибора. Сущность спектрального анализа заключается в следующем: к испытуемому изделию приближается электрод от генератора и между изделием и электродом возбуждается электрическая дуга. [6]

Наличие легирующих элементов в стали, из которой наготовлены трубы, змеевики пароперегревателей и другие части энергетического оборудования, можно определить методом спектрального анализа с помощью стилоекола. Сущность спектрального анализа заключается в возбуждении между электродом прибора и испытываемым объектом электрической дуги или искры, получении свечения паров металла и рассмотрении спектра возникающего свечения. [7]

Такое применение обусловливается как простотой метода, так и его универсальностью. Сущность спектрального анализа основана на первичном Фурье-преобразовании входящего сигнала. [8]

Статистический анализ современного состояния служб вибродиагао-стики в промышленности показал, что большинство приборов и систем, применяемых службами, основано на спектральном анализе входящего сигнала. Такое применение обуславливается как простотой метода, так и его универсальностью. Сущность спектрального анализа основана на первичном фурье-преобразовании входящего сигнала. [9]

Для извлечения полезной информации из вибросигнала используются различные способы, которые позволяют сформировать характерные диагностические признаки зарождающихся дефектов даже в тех случаях, когда спектр мощности сигнала практически не меняется. Но, несмотря на то, что различных методов по обработке сигналов достаточно много, статистический анализ современного состояния служб вибродиагностики в промышленности показал, что большинство приборов и систем, применяемых службами, основано на спектральном анализе входящего сигнала. Такое применение обусловливается как простотой метода, так и его универсальностью. Сущность спектрального анализа основана на первичном Фурье-преобразовании входящего сигнала. [10]

Спектр излучения света

Природа спектрального анализа

Спектральный анализ ( спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Спектральный анализ реликтового микроволнового излучения

Спектральный анализ реликтового микроволнового излучения

Видимый свет представляет собой электромагнитное излучение с длиной волны от 3,8*10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней энергии) при наличии постоянного источника энергии.

Спектры излучения

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, — для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

Спектральный анализ

Спектры испускания и поглощения: натрий, водород и гелий

Спектры испускания и поглощения: натрий, водород и гелий

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопии Солнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Читайте также: