Почему количество углекислого газа в атмосфере увеличивается кратко

Обновлено: 07.07.2024

Почему газ из воды в стакане выделяется?
Нагревается ли стакан от выделения газа?

Подобным образом себя ведет не только углекислый газ, но и другие газы, в том числе и кислород. С повышением температуры растворимость газов в воде уменьшается, а концентрация их над водой (в атмосфере) увеличивается, что мы и наблюдаем сегодня в атмосфере Земли в процессе глобального потепления.
Поэтому считать повышение содержания углекислого газа в атмосфере причиной глобального потепления - это утопия, на которой спекулирует ряд международных организаций в борьбе за источники финансирования лженауки.

Но все же очевидно, что повышение концентрации СО2 в атмосфере является признаком глобального потепления.
Независимо от глобальных процессов изменения климата, выбросы СО2 в атмосферу, сопровождающие хозяйственную деятельность человека, в виде сжигания ископаемых углеводородов, целесообразно регулировать. Мало того, что выбросы СО2 сами по себе сопровождаются выбросами ряда вредных для человека и окружающей среды веществ, но и их повышенное содержание в атмосфере на местном и региональном уровнях (особенно в мегаполисах) и как следствие снижение концентрации кислорода, отрицательно сказывается не только на здоровье человека, но и на состоянии окружающей среды, флоре и фауне. Но необходимо отметить, при этом повышенное содержание СО2 в определенном диапазоне концентраций способствует активизации роста растений, поглощающих СО2 в процессе своего роста.

Исходя из обратимости в природе процессов выброса и поглощения СО2 (дыхание животных, дыхание растений), целесообразно, чтобы баланс антропогенных объемов выбросов и поглощения СО2, а также кислорода, на заселенных жителями территориальных образованиях, как минимум, не нарушался и был равным 1. Проекты закачивания СО2 в подземные хранилища, а также на дно океана, нарушают этот баланс, так как под землю (воду) вместе с углеродом закачивается и кислород атмосферы, связанный с углеродом в процессе сжигания углеводородов. Разделить обратно СО2 на углерод и кислород (необходимый для всего животного мира) в необходимых объемах может только растительный мир.
Поэтому главным способом захоронения СО2 может быть только растительный мир. Например, лес, продукция которого в виде древесины, в качестве строительного материала, позволяет консервировать углерод на достаточно длительные периоды.

"Британские ученые разгадали еще одну тайну глобального потепления - они выяснили, что за последние 30 лет на Земле резко повысилась влажность, и это один из главных факторов изменения климата на планете, не менее серьезный, чем постоянные выбросы парниковых газов в атмосферу.

При этом получается замкнутый круг: чем выше температура, тем больше испарений и тем выше уровень влажности, а влажность создает парниковый эффект, который вновь увеличивает температуру. Именно поэтому, считают ученые, климатические изменения на планете идут все быстрее, что неминуемо приведет к мощным стихийным бедствиям. Если срочно не принять меры, предупреждают они, то уже в ближайшие годы человечество ожидают наводнения, засухи и катастрофические ураганы. Чаще будут проходить дожди, а климат станет более жарким. Предполагается, что больше всего влажность будет увеличиваться в тропических районах.

Менее чем за последние 30 лет уровень влажности воздуха в приземных слоях вырос на 2,2%, отмечают ученые. Значительно увеличился этот показатель и над поверхностью Мирового океана. При общем потеплении климата на 1 градус по Цельсию влажность будет возрастать на 6%.
"Жара при высоком уровне влажности оказывает еще большее негативное воздействие на людей", - подчеркивают специалисты. Это выражается прежде всего в том, что при более высокой влажности существенно ухудшается теплообмен человеческого организма.

Повышение уровня влажности, так же как и парниковые газы, является результатом жизнедеятельности людей. Используя температурные прогнозы Международной комиссии по изменению климата, ученые установили, что к 2100 году влажность на планете вырастет на 24 процента.

Авторы альтернативных концепций глобального потепления не согласны, главным образом, с оценкой роли антропогенного фактора в повышении концентрации парниковых газов. В качестве возможного источника этих газов рассматривается, например, океанский вулканизм (Николай Ясаманов, МГУ). Через разломы срединноокеанских хребтов (рифтов) на поверхность дна поступает вязкое мантийное вещество (мантия Земли - оболочка между земной корой и ядром). В процессе гидратации этого вещества возникает метан. Он поднимается к поверхности, затем удаляется в атмосферу, где вступает в реакцию с кислородом, образуя СО2.

Имеются и другие объяснения наблюдаемого роста концентрации углекислого газа в атмосфере. Например, известный российский географ, член-корреспондент РАН Андрей Капица, критикуя традиционную концепцию потепления, указывает на то, что процессы теплообмена в земной атмосфере значительно сложнее, чем в приусадебном парнике. По его мнению, рост концентрации углекислого газа является не причиной, а следствием потепления климата. Свою точку зрения Капица строит на том, что количество растворенного в океане углекислого газа многократно превышает его содержание в атмосфере. При потеплении углекислый газ начинает выделяться из океана, и это приводит к росту его концентрации в атмосфере.

Однако термическая инерция Мирового океана несколько отдалит процесс глубокого "остывания" Земли - пик глобального похолодания ученый ожидает в 2055-2060 годах.
Так называемый антропогенный "парниковый эффект" не сможет серьезно затормозить ожидаемое похолодание, поскольку не оказывает существенного влияния на глобальные изменения климата Земли, считает Абдусаматов. "Последние девять лет температура на Земле практически не растет, хотя за это время концентрация углекислого газа в атмосфере увеличилась более чем на 4%",- отметил ученый.

По его словам, естественные значительные повышения концентрации углекислого газа в атмосфере происходили еще в доиндустриальную эпоху. Эти процессы никогда не приводили к глобальному потеплению климата, а всегда следовали за потеплением с некоторым отставанием, являясь его следствием.

"Если в течение 2007-2010 годов не будет повышения глобальной температуры на Земле в прежних темпах, то это явится неоспоримым доказательством того, что Солнце больше не может греть Землю как прежде, а антропогенное глобальное потепление - миф", - отметил Абдусаматов.
Грядущее похолодание приведет к значительному увеличению площади снежно-ледового покрова, отметил он. Это снизит поглощательную способность поверхности Земли, вследствие чего уменьшится концентрация водяного пара (главного парникового газа) и углекислого газа в атмосфере. В этом случае ученый ожидает резкое дополнительное усиление похолодания вследствие влияния этих факторов, косвенно связанных с изменениями на Солнце.

Из интервью Андрея Петровича Капицы

"- Обыкновенно говорят, что потепление наступило вследствие увеличения выбросов углекислого газа, главным образом промышленного. Из вашей лекции я понял, что люди меняют местами причину и следствие.

- Но ведь нельзя отрицать, что количество углекислого газа, выбрасываемого в последнее столетие, возросло от сжигания большого количества топлива. Какова доля выбросов СО2, связанных с хозяйственной деятельностью человека?

Капица А.П. - Это - проценты от общего оборота углекислоты в природе: не десятки процентов, а проценты. Но будь тут хоть десятки процентов, ни откуда не следует, что это плохо…
…Уже много лет бывший президент Академии наук США Фредерик Зейтц (Seitz) обращал внимание на то, что все теории глобального потепления и озоновых дыр притянуты за уши и не отвечают действительности, что это - антинаучные теории. 17 тысяч американских ученых подписали петицию. Они согласны с Зейтцем и считают, что соглашение и стоящие за ним тенденции - подлинная угроза человечеству и тяжелый удар по его будущему".

Одновременно с наблюдаемым ростом приземной температуры воздуха измерения, которые проводятся специалистами в разных странах, показывают такое же быстрое увеличение (примерно на треть) содержания в атмосфере углекислого газа (СО2) – наиболее долго сохраняющегося в воздухе по сравнению с другими парниковыми газами (рис. 1, а).

Усредненные графики изменений концентрации СО2 и температуры почти повторяют друг друга. Эта корреляция сама по себе не является доказательством того, что причиной потепления является увеличение содержания в атмосфере углекислого газа , но она навела многих ученых на мысль о том, что именно он является основной причиной современных изменений климата.

Рис. 1. Глобальные изменения содержания углекислого газа в атмосфере: а – красной линией показаны измеренные концентрации углекислого газа, осредненные по годам, в частях на миллион частей воздуха (ppm), cиней линией показаны данные еженедельных спутниковых измерений, а ее колебания скорее всего отражают сезонные изменения активности северных лесов; б – скорость изменений содержания углекислого газа [49]

Рис. 1. Глобальные изменения содержания углекислого газа в атмосфере: а – красной линией показаны измеренные концентрации углекислого газа, осредненные по годам, в частях на миллион частей воздуха (ppm), cиней линией показаны данные еженедельных спутниковых измерений, а ее колебания скорее всего отражают сезонные изменения активности северных лесов; б – скорость изменений содержания углекислого газа [49]

Достаточно точный изотопный анализ показал, что в наше время в атмосфере растет концентрация именно того углерода, который входил в состав горючих полезных ископаемых, то есть в воздухе добавляется углекислый газ в основном от сжигания топлива в процессе хозяйственной деятельности человека. Дело в том, что в атмосфере содержится некоторое количество радиоактивного изотопа углерода. Но он распадается примерно за 15 тыс. лет, поэтому в любом ископаемом топливе (кроме молодого торфа) его нет. Что касается вулканов, то они среди прочих веществ выбрасывают сразу углекислый газ, а топливо при сжигании потребляет кислород из воздуха, поэтому в антропогенных выбросах СО2 будет присутствовать характерное соотношение изотопов не только углерода, но и кислорода.

Конечно, есть и природные причины изменений концентрации углекислого газа в атмосфере: выделение его океанами и грунтами при нагревании и поглощение при охлаждении, выбрасывание вулканами, поглощение при фотосинтезе растениями и некоторыми бактериями, выделение при дыхании живых организмов, при лесных пожарах и т.д.

Из естественных причин наибольший вклад вносит Мировой океан. Теплая вода не может содержать в растворенном виде столько же углекислого газа, сколько холодная, поэтому при нагревании она отдает в атмосферу часть СО2. Но в этом случае, по результатам изотопных исследований пузырьков ископаемого воздуха в ледяных кернах из скважин, пробуренных в Антарктиде и Гренландии, рост температуры на 500–800 лет опережал увеличение концентрации углекислого газа (то есть потепление являлось причиной, а не следствием), поскольку перемешивание и суммарное прогревание океанических вод – процесс небыстрый.

Однако в целом для такой сложной системы, как климатическая, при наложении антропогенного воздействия на естественные факторы запаздывание или опережение между концентрацией углекислого газа и температурой за последние 100 с небольшим лет не обязательно будет отражать преобладающие причинно-следственные связи. Встречаются данные о почти синхронных недавних изменениях этих параметров или о том, что современное потепление сопровождается повышением содержания CO2 с задержкой только в 5 месяцев, а не в несколько сотен лет. Тогда это вполне могло бы свидетельствовать о наложении антропогенного потепления на естественное.

В публикациях обычно указывается, что такого высокого содержания CO2, как сейчас, то есть около 400 частей на миллион частей воздуха (ppm), или 0,04% от полного состава воздуха, в земной атмосфере не было уже по крайней мере 650–800 тыс. лет, а то и все 3 млн лет, а такой высокой скорости его увеличения не было, вероятно, никогда.

Но встречаются и публикации, где это опровергается и говорится о сходных с современными концентрациях углекислого газа в не такие далекие от нас доиндустриальные времена.

Отмечают также, что в ордовикский период палеозойской эры (около 450 млн лет назад) концентрация углекислого газа в атмосфере была более чем на порядок выше, чем сейчас, но при этом наблюдались признаки некоторого оледенения (хотя пока не доказано, что эти явления действительно были синхронными).

В настоящее время скорость увеличения содержания CO2 в воздухе составляет примерно 0,5% в год и колеблется в соответствии с экономической активностью. Например, кризис в начале 1990-х годов, связанный с распадом СССР, и экономический кризис 2008 года достаточно хорошо отображаются на рисунке 8, б в виде замедления прироста содержания углекислого газа.

При сжигании угля, газа, нефти и их продуктов в атмосферу ежегодно выбрасывается до 32 млрд тонн CO2, что примерно в 100 раз превышает вулканический вклад (сами по себе вулканические выбросы при наиболее мощных извержениях привели бы также к образованию аэрозолей в стратосфере, задержке ими солнечного излучения и понижению температуры приземной части атмосферы). Около 3/4 всего антропогенного увеличения содержания углекислого газа в воздухе объясняется сжиганием ископаемыъх углеводородов, а б о льшая часть остального – вырубкой лесов. При этом около половины выделяемого при человеческой деятельности СО2 остается в атмосфере и не поглощается растениями и океанами.

Отметим, что антропогенные выбросы CO2 составляют только 4–5% от всей его эмиссии с поверхности суши и океана. Однако необходимо учитывать, что потоки углекислого газа между разными естественными компонентами климатической системы (например, между атмосферой и океаном, атмосферой и биотой/грунтами) находятся в динамическом равновесии, которое установилось за очень долгое время, поэтому небольшая антропогенная добавка вполне могла нарушить этот баланс. Ведь сжигая горючие полезные ископаемые и их продукты, человечество всего за 150–200 лет возвращает в атмосферу углерод органического происхождения, который накапливался в осадочных породах в течение многих десятков, а то и сотен миллионов лет.

Напомним, что вообще-то парниковые газы необходимы для выживания людей и других живых существ, поскольку они предотвращают полное отражение солнечного тепла обратно в космос и делают Землю пригодной для жизни (рис. 2). Если бы их не было, то глобальная температура на планете была бы около минус 18 град., но она сейчас составляет плюс 15 град. То есть за счет парникового эффекта температура приземного воздуха выше на 33 град., из которых только 1 град. – за счет влияния человеческой деятельности. То есть деятельность человека не создает парниковый эффект, а скорее всего только усиливает его.

Рис. 2. Основные парниковые газы в порядке их воздействия на тепловой баланс Земли в отсутствие антропогенной деятельности [31]

Рис. 2. Основные парниковые газы в порядке их воздействия на тепловой баланс Земли в отсутствие антропогенной деятельности [31]

Знания о процессах и обратных связях в климатической системе Земли по-прежнему не являются полными, поэтому иногда задают вопрос, не компенсируется ли потепление из-за антропогенных выбросов парниковых газов изменениями в распределении водяных паров, облаков, функционированием биосферы или воздействием других климатических факторов, и предлагают более тщательно проверить это, прежде чем делать окончательные выводы.

Также пока нет определенности и в оценке чувствительности климатической системы планеты к росту концентрации углекислого газа. Многие считают, что при удвоении концентрации CO2 в атмосфере ее температура в приземном слое вырастет на величины от 2 до 4,5 град., что является очень неточным и в ряде случаев вообще оспаривается.

Те ученые, которые отрицают влияние современнтого повышения концентрации СО2 в атмосфере на температуру приземного воздуха, приводят, например, результаты расчетов, показывающие, что даже двукратное увеличение содержания такого слабого парникового газа, как углекислый, привело бы к увеличению температуры только на 0,5 град.

Есть также те, кто напоминает, что, например, 450 млн лет назад концентрация СО2 в атмосфере была более чем на порядок выше современной, но это был один из самых холодных периодов за последние полмиллиарда лет.

Более того, изредка встречается даже неожиданное мнение о том, что повышение концентрации углекислого газа, наоборот, может сдерживать нагревание приземного воздуха, внося охлаждающий эффект за счет усиления вертикальной циркуляции в атмосфере и более быстрого рассеивания энергии в космосе.

В качестве аргумента против антропогенной причины современного потепления приводят и то, что на Марсе сейчас тоже явно начался период глобального потепления и тают полярные шапки, а о влиянии человека там не может быть и речи.

О сравнении воздействий на современные изменения климата Земли со стороны антропогенных и естественных факторов мы поговорим в следующей части статьи на следующей неделе.

Если вам интересна эта тема, первую часть статьи можно прочитать ЗДЕСЬ , а полный текст статьи с источниками и литературой - в электронном журнале "ГеоИнфо" ЗДЕСЬ .


Что значит эта новость? Неужели человечество прошло точку невозврата и негативные последствия глобального потепления теперь не остановить?

Чем опасен парниковый эффект?

Рекордный показатель CO₂ был зафиксирован в минувшую субботу специалистами обсерватории Национального управления США по исследованию океанов и атмосферы (NOAA). Он составил 415 частей на миллион, то есть в каждом кубометре воздуха присутствовало не менее 415 мл углекислого газа.


Согласно данным Института океанографии при Калифорнийском университете в Сан-Диего, до индустриальной революции содержание углекислоты в атмосфере никогда не превышало 300 частей на миллион. И только в 2013 году оно достигло 400 единиц. С тех пор этот показатель постоянно растёт, и, как подсчитали учёные, к началу следующего столетия концентрация CO₂ в воздухе может составить 1200-1300 частей на миллион.

В наши дни любой школьник знает, что повышение содержания углекислого газа в атмосфере способствует возникновению парникового эффекта. Солнечные лучи нагревают поверхность Земли, а молекулы углекислого газа (и не только его, главным парниковым газом вообще считается водяной пар, а еще в эту группу входят метан, озон и оксид азота) задерживают тепло, не позволяя ему уходить в космос. Таким образом, температура нижних слоёв атмосферы увеличивается.

Учёные уверены, что дальнейший её рост приведёт к необратимым последствиям для экологии. Чтобы предотвратить их, в 2015 году в Париже было заключено соглашение между странами ООН, которое пришло на смену Киотскому протоколу, срок действия которого истечёт в 2020 году. Согласно Парижскому соглашению, страны-участники должны постепенно снижать выбросы парниковых газов от своих промышленных предприятий. И это приостановит процесс глобального потепления.

Ледник Якобсхавн.

Будет как на Венере

За весь прошлый век температура нижних слоёв атмосферы поднялась на 0,8 °С, и виновата в этом, как считают учёные-климатологи, деятельность человека. Он сжигает всё больше ископаемого топлива, а это увеличивает содержание в атмосфере парниковых газов. Сейчас угроза не выглядит значительной (наш гардероб пока не претерпел радикальных изменений), но есть весьма неутешительные прогнозы. Из-за глобальных изменений климата человеческий вид может через 200 лет. совсем исчезнуть.


Карнаухов объясняет, что процесс потепления вызывает эффект лавины. Углекислый газ и метан начинают высвобождаться из природных хранилищ, — со дна океана, из земной коры, вечной мерзлоты — из-за этого будет становиться всё теплее и теплее. При таких темпах всего за пару столетий климатическая система Земли перейдёт в новое устойчивое состояние. И человеку здесь не будет места: температура воздуха поднимется до +500 °С. Похожие условия существуют на Венере, где углекислота занимает 97% атмосферы, а на поверхность планеты проливаются дожди из серной кислоты. Понятно, что для Homo sapiens такие параметры абсолютно не подходят: они скорее напоминают ад.

В ответ на рост содержания в воздухе СО2 растения снижают интенсивность транспирации (испарения воды листьями), но связывают при этом больше СО2. Из статьи Alexander Knohl and Edzo Veldkamp

Рис. 1. В ответ на рост содержания в воздухе СО2 растения снижают интенсивность транспирации (испарения воды листьями), но связывают при этом больше СО2. Уменьшение транспирации приводит к тому, что из почвы откачивается меньше воды. Соответственно, возрастает увлажненность почвы, ухудшается ее аэрация, возникают участки, где кислород практически отсутствует (состояние аноксии). В отсутствие кислорода в почве развиваются бактерии, которые при получении необходимой им энергии в качестве окислителя используют азот. Начинается процесс денитрификации, в ходе которого азот последовательно восстанавливается. На одном этапе этого процесса в воздух выделяется закись азота (N2O). С другой стороны, в условиях обилия СО2 растения растут быстрее, в частности увеличивают массу корней. При этом корнями в почву выделяется большое количество лабильного органического вещества, которое охотно используется бактериями. В местах, где нет кислорода, преимущество получают бактерии метаногены. Конечный продукт их метаболизма, выбрасываемый во внешнюю среду, — это метан. Закись азота и метан — газы, обладающие сильным парниковым эффектом. Из статьи Alexander Knohl, Edzo Veldkamp. Global change: Indirect feedbacks to rising CO2 // Nature. 2011. V. 475. P. 177–178

По мере того как в атмосфере растет содержание углекислого газа (CO2), увеличивается и связывание его растениями. Соответственно, скорость дальнейшего прироста CO2 снижается, а парниковый эффект ослабляется. Однако рост содержания CO2 в атмосфере приводит также к усиленному выделению из почвы других парниковых газов: закиси азота (N2O) и метана (CH4). Хотя поступают эти газы в очень небольших (относительно CO2) количествах, их парниковый эффект в расчете на молекулу газа гораздо более сильный, чем CO2. Анализ опубликованных данных показывает, что выделение N2O и CH4 в ответ на увеличение содержания в воздухе CO2 создает парниковый эффект, равносильный ежегодному добавлению примерно миллиарда тонн CO2. Регулирующее воздействие растительности на парниковый эффект при этом снижается примерно на 17%.

Содержание диоксида углерода (углекислого газа) в атмосфере Земли на протяжении всей ее истории не отличалось постоянством. Особенно подробно изменения концентрации CO2 прослежены за последние 850 тыс. лет, для которых есть данные анализа пузырьков воздуха, сохранившихся в толще антарктического льда (см.: Антарктический лед поведал о содержании метана и CO2 в атмосфере Земли за последние 800 тысяч лет). На протяжении всего этого времени не было, однако, периода, в течение которого содержание CO2 росло бы столь быстро, как в XX веке и в начале XXI-го. Причина такого необычно быстрого роста — сжигание ископаемого топлива. Если до начала индустриальной революции концентрация CO2 в атмосфере оценивалась в 280 ppm (part per million, частей на миллион), то сейчас она составляет 390 ppm. К концу же столетия ожидается 600–700 ppm.

Поскольку CO2 обладает парниковым эффектом, то есть удерживает в нижних слоях атмосферы тепло, которое излучает нагретая солнцем земля, рост его концентрации приводит к общему потеплению. Однако в ответ на увеличение концентрации CO2 возрастает интенсивность фотосинтеза растений, а следовательно, связывается дополнительное количество этого газа. Благодаря наличию такой обратной связи содержание СО2 в атмосфере и определяемый этим газом парниковый эффект растут не так быстро, как это было бы в отсутствие зависимости интенсивности фотосинтеза от концентрации CO2.

Увы, помимо механизма, сдерживающего рост CO2 в атмосфере, параллельно ему действует механизм, усиливающий парниковый эффект. Дело в том, что увеличение содержания CO2 в атмосфере стимулирует эмиссию (выделение) из почвы других парниковых газов, а именно закиси азота и метана — N2O и CH4. Хотя концентрация их в атмосфере на порядки ниже концентрации CO2, создаваемый ими парниковый эффект в расчете на молекулу газа существенно больше: для CH4 в 25 раз, для N2O — в 298 раз. Образование данных газов в почве и выделение их в атмосферу в ответ на рост содержания CO2 — результат целой цепочки последовательно развивающихся процессов.

Первый из них — формирование в толще почвы анаэробных условий. Непосредственная причина — избыточное увлажнение почвы, резкое ухудшение аэрации. А увеличивается увлажненность из-за того, что растения при высокой концентрации в воздухе CO2 не открывают полностью устьица и ослабляют транспирацию — испарение листьями воды, поглощаемой из почвы (рис. 1).

Но если в среде отсутствует такой выгодный окислитель, как кислород, бактерии, разлагающие органическое вещество, начинают вместо него использовать азот. Это и есть процесс денитрификации, конечным результатом которого является свободный азот N2, а промежуточным – закись азота N2O. Сам азот при этом последовательно восстанавливается. Схема преобразований следующая:

Процессы нитрификации и денитрификации нередко протекают одновременно в соседних микрозонах. Некоторые же бактерии являются факультативными анаэробами: при наличии кислорода они используют его в качестве окислителя, а если его нет, переходят на азот (Davidson et al., 2000).

Рис. 2. Степени окисления азота (от NH4 + до NO3 – ) или его восстановления (от NO3 – до N2) — результаты реакций, проводимых нитрифицирующими (Nitrifying bacteria, обозначены точками) и денитрифицирующими (Denitryfying bacteria, обозначены пунктиром) бактериями. Сплошные линии указывают реакции, проходящие без участия организмов. Из статьи Davidson et al. Testing a conceptual model of soil emissions of nitrous and nitric oxides // BioScience. 2000. V. 8. P. 667–680 (PDF)

Закись азота выделяется в основном в более сухих местах, и, конечно, там, где много азота. А вот в исходно заболоченных почвах и на заливаемых водой рисовых полях чаще образуется другой парниковый газ — метан. Здесь особенно важно формирование бескислородных зон, поскольку образующие метан бактерии, так называемые метаногены, — строгие анаэробы (см. также: Метаногенез).

Рис. 3. a) Влияние повышения концентрации СО2 в воздухе на выделение из почвы закиси азота (N2O) и метана (CH4) по данным ряда публикаций. Закись азота выделялась на более или менее сухих почвах, а метан — с рисовых полей (Rice) и заболоченных земель (Wetlands). Высота столбиков гистограммы — среднее из результатов 73, 21 и 24 наблюдений. b) Возрастание массы корней (Root biomass) и содержания влаги в почве (Soil water content) в ответ на повышение концентрации СО2 в воздухе. Высота столбиков — среднее из результатов 83 и 55 наблюдений. Из обсуждаемой статьи в Nature

Конечным продуктом окислительно-восстановительных реакций, проводимых бактериями метаногенами для получения энергии, является метан, второй по значимости (после CO2) парниковый газ атмосферы. Важно и то, что при высокой концентрации в воздухе CO2 растения быстро растут, причем увеличивается масса не только надземных частей, но и корней, а растущие корни выделяют во внешнюю среду лабильные органические соединения углерода, которые являются прекрасной пищей для бактерий-метаногенов.

Хотя данные, подтверждающие усиление эмиссии N2O и CH4 в ответ на увеличение концентрации в воздухе CO2, время от времени появлялись в научных журналах, масштабы этого явления были не ясны. И вот недавно вышла обзорная статья Кеес Ван Гронингена (Kees Jan van Groenigen) из Отдела биологии Университета Северной Аризоны (Флагстафф, Аризона, США), который совместно с коллегами из того же и других университетов США проанализировал 49 опубликованных исследований, в которых были приведены сведения об эмиссии закиси азота и метана при повышении концентрации CO2 в воздухе. Общее количество наблюдений — 152.

Рис. 4. Глобальный парниковый эффект закиси азота и метана, выраженный в эквиваленте СO2 (в петаграммах, 10 15 г в год). Вверху — N2O на естественных и возделанных сухих землях, ниже — СH4 на естественных заболоченных землях, на рисовых полях, а также на сухих почвах. Внизу суммарный эффект закиси азота и метана (также в петаграммах СO2). Из обсуждаемой статьи в Nature

Выяснилось, что эмиссия N2O возросла в среднем на 18%, а эмиссия CH4 — на 13% с заболоченных земель и на 43% с рисовых полей (рис. 3). Исходя из площадей, занятых теми или иными экосистемами, Гронинген и его соавторы рассчитали, что усиление парникового эффекта за счет возрастания эмиссии закиси азота и метана эквивалентно добавлению в атмосферу за год 1,12 Pg углекислого газа (рис. 4). Один Pg (петаграмм) равен 10 15 г или 1 миллиарду тонн. Приведенная исследователями цифра безусловно не является окончательной. Она будет уточняться, в частности и потому, что места проведения наблюдений находятся в основном в средних широтах, а обсуждаемые процессы могут быть широко распространены как раз в тропиках, для которых данных пока очень мало.

Источник: Kees Jan van Groenigen, Craig W. Osenberg, Bruce A. Hungate. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 // Nature. 2011. V. 475. P. 214–216.

См. также:
1) Alexander Knohl, Edzo Veldkamp. Global change: Indirect feedbacks to rising CO2 // Nature. 2011 V. 475. P. 177–178.
2) E. A. Davidson, M. Keller, H. E. Erickson, et al. Testing a conceptual model of soil emissions of nitrous and nitric oxides (вся статья в PDF, 561 Кб) // BioScience. 2000. V. 50. P. 667–680.


Вид земли из космоса


Диоксид углерода — это парниковый газ, который в воздухе воздействует на теплообмен земли и является ключевым элементом в формировании земного климата.
На сегодняшний день прослеживается повышение концентрации двуокиси углерода в атмосфере из-за появления новых искусственных и естественных его источников. Это значит, что климат планеты будет меняться.

Источники углекислоты

Большая часть диоксида углерода планеты естественного происхождения. Но также источниками СО2 являются промышленные предприятия и транспорт, которые обеспечивают выброс в атмосферу углекислого газа искусственного происхождения.

Природные источники

При перегнивании деревьев и травы каждый год выделяется 220 миллиардов тонн углекислого газа. Океанами выделяется 330 миллиардов тонн. Пожары, которые образовались в связи с природными факторами приводят к выбросу СО2, равному по количеству антропогенной эмиссии.

Лес в огне

Естественными источниками углекислоты являются:

  • Дыхание флоры и фауны. Растения и животные поглощают и вырабатывают СО2, так устроено их дыхание.
  • Извержение вулканов. Вулканические газы содержат двуокись углерода. В тех регионах, где есть активные вулканы, углекислый газ способен выходить из земных трещин и разломов.
  • Разложение органических элементов. Когда органические элементы горят и перегнивают появляется СО2.

Диоксид углерода хранится в углеродных комбинациях: угле, торфе, нефти, известняке. В качестве резервных хранилищ можно назвать океаны, в которых содержатся большие резервы углекислоты и вечную мерзлоту. Однако, вечная мерзлота начинает таять, это можно заметить по уменьшению снежных шапок самых высоких гор мира. При разложении органики наблюдается рост выделения в атмосферу углекислого газа. В результате чего хранилище преобразуется в источник.

Северные районы Аляски, Сибири и Канады — это в основном вечная мерзлота. В ней содержится много органического вещества. Из-за нагрева арктических регионов вечная мерзлота тает и происходит гниение ее содержимого.

Антропогенные источники

Главными искусственными источниками CO2 считаются:

  • Выбросы предприятий, которые происходят в процессе сгорания. Результатом является значительное повышение концентрации углекислого газа в атмосфере планеты.
  • Транспорт.
  • Превращение хозяйственных земель из лесов в пастбища и пахотные земли.

Электрокар на зарядке


В мире растет количество экологических машин, но их процент по отношению к машинам внутреннего сгорания очень мал. Стоимость электрокаров выше обычных машин, поэтому многие не имеют финансовой возможности приобрести такой вид транспорта.

Интенсивное сокращение лесов для промышленности и сельского хозяйства относится к антропогенным источникам CO2 не в прямом смысле. Деятельность по уменьшению лесных массивов является причиной неучастия диоксида углерода в процессе фотосинтеза. Что приводит к его накоплению в атмосфере.

Поглотители двуокиси углерода

Поглотителями называют любые искусственные или природные системы, которые впитывают из воздуха углекислый газ. Поглотитель — это структура, которая вбирает из воздуха больше CO2 чем выбрасывает в него.

Природные поглотители

Леса способны воздействовать на количество двуокиси углерода в воздухе. Они могут быть и поглотителями, и источниками выбросов параллельно (при вырубке). Когда деревья увеличиваются, а лес растет, то углекислый газ поглощается. Данный процесс считается основой развития биомассы. Выходит, что прогрессирующий лес выступает поглотителем.


Лес северного полушария

При сжигании и уничтожении леса основная доля накопленного углерода опять преобразуется в углекислый газ. В итоге лес снова является источником СО2.
Фитопланктон также является поглотителем углекислого газа на земле. При этом большая часть поглощенного углерода, передаваясь по пищевой цепочке, остается в океане.

Искусственные поглотители

Самыми известными поглотителями СО2 считаются: раствор едкого калия, натронная известь и асбест, едкий натр.
Эти соединения при протекании химических реакций связывают углекислоту, преобразовывая ее в другие соединения. Существуют установки, которые улавливают углекислый газ из выбросов электростанций и преобразуют его в жидкое или твердое состояние с последующим применением в промышленности. Производятся испытания закачки углекислого газа, растворенного в воде, в базальтовые породы под землей. В процессе реакции образуется твердый минерал.

Взаимодействие с океаном

В океанах углекислота по наличию превышает атмосферное содержание, если пересчитать на углерод, то выйдет примерно 36 триллионов тонн. Растворенный в океане CO2 находится в виде гидрокарбонатов и карбонатов. Эти соединения образуются в процессе химических реакций между подводными скальными породами, водой и двуокисью углерода. Реакции эти обратимы, они вызывают образование известняковых и других карбонатных пород с высвобождением половины гидрокарбонатов в виде диоксида углерода.

Круговорот co2 в океане

Круговорот углекислого газа в океане

Протекая сотни миллионов лет, этот круговорот реакций привёл к связыванию в карбонатных породах большей части диоксида углерода из атмосферы Земли. По итогу большинство двуокиси углерода, полученной в результате интенсивных выбросов углекислого газа в атмосферу человеком, будет растворено в океанах. Но скорость, с которой будет протекать этот процесс в дальнейшем, остается неизвестной.
Наличие фитопланктона на поверхности океанов помогает поглощать СО2 из воздуха в океан. Некоторое количество углекислого газа фитопланктон поглощает при фотосинтезе, приобретая энергию и источник для развития клеток. Когда он погибает и спускается на дно, углерод остается с ним.

Взаимодействие с землей

Углекислый газ воздуха на генетическом уровне взаимосвязан с землей. Постоянно протекающие почвенные движения увеличивают резервы СО2 в воздухе, где он используется растениями на образование органических элементов. Углекислота выполняет важную функцию в формировании и проветривании почвы. Он принимает участие в разрушении основных минералов, увеличении растворяемости, перемещении карбонатов и фосфатов.



Значительная доля диоксида углерода грунтового воздуха появляется в результате деятельности почвенных организмов, во время распада и окисления органического элемента. До 1/3 части СО2 вырабатывается корнями высоких растений. Также происходит поступление углекислого газа с газами ювенильного и вадозного происхождения из глубочайших шаров земли. В почвах, сформированных на известковых породах, СО2 способен выступать продуктом разрушения углекислого кальция почвенными кислотами.

СО2 грунтового воздуха имеет огромную биологическую значимость. Ее излишек (больше 1%) подавляет проращивание семян и рост корневой системы. Если убрать углекислоту все равно ее кратковременный излишек приведет к медленному росту семян.

В почвах с большим содержанием органического вещества концентрация СО2 летом и весной увеличивается до 3-9 %. Черноземные грунты вырабатывают от 2 до 6 кг углекислого газа на протяжении 24 часов. В почвенном воздухе на глубине 75-150 см в два раза больше содержание СО2 нежели в верхних слоях. В теплые времена содержание СО2 в почвенном воздухе в два раз больше чем в зимний период. Объяснить это можно увеличением активности организмов в грунте.
Необходимо понимать, что многочисленные способы земледелия приводят к повышению концентрации углекислоты в грунте. Среди них можно выделить:

  1. органические удобрения;
  2. травосеяние;
  3. сжатие катками.

Безусловно, не стоит говорить, что плодородность и качество земли зависит исключительно от углекислоты, есть и другие факторы, влияющие на это.
Чтобы регулировать динамику СО2 в почве и увеличивать его содержание до требуемого количества для извлечения хорошего урожая необходимо:

  • активировать жизненные процессы в грунте при помощи аэрации;
  • осуществлять правильное травосеяние для того чтобы поддерживался и обновлялся резерв органического вещества;
  • делать сидерацию и вносить органические удобрения.

Заключение

Несомненно, что без углекислого газа существование на нашей Земле кардинально отличалось бы. Он вовлечен в важнейшие биологические, химические, геологические и климатические процессы. О них важно знать для объяснения многих явлений, происходящих вокруг нас.

Читайте также: