Почему мутации проявляются редко кратко

Обновлено: 02.07.2024

Мутация или мутационная изменчивость — это явление, которое подразумевает устойчивое изменение генетического аппарата: оно возникает внезапно и меняет определенные наследственные черты организма.

Известно, что мутации способны возникать в любой из периодов жизни организма, затрагивать не только половые, но и соматические клетки организма. При этом мутации, которые возникают в половых клетках, обязательно передаются по наследству.

Г. де Фриз высказал следующие положения:

  • возникновение мутаций носит внезапный характер;
  • мутационные изменения являются устойчивыми и способны передаваться по наследству;
  • мутации не являются направленными и не носят приспособительный характер. Поэтому они могут быть вредными, нейтральными или полезными для организма;
  • одни и те же мутации возникают неоднократно;
  • мутации являются универсальными свойствами любого живого организма.

Виды мутационной изменчивости

Мутации возникают в любых клетках организма, в результате чего происходят различные изменения в генетическом аппарате и фенотипе. Все мутации делятся на 2 группы: соматические и генеративные мутации.

Соматические мутации — это мутации, возникающие в неполовых или соматических клетках организма.

У них есть способность передаваться по наследству, но только в случае неполового или вегетативного размножения.

Генеративные мутации — это мутации, возникающие в половых клетках (гаметах) и наследуются в ходе полового размножения.

Есть еще одно деление мутаций — оно основано на влиянии мутаций на организм. В этом случае выделяют:

  1. Летальные мутации. Как видно из названия, в результате таких мутаций происходит гибель организма.
  2. Сублетальные мутации. Они снижают жизнеспособность организма, а в некоторых случаях могут стать причиной его гибели.
  3. Нейтральные мутации. В конкретных условиях среды не способны оказывать влияния на жизнеспособность организмов.

Также стоит остановиться на полезных мутациях. В данных условиях они приводят к появлению признаков, благодаря которым организм получает определенные преимущества (в первую очередь это касается выживания).

Однако стоит отметить, что полезные мутации возникают не так уж и часто. Это связано с тем, что мутационный процесс — явление ненаправленное и хаотичное.

Виды генеративных мутаций

В основе деления мутаций также лежит степень изменения наследственного аппарата. Здесь выделяют генные, хромосомные и геномные мутации.

Генные мутации представляют собой мутационные процессы, приводящие к изменению структуры ДНК в участке, соответствующем определенному гену.

Эти мутации также называются точечными. В случае такой мутации есть вероятность того, что одно азотистое основание заменится на другое, а это, в свою очередь, приведет к замене аминокислот при синтезе белка.

Хромосомные мутации или хромосомные перестройки — это процессы, приводящие к изменениям в строении хромосом.

Еще одно название таких мутаций — перестройки или аберрации. Есть несколько типов аберраций:

  • нехватка. Это случаи, когда хромосома теряет концевой участок;
  • деление. Под ним понимают потерю участка в средней части хромосомы;
  • дупликация. Случай, когда участок повторяется несколько раз;
  • инверсия. При ней участок хромосомы переставляется на 180 градусов;
  • транслокация. Здесь происходит обмен участками между негомологическими хромосомами;
  • фрагментация. Это распад хромосом на части.

Геномные мутации — это такие мутации, в результате которых происходит изменение набора хромосом.

Такие мутации случаются, когда в ходе деления хромосомы не расходятся к полюсам, а остаются в том же ядре.

Когда происходит кратное увеличение набора хромосом, речь идет о полиплоидии.

Причины мутаций

Довольно долго ученые не могли разгадать и понять причины мутаций. Все изменилось в 1927 году, когда один из сотрудников Т. Х. Моргана — Г. Меллер доказал, что мутации можно вызвать искусственным путем. Таким образом он получил мутации у дрозофил — в результате воздействия на них рентгеновских лучей.

Позже ученые установили факторы, способствующие появлению мутаций. Эти факторы получили название мутагенных. Условно их можно разделить на физические, к которым относят температуру и ионизирующее излучение, химические (химические вещества) и биологические, составляющие вирусы.

Происхождение мутаций: геномные, хромосомные, генные мутации

Геномные мутации. Нерасхождение пары хромосом в ходе мейоза вызывает геномные мутации, например трисомию 21 (синдром Дауна). Геномные мутации приводят к хромосомным анеуплоидиям и бывают наиболее частыми мутациями у человека, с частотой 1 случай нерасхождения на 25-50 мейотических делений клетки.

Это минимальная оценка, поскольку последствия большинства таких мутаций настолько серьезны, что анеуплоидные эмбрионы спонтанно прерываются вскоре после зачатия. Геномные мутации также часто выявляют в клетках опухолей.

Хромосомные мутации

Хромосомные мутации, происходящие с частотой приблизительно одна перестройка на 1700 клеточных делений, случаются значительно реже геномных мутаций. Хотя частоты геномных и хромосомных мутаций могут казаться высокими, эти мутации редко передаются от одного поколения следующему, поскольку они обычно несовместимы с жизнью или нормальной репродукцией. Хромосомные мутации также часто обнаруживают в клетках опухолей.

Генные мутации

Генные мутации, включая замены пар оснований, вставки и делеции, возникают по одному из двух основных механизмов: ошибок в нормальном процессе репликации ДНК или вследствие нарушения репарации ДНК после повреждения. Некоторые мутации происходят спонтанно, другие вызываются физическими или химическими агентами, названными мутагенами, поскольку они существенно повышают частоту мутаций.

происхождение мутаций

Ошибки репликации ДНК. Большинство ошибок репликации быстро удаляются из ДНК и корректируются комплексом ферментов репарации ДНК, сначала опознающим, какая из нитей вновь синтезированной двойной спирали содержит неправильное основание, а затем заменяющим его соответствующим комплементарным основанием.

Репарация ДНК должна быть в высшей степени точным процессом; в противном случае число мутаций в организме было бы недопустимым, и наш вид перестал бы существовать. Фермент ДНК-полимераза точно дублирует двойную спираль благодаря строгому правилу комбинации пар оснований (А с Т, С с G) и молекулярной корректировке.

Всего один неправильный нуклеотид попадает в одну из растущих дочерних нитей на 10 миллионов пар оснований (и это при перемещении вдоль хромосомы человека со скоростью около 50 пар оснований в секунду!). Дополнительная проверка ошибок затем корректирует более 99,9% ошибок репликации ДНК. Таким образом, общий показатель мутаций в результате ошибок репликации имеет в высшей степени низкий уровень 10-10 на пару оснований за одно деление клетки.

Поскольку человеческий диплоидный геном содержит приблизительно 6х109 пары оснований ДНК, репликация ошибок приводит менее чем к одной новой мутации пар оснований на деление клетки.

Репарация повреждений ДНК

Считают, что кроме ошибок репликации, от 10 000 до 1 000 000 нуклеотидов на клетку в день повреждаются спонтанными химическими процессами, такими как, например, деметилирование или деаминирование, реакциями с химическими мутагенами (природными или иными) среды и влиянием ультрафиолетового или ионизирующего излучения.

Некоторые, но не все из этих дефектов могут быть исправлены. Даже если повреждение обнаружено и удалено, система репарации может неточно прочитать комплементарную нить и, как следствие, создать мутацию, вводя неправильные основания. Таким образом, в отличие от изменений ДНК, связанных с репликацией, которые обычно корректируются репарационным механизмом, изменения нуклеотидов, возникающие при репарации поврежденной ДНК, часто приводят к стойким мутациям.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021


ДНК находится в клетке внутри ядра. Она особым образом организована в виде хромосом – эти нитеподобные структуры можно рассмотреть в микроскоп с достаточно большим увеличением. Внутри хромосомы ДНК намотана на белки – гистоны. Когда гены неактивны, они расположены очень компактно, а во время считывания генетического материала молекула ДНК расплетается.

  • 22 пары аутосом одинаковы у мужчин и женщин. В каждой паре хромосомы имеют одинаковую длину и содержат одинаковые наборы генов.
  • Одна пара половых хромосом. У женщин это две X-хромосомы. Одна из них неактивна и плотно свернута – ее называют тельцем Барра. У мужчин одна половая хромосома представлена X-хромосомой, а вторая – Y-хромосомой, она меньше по размерам.

Методы исследования хромосом

Для исследования кариотипа применяют специальный метод – световую микроскопию дифференциально окрашенных метафазных хромосом культивированных лимфоцитов периферической крови.

Этот анализ применяется для диагностики различных хромосомных заболеваний. Он позволяет выявлять такие нарушения, как:

  • Грубые изменения в кариотипе – изменение количества хромосом. Например, при синдроме Дауна в клетках ребенка присутствует лишняя хромосома №21.
  • Присутствие в организме клеток с разными кариотипами. Это явление называется мозаицизмом.
  • Хромосомные аберрации – нарушение структуры хромосом, внутрихромосомные и межхромосомные перестройки. Сюда относятся делеции (утрата участка хромосомы), дупликации (удвоение участка хромосомы), инверсии (поворот участка хромосомы на 180 градусов), транслокации (перенос участка одной хромосомы в другую).


Однако с помощью исследования кариотипа можно выявить не все генетические нарушения. Оно не способно обнаружить такие изменения, как:



Для получения дополнительной информации, не видимой в световой микроскоп, используют хромосомный микроматричный анализ (ХМА). С его помощью можно изучить все клинически значимые участки генома и выявить изменения в количестве и структуре хромосом, а именно микрополомки (микроделеции и микродупликации).

Во время хромосомного микроматричного анализа применяют технологию полногеномной амплификации и гибридизации фрагментов опытной ДНК с олигонуклеотидами, нанесенными на микроматрицу. Если объяснять простыми словами, то сначала ДНК, которую необходимо изучить, копируют, чтобы увеличить ее количество, а затем смешивают ее со специальными ДНК-микрочипами, которые помогают выявлять различные нарушения.

С помощью ХМА можно выявлять:

  • изменения числа хромосом;
  • дупликации и делеции, в том числе микродупликации и микроделеции;
  • отсутствие гетерозиготности – утрату одной из двух копий гена. Это явление имеет важное значение в онкологии, при болезнях импринтинга (когда активность гена зависит от того, от какого из родителей он получен), аутосомно-рецессивных заболеваниях (связанных с рецессивными генами – о них мы поговорим ниже), близкородственных браках;
  • однородительские дисомии, когда в геноме ребенка присутствуют две хромосомы от одного родителя.

Однако, как и предыдущий метод, хромосомный микроматричный анализ имеет некоторые ограничения. Он не позволяет выявлять или ограничен в выявлении таких аномалий, как:

Мутации в генах и заболевания, к которым они способны приводить

Все внешние признаки и особенности работы организма, которые человек получает от родителей, передаются с помощью генов. Это важнейшее свойство всех живых организмов называется наследственностью. В зависимости от того, как проявляются гены в тех или иных признаках, их делят на две большие группы.

Как выявляют рецессивные мутации?

Для выявления мутаций, которые передаются рецессивно, используют целый ряд исследований.

Если неизвестно, какую нужно выявить мутацию, то используют специальные панели.

Не в каждой семье можно отследить все возможные рецессивные заболевания. Тогда на помощь приходит секвенирование экзома – тест для определения генетических повреждений (мутаций) в ДНК путем исследования в одном тесте практически всех областей генома, кодирующих белки, изменения которых являются причиной наследственных болезней.

Секвенирование следующего поколения-NGS – определение последовательности нуклеотидов в геномной ДНК или в совокупности информационных РНК (транскриптоме) путем амплификации (копирования) множества коротких участков генов. Это разнообразие генных фрагментов в итоге покрывает всю совокупность целевых генов или, при необходимости, весь геном.


Анализ позволяет выявить точечные мутации, вставки, делеции, инверсии и перестановки в экзоме. Анализ не позволяет выявить большие перестройки; мутации с изменением числа копий (CNV); мутации, вовлеченные в трехаллельное наследование; мутации митохондриального генома; эпигенетические эффекты; большие тринуклеотидные повторы; рецессивные мутации, связанные с Х-хромосомой, у женщин при заболеваниях, связанных с неравномерной Х-деактивацией, фенокопии и однородительские дисомии, и гены, имеющие близкие по структуре псевдогены, могут не распознаваться.

Что делать, если в семье есть наследственное заболевание?

Существуют два способа выявить наследственные генетические мутации у эмбриона:

Предимплантационное генетическое тестирование (ПГТ) в цикле ЭКО. Это диагностика генетических заболеваний у эмбриона человека перед имплантацией в слизистую оболочку матки, то есть до начала беременности. Обычно для анализа проводится биопсия одного бластомера (клетки зародыша) у эмбриона на стадии дробления (4–10 бластомеров). Существует несколько видов ПГТ: на хромосомные отклонения, на моногенные заболевания и на структурные хромосомные перестройки. Данные Simon с соавторами (2018) говорят о том, что в случае проведения ЭКО с ПГТ у пациентки 38–40 лет результативность ЭКО составляет 60%. Но при исследовании эмбриона есть ряд ограничений. Так, из-за ограниченного числа клеток можно не определить мозаицизм.

Если нет возможности провести ЭКО с ПГТ, то используют второй вариант – исследование плодного материала во время беременности.

Для забора плодного материала используют инвазивные методы:

  • биопсия хориона – когда берут клетки из плаценты;
  • амниоцентез – когда берут клетки амниотической жидкости.

Далее эти клетки исследуют при помощи одного или нескольких генетических тестов (которые имеют свои ограничения). Проведение инвазивных методов может быть связано с риском для беременности порядка 1%.

Таким образом, проведя дополнительные исследования, можно значительно снизить риск рождения ребенка с генетическим заболеванием в конкретной семье. Но привести этот риск к нулю на сегодняшний день, к сожалению, невозможно, так как любой генетический тест имеет ряд ограничений, что делает невозможным исключить абсолютно все генетические болезни.

Пелина Ангелина Георгиевна


Автор статьи

Пелина Ангелина Георгиевна

Ведёт генетическое обследование доноров Репробанка, осуществляет подбор доноров для пар, имеющих ранее рождённых детей с установленной генетической патологией.

Цель настоящей статьи - раскрытие сущности понятия мутагенеза, а также роли данного процесса в понимании эволюции всех живых организмов на нашей планете. Подробно изложены современные классификации мутагенеза, в том числе разбору подвергнуто понятие о генных мутациях. В материале работы изложены наиболее вероятные причины, которые могут потенцировать частоту возникновения и масштабность различных нарушений в хранении, воспроизведении и передаче генетической информации.


2. Ходжкин Ю. Генетическое подавление. 2005 г., 27 декабря. В: WormBook: Интернет-обзор биологии C. elegans. Пасадена (Калифорния): WormBook; 2005-2018.

5. Жимулёв, И.Ф. Общая и молекулярная генетика /И.Ф. Жимулёв. — Издание четвертое. — Новосибирск: Новосибирское университетское издательство, 2007. — 480с.

Введение. Мутагенез - внесение изменений в нуклеотидную последовательность ДНК (мутаций). (Гуго де Фриз 1901)

Виды мутагенеза. Различают естественный и искусственный мутагенез.

Естественный (спонтанный) - возникает вследствие УФ-лучей, химических мутагенов, радиации.

Искусственный (индуцированный) - искусственное получение мутаций путем воздействия радиационного излучения и химических веществ. Широко используется в селекции (полиплоидия).

Роль мутагенеза. Зачастую мутации выступают в качестве материала для естественного отбор. Например: при кардинальном изменении окружающих организм условий мутации, считавшиеся ранее ненужными, могут стать полезными, и повысят процент выживаемости данного организма и впоследствии его потомков.

Согласно одной из теорий происхождения жизни на нашей планете все живое произошло от одной клетки. В процессе эволюции эта клетка дифференцировалась с помощью мутаций. Так возникли мы и самое важное –

разные люди (цвет волос, глаз и т.д.) Стоит также отметить, что мутации играют большую роль в селекции. Путем искусственного мутагенеза получают более крупные плоды. Таким образом, благодаря мутациям возникают новые штаммы, сорта, породы организмов.

Мутации с нарушением генетического кода (генные мутации). Генные мутации – это изменение строения одного гена, т.е. изменение в последовательности нуклеотидов, а следовательно, изменение генетического кода и изменение молекулы белка, синтезируемого по этому коду. Если изменяется код, то изменяется и кодируемый им признак. Последствия генных мутаций могут быть разные – все зависит от гена, с которым произойдет спонтанное изменение. Если случится нарушение синтеза аминокислоты, необходимой для полноценного функционирования организма, то будут серьезные осложнения вплоть до смертельного исхода. Если действие мутировавшего гена будет подавлено парным геном из гомологичной хромосомы или если изменение в молекуле синтезируемого белка не будет нарушать его функций, то мутация никак не отразится на фенотипе.

Виды генных мутаций:

1. Дупликация – удвоение пары или нескольких пар нуклеотидов;

2. Инсерция – вставка пары нуклеотидов (или несколько);

3. Делеция – выпадение участка генома;

4. Инверсия – переворот на 180 градусов;

5. Замена – замена пары нуклеотидов на другую.

Так, например, замена глутаминовой кислоты на валин в молекуле глобина (белковой части гемоглобина) приводит к катастрофическим последствиям). Гемоглобин начинает хуже связывать и переносить кислород. Эритроциты, в которых содержится гемоглобин, становятся непрочными и легко разрушаются. Вследствие замены одной из ста сорока шести аминокислот на другую развивается тяжелое заболевание – серповидноклеточная анемия. Так назвали из-за формы гемоглобина – в форме серпа.

Читайте также: