Почему генератор незатухающих колебаний является автоколебательной системой кратко

Обновлено: 04.07.2024

Автоколеба́ния — незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия. [1]

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Термин автоколебания в русскоязычную терминологию введён А. А. Андроновым в 1928 году.

Содержание

Примеры

Примерами автоколебаний могут служить:

  • незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири;
  • колебания скрипичной струны под воздействием равномерно движущегося смычка
  • возникновение переменного тока в цепях мультивибратора и в других электронных генераторах при постоянном напряжении питания;
  • колебание воздушного столба в трубе орга́на, при равномерной подаче воздуха в неё. (см. также Стоячая волна)
  • вращательные колебания латунной часовой шестерёнки со стальной осью, подвешенной к магниту и закрученной (опыт Гамазкова) (кинетическая энергия колеса, как в униполярном генераторе преобразуется в потенциальную энергию электрического поля, потенциальная энергия электрического поля, как в униполярном двигателе, преобразуется в кинетическую энергию колеса и т.д. )

Молоток Маклакова

Молоток, совершающий удары за счёт энергии электрической цепи переменного тока с частотой, во много раз меньшей частоты тока в цепи [2] .

Катушка L колебательного контура помещается над столом (или другим предметом, по которому требуется ударять). Снизу в неё входит железная трубка, нижний конец которой является ударной частью молотка. В трубке есть вертикальная прорезь, чтобы уменьшить токи Фуко. Параметры колебательного контура такие, что собственная частота его колебаний совпадает с частотой тока в цепи (например, переменного городского тока, 50 герц).

После включения тока и установления колебаний наблюдается резонанс токов контура и внешней цепи, и железная трубка втягивается в катушку. Индуктивность катушки растёт, колебательный контур выходит из резонанса, а амплитуда колебаний тока в катушке уменьшается. Поэтому трубка возвращается в исходное положение - вне катушки - под действием силы тяжести. Затем колебания тока внутри контура начинают нарастать, и снова наступает резонанс: трубка опять втягивается в катушку.

Трубка совершает автоколебания, т. е. периодические движения вверх и вниз, и при этом громко стучит по столу, подобно молотку. Период этих механических автоколебаний в десятки раз превосходит период переменного тока, поддерживающего их.

Молоток назван по имени М. И. Маклакова, лекционного ассистента Московского физико-технического института, предложившего и осуществившего такой опыт для демонстрации автоколебаний.

Механизм автоколебаний



Если колеблющийся элемент системы способен к собственным затухающим колебаниям (т.н. гармонический диссипативный осциллятор), автоколебания (при равенстве диссипации и поступления энергии в систему за время периода) устанавливаются на частоте, близкой к резонансной для этого осциллятора, их форма становится близкой к гармонической, а амплитуда, в некотором диапазоне значений, тем больше, чем больше величина постоянного внешнего воздействия.
Примером такого рода системы может служить храповой механизм маятниковых часов, схема которого представлена на рис. 2. На ось храпового колеса A (которое в этой системе выполняет функцию нелинейного регулятора) действует постоянный момент силы M, передающийся через зубчатую передачу от заводной пружины или от гири. При вращении колеса A его зубцы сообщают кратковременные импульсы силы маятнику P (осциллятору), благодаря которым его колебания не затухают. Кинематика механизма играет роль обратной связи в системе, синхронизируя вращение колеса с колебаниями маятника таким образом, что за полный период колебания колесо поворачивается на угол, соответствующий одному зубцу.

Автоколебательные системы, не содержащие осцилляторов, называются релаксационными. Колебания в них могут сильно отличаться от гармонических, и иметь прямоугольную, треугольную или трапециедальную форму. Амплитуда и период релаксационных автоколебаний определяются соотношением величины постоянного воздействия и характеристик инерционности и диссипации системы.


Простейшим примером релаксационных автоколебаний может служить работа электрического звонка, изображённого на рис. 3.. Источником постоянного (непериодического) воздействия здесь является электрическая батарея U; роль нелинейного регулятора выполняет прерыватель T, замыкающий и размыкающий электрическую цепь, в результате чего в ней возникает прерывистый ток; колеблющимися элементами являются магнитное поле, периодически наводимое в сердечнике электромагнита E, и якорь A, движущийся под воздействием переменного магнитного поля. Колебания якоря приводят в действие прерыватель, что и образует обратную связь.
Инерционность этой системы определяется двумя различными физически величинами: моментом инерции якоря А и индуктивностью обмотки электромагнита E. Увеличение любого из этих параметров приводит к увеличению периода автоколебаний.

При наличии в системе нескольких элементов, колеблющихся независимо друг от друга, и одновременно воздействующих на нелинейный регулятор или регуляторы (которых тоже может быть несколько), автоколебания могут принимать более сложный характер, например, апериодический, или динамический хаос.

В природе и технике

Автоколебания лежат в основе многих явлений природы:

На автоколебаниях основан принцип действия большого количества всевозможных технических устройств и приспособлений, в том числе:

  • работа всевозможных часов, как механических, так и электрических;
  • звучание всех духовых и струнно-смычковых музыкальных инструментов;
  • действие всевозможных генераторов электрических и электромагнитных колебаний, применяемых в электротехнике, радиотехнике и электронике;
  • работа поршневых паровых машин и двигателей внутреннего сгорания;
  • некоторые системы автоматического регулирования работают в режиме автоколебаний, когда регулируемая величина колеблется в окрестности требуемого значения, то превышая его, то опускаясь ниже него, в допустимом для целей регулирования диапазоне (например, система терморегулирования бытового холодильника).



Разрушение Тэкомского моста (США, штат Вашингтон) 7 ноября 1940 года вследствие автоколебаний, возникших под действием ветра.

Вынужденные колебания возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях.
Такие генераторы не могут создавать колебания высокой частоты, необходимые для радиосвязи? т.к. для этого потребовалась бы очень большая скорость вращения ротора.
Колебания высокой частоты получают, например, с помощью генератора на транзисторе.

Автоколебательные системы

Обычно незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического напряжения.
Но возможны и другие способы получения незатухающих колебаний.

Например, есть система, в которой могут существовать свободные электромагнитные колебания, с источником энергии.
Если сама система будет регулировать поступление энергии в колебательный контур для компенсации потерь энергии на резисторе, то в ней могут возникнуть незатухающие колебания.

Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри самой системы, называются автоколебательными. Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Генератор на транзисторе — пример автоколебательной системы.
Он состоит из колебательного контура с конденсатором емкостью С и катушкой индуктивностью L, источника энергии и транзистора.

Как создать незатухающие колебания в контуре?

Чтобы электромагнитные колебания в контуре не затухали, нужно компенсировать потери энергии за каждый период.

Пополнять энергию в контуре можно, подзаряжая конденсатор.
Для этого надо периодически подключать контур к источнику постоянного напряжения.


Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника пластина заряжена положительно, а присоединенная к отрицательному полюсу — отрицательно.
Только в этом случае источник будет подзаряжать конденсатор, пополняя его энергию.

Если же ключ замкнуть в момент, когда присоединенная к положительному полюсу источника пластина имеет отрицательный заряд, а присоединенная к отрицательному полюсу — положительный, то конденсатор будет разряжаться через источник. Энергия конденсатора при этом будет убывать.


Источник постоянного напряжения, постоянно подключенный к конденсатору контура, не может поддерживать в нем незатухающие колебания, так же как постоянная сила не может поддерживать механические колебания.
В течение половины периода энергия поступает в контур, а в течение следующей половины периода возвращается в источник.

В контуре незатухающие колебания установятся лишь при условии, что источник будет подключаться к контуру в те интервалы времени, когда возможна передача энергии конденсатору.
Для этого необходимо обеспечить автоматическую работу ключа.
При высокой частоте колебаний ключ должен обладать надежным быстродействием. В качестве такого практически безынерционного ключа и используется транзистор.


Транзистор состоит из эмиттера, базы и коллектора.
Эмиттер и коллектор имеют одинаковые основные носители заряда, например дырки (полупроводник p-типа).
База имеет основные носители противоположного знака, например электроны (полупроводник n-типа).

Работа генератора на транзисторе


Колебательный контур соединен последовательно с источником напряжения и транзистором так, что на эмиттер подается положительный потенциал, а на коллектор — отрицательный.
При этом переход эмиттер — база (эмиттерный переход) является прямым, а переход база — коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет.
Это соответствует разомкнутому ключу.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя пластина конденсатора заряжена положительно, а нижняя — отрицательно.
Это соответствует замкнутому ключу.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя — положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре.
Необходима обратная связь.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях, ЭВМ.

Основные элементы автоколебательной системы

На примере генератора на транзисторе можно выделить основные элементы, характерные для многих автоколебательных систем.


1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).

2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).

3. Устройство, регулирующее поступление энергии от источника в колебательную систему - клапан (в рассмотренном генераторе - транзистор).

4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе - индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

Примеры автоколебательных систем

Автоколебания в механических системах: часы с маятником или балансиром (колесиком с пружинкой, совершающим крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

К автоколебательным системам относятся электрический звонок с прерывателем, свисток, органные трубы и многое другое. Наше сердце и легкие также можно рассматривать как автоколебательные системы.

Электромагнитные колебания. Физика, учебник для 11 класса - Класс!ная физика


Из курса физики за 11 класс известно, что колебания — это изменение некоторого параметра системы вокруг среднего значения. Одним из видов колебаний являются автоколебания. Рассмотрим суть и особенности автоколебаний, дадим их определение.

Автоколебательные системы

В любой реальной системе происходят потери энергии. Любые колебания в реальных условиях не могут обходиться без притока энергии. Поэтому незатухающие колебания в реальности всегда являются вынужденными. Они постоянно получают энергию, которая компенсирует потери.

Свободные и вынужденные колебания

Рис. 1. Свободные и вынужденные колебания.

Однако процесс пополнения энергии может происходить по-разному. Например, поршень насоса колеблется под действием сил, приложенных к нему через механизм от ведущего вала. Здесь колебания поршня происходят с частотой, задаваемой извне, и вся подводимая энергия сразу же уходит на продвижение перекачиваемой жидкости.

Возможен другой вариант пополнения энергии — маятник часов. С каждым качанием маятник пополняет запасы энергии от анкерного механизма. Существенное отличие здесь состоит в том, что частота пополнения энергии в маятнике регулируется самим маятником.

Если в случае насоса параметры неважны — колебания будут всё равно происходить с частотой, задаваемой валом, — то в случае маятника ситуация другая. Увеличив жесткость пружины или массу баланса, мы изменим частоту колебаний, поскольку качающийся маятник изменит частоту подведения энергии от анкерного механизма.

Системы, в которых незатухающие колебания существуют за счет поступления энергии в систему под ее же управлением, называются автоколебательными. Колебания, возникающие в таких системах, называются автоколебаниями. В отличие от вынужденных колебаний, автоколебания существуют в системе без поступления внешних воздействий.

Еще один пример автоколебательной системы — это электрический генератор с контуром, состоящим из конденсатора и катушки индуктивности. В контуре могут существовать затухающие свободные колебания. Чтобы колебания в контуре стали незатухающими автоколебаниями, необходимо добавить в систему специальный элемент, который бы компенсировал потери энергии в контуре, причем делал бы это с периодом собственных колебаний контура (он находится по формуле Томсона $T=2\pi \sqrt $).

Таким элементом, как правило, является транзистор. Часть напряжения на катушке поступает на управляющий электрод транзистора (базу), и через участок коллектор-эмиттер транзистора энергия добавляется в контур.

Схема генератора на транзисторе

Рис. 2. Схема генератора на транзисторе.

Элементы автоколебательной системы

Выделим элементы автоколебательной системы:

  • источник, за счет которого восполняются потери энергии колебаний;
  • элемент, в котором возможно существование свободных затухающих колебаний;
  • устройство, регулирующее поступление энергии от источника;
  • обратная связь, управляющая регулирующим устройством, в зависимости от фазы колебаний.

В любой автоколебательной системе есть эти элементы. Отсутствие любого из них приводит к тому, что колебания становятся затухающими или вовсе невозможны.


Рис. 3. Автоколебательная система.

Что мы узнали?

Автоколебательная система — это система, колебания в которой совершаются под управлением самой системы. Простейшими примерами из жизни автоколебательных систем является маятник часов или генератор на транзисторе. Колебания, возникающие в автоколебательных системах, называются автоколебаниями.

Генератор электромагнитных колебаний представляет собой один из примеров автоколебательных систем.

Получение незатухающих колебаний в контуре.

Если конденсатор колебательного контура заряжен, то в кон­туре возникают затухающие колебания. Электрическая энергия W переходит во внутреннюю энергию:.

Пополнять энергию колебательного контура можно, подзаря­жая конденсатор. Для этого контур подключают к источнику то­ка. Контур подключается к источнику тока только в те интерва­лы времени, когда пластина конденсатора, присоединенная к по­ложительному полюсу источника, заряжена положительно.

Если источник постоянного тока будет все время подключен к контуру, то в энергия поступает в контур, а следующую

возвращается в источник, т. е. колебания затухают.

Частота колебаний, возникающих в контуре, определяется его параметрами (индуктивностью и емкостью), а амплитуда колебаний – напряжением на источнике (его эдс).

Незатухающие колебания установятся в том случае, если контур будет подключаться к источнику только в первую полови­ну периода. Для выполнения такого условия ключ должен замы­кать и размыкать цепь с частотой, соответствующей частоте электромагнитных колебаний контура. Однако механический ключ инертен.

Безынерционным ключом является транзистор. Транзистор обеспечивает поступление энергии к колебательному контуру, если напряжение на электронном переходе меняется синфазно с напряжением на контуре.

Безынерционным ключом является транзистор

Генератор высокочастотных колебаний на транзисторе

Первая четверть периода. По­ложительно заряженная пласти­на конденсатора, соединенная с коллектором, разряжается. Ток в колебательном контуре возрас­тает до максимального значе­ния. В катушке связи возникает индукционный ток такого направ­ления, что база имеет отрицательный потенциал относительно эмиттера. Переходы база — коллектор и эмиттер — база пря­мые. Транзистор открыт. Энергия от источника поступает через транзистор в колебательный контур (ключ замкнут).

Вторая четверть периода. Ток в контуре убывает. Верхняя пластина заряжается отрицательно. В катушке связи ток меняет направление. На базе положи­тельный потенциал. Переход коллектор—база обратный. Тока в цепи нет (ключ разомкнут).

Третья четверть периода. Конденсатор разряжается. Ток рас­тет до максимального значения, направлен от нижней пластины к верхней. В катушке связи ток направлен так, что база получает положительный потенциал. Переход база — коллектор обратный. Тока в цепи нет (ключ разомкнут).

Четвертая четверть периода. Ток в контуре, не меняя направления, убывает. Верхняя пластина заряжается положительно.

В катушке связи ток меняется по направлению. Заряд на ба­зе отрицательный. Переходы база — коллектор и эмиттер — ба­за прямые. Энергия поступает от источника в колебательный контур (ключ замкнут).

Таким образом, происходят незатухающие электромагнитные колебания за счет поступления энергии от источника в колеба­тельный контур в течение 1/2 Т.

Читайте также: