Почему фотосинтез не относится к животным кратко

Обновлено: 07.07.2024

В процессе фотосинтеза главную роль играют: хромосомы; хлоропласты; хромопласты; лейкопласты.

Фотосинтез — это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты, содержащих зеленый пигмент хлорофилл.

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических.

Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества — углекислый газ (CO2) и вода (H2O).

Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода — из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений.

Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C6H12O6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде.

Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO2 + 6H2O → C6H12O6 + 6O2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой, вторая — темновой. Такие названия обусловлены тем, что свет нужен только для световой фазы, темновая фаза независима от его наличия, но это не значит, что она идет в темноте.

Световая фаза протекает на мембранах тилакоидов хлоропласта, темновая — в строме хлоропласта.

В световую фазу связывания CO2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ, использование энергии на восстановление НАДФ до НАДФ*H2.

Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом. Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода.

Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H2O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H2 + ½O2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H2.

Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO2 объединяются с водородом, высвобождаемым из молекул НАДФ*H2, и образуется глюкоза:

6CO2 + 6НАДФ*H2 →С6H12O6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания.

На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода.

Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO2. Такой ресинтез обеспечивается циклом Кальвина. Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Фотосинтез и биосфера

Основным и практически неиссякаемым источ­ником энергии на поверхности Земли является энергия солнечного излучения, постоянным пото­ком поступающая из космоса благодаря протека­нию термоядерных реакций на ближайшем к нам светиле — Солнце.

Как показано на рис. 1, спектр поступающего на Землю солнечного излучения со­ответствует спектру излучения абсолютно черного тела, нагретого до 5900 К. Полный поток солнечно­го излучения (измеренный за пределами земной ат­мосферы), приходящийся на единицу поверхности, нормальной к направлению на Солнце, близок к 1400 Вт/м2. Значительная часть этой энергии прихо­дится на область видимого и ближнего инфракрас­ного излучения (0,3 — 1,0 мкм) — фотосинтетически активную радиацию, эффективно поглощаемую пигментами, участвующими в фотосинтезе расте­ний и фотосинтезирующих бактерий.

Какая бы часть спектра этого излучения ни по­глощалась на Земле, это в конечном счете приводит главным образом к нагреванию поверхности плане­ты и ее атмосферы, или же энергия вновь испуска­ется в космическое пространство. Какова же роль фотосинтеза, фотосинтезирующих организмов в улавливании этой энергии? Почему утверждают, что фотосинтез — это энергетическая основа биоло­гических процессов, энергетический движитель развития биосферы?

Почему говорят как о фотоавтотрофии (то есть о питании за счет света) биосфе­ры в целом, так и о фотоавтотрофии человечества, а жизнь на Земле называют космическим явлением прежде всего потому, что она существует и развивает­ся за счет энергии, поступающей к нам из космоса — от ближайшего космического светила?

Как известно, фотосинтез растений заключается в преобразовании и запасании солнечной энергии, в результате которого из простых веществ — угле­кислоты и воды — синтезируются углеводы и выде­ляется молекулярный кислород.

В общем виде этот процесс можно описать следующим уравнением (рис. 2).

Несмотря на кажущуюся простоту фотосинтеза, на Земле, пожалуй, нет более удивительного про­цесса, который смог бы в такой степени преобразо­вать нашу планету.

Биологическое значение фотосинтеза

Каждый зеленый листок – самая таинственная лаборатория из всех, какие существуют на Земле.

В нем ежесекундно осуществляется дерзновенная мечта биохимиков – создание живого из неживого. Только зеленые растения в процессе фотосинтеза способны образовывать органические вещества из неорганических. Начинается эта работа с пленения солнечного луча. Все другие организмы живут за счет вещества и энергии, приготовленной зелеными растениями. В органическом веществе аккумулируется химическая энергия, необходимая для осуществления всех процессов жизнедеятельности растений и животных, в том числе и человека.

Достоверно известно, что на Земле за год образуется до 450 млрд. т. органического вещества.

Современный газовый состав атмосферы – это результат длительного исторического развития земного шара.

Первичная атмосфера Земли состояла главным образом из водяных паров, азота и углекислого газа с небольшой примесью других газов (NH2, CH4, CO2, H2S) при почти полном отсутствии кислорода.

На определенном этапе развития живых систем появляются организмы способные улавливать солнечный свет и образовывать органические вещества из неорганических (появление фотосинтеза). В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород.

Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания.

В процессе фотосинтеза поглощается СО2. Вовлечение СО2 в круговорот веществ приводит к снижению его содержания в атмосфере, и тем самым препятствует накоплению СО2 в различных средах.

Первоначально потребление кислорода организмами было невелико, поэтому он стал накапливаться в атмосфере. Кислород накапливался в атмосфере и в ее верхних слоях под действием ультрафиолетовых лучей превращается в озон.

По мере накопления озона происходило образование озонового слоя. Он как экран защищает поверхность земли от губительных ультрафиолетовых лучей.

В свою очередь образование озонового слоя предопределило выход организмов в наземно-воздушную среду, т.к. защитило их от жесткого космического излучения.

Поглощенные сотни миллионов лет назад земным растением солнечные лучи сохранились до наших дней в виде ископаемого энергетического топлива (каменный уголь, природный газ, торф).

Парниковые условия каменноугольного периода способствовали накоплению в ходе фотосинтеза большого количества органического вещества, а значит и энергии солнца в виде энергии химических связей.

Таким образом, фотосинтез предопределил образование биогенного вещества, которое человек использует как источник энергии.

Фотосинтез — это процесс преобразования углекислого газа в кислород под воздействием солнечной энергии. Хотя в более широком смысле этого слова подразумевается множество процессов, в результате которых происходит поглощение и преобразование квантов света.

И обладают этой способностью не только растения, но и многие микроорганизмы.

Так, большую часть кислорода вырабатывают фитопланктоны, обитающие в Мировом океане. Но и роль растений преуменьшать не стоит.

Этапы фотосинтеза

На самом деле, фотосинтез — очень сложный процесс. На первом его этапе идёт поглощение солнечной энергии и её передача другим молекулам, причастным к процессу. На втором этапе — разделение квантов света на заряды, в результате чего становится возможной передача электронов по фотосинтетической цепи.

Благодаря этому происходит создание АТФ и НАДФН. Оба этапа имеют общее название — светозависимая стадия фотосинтеза.

Энергия, что накапливается в результате поглощения квантов света, используется в дальнейшем для образования кислорода. Но наличие самого света для этого уже не требуется.

На третьем этапе происходят различные биохимические реакции, в результате которых из углекислого газа могут вырабатываться глюкоза, сахар, крахмал и т.д.

Значение фотосинтеза

Именно благодаря данному процессу Солнце является главным источником энергии на нашей планете. Многие организмы и вовсе живут лишь за счёт солнечной энергии. И они же, буквально, выдыхают её в окружающее пространство.

Это позволяет другим живым организмам пользоваться ей. К примеру, всем нам известно, что мощнейшими источниками энергии для человечества являются нефть, природный газ, торф и уголь. Но мало кто знает, что вся энергия, что выделяется при сжигании этих полезных ископаемых, была запасена в результате фотосинтеза.

Но важнейшим свойством фотосинтеза, разумеется, является поглощение углекислого газа и выработка кислорода.

Ведь именно благодаря этому и существует всё живое на нашей планете. Так что недооценивать важность этого процесса никак нельзя.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Фотосинтез - один из жизненно важных биологических процессов, которые протекают в природе и создают благоприятные условия для жизнедеятельности большинства живых организмов. Его основным результатом является выделение органических веществ и кислорода. Основная химическая реакция проходит между водой и углекислым газом, но для ее успешного протекания обязательно требуется участие света.

История проведения научных исследований по фотосинтезу

В процессе изучения растений и животных было сделано ряд важнейших экспериментов, которые привели ученых к открытию фотосинтеза. Произошло это еще несколько столетий назад. В 1600 году бельгийский биолог Ян Ван Гельмонт провел достаточно простой, но очень значимый эксперимент. Он поместил в горшок с землей небольшую ивовую веточку. Несколько лет растение получало в качестве полива дождевую воду, что привело к увеличению его массы на 60 кг. При этом вес земли в горшке уменьшился всего на 50 грамм.

Рис. 1. Процесс фотосинтеза

Рис. 1. Процесс фотосинтеза В 1771 году англичанин по имени Джозеф Пристли также провел очень значимый эксперимент. Он закрыл под колпаком мышь, но существо погибло от удушья уже через 5 дней. В следующий раз он поместил под колпак не только мышку, но и небольшую веточку зеленой мяты. Животное выжило, а ученый сделал выводы о существовании некоего процесса, противоположного дыханию. Также этот эксперимент доказал способность зеленых растений выделять кислород в процессе собственной жизнедеятельности.

Важно! Джозеф Пристли большую часть жизни посвятил службе священнослужителем в английской церкви, но вошел в историю человечества в роли выдающегося ученого.

В 1782 году швейцарец Жан Сенебье привел научные доказательства химического распада углекислого газа под длительным влиянием солнечного света. Этот процесс беспрерывно происходит внутри зеленых органоидов практически всех растений. В 1787 году француз Жак Бусенго обнаружил, что растительность поглощает воду в процессе синтеза необходимых для ее жизнедеятельности органических веществ. А уже в 1864 году, немецкий биолог Юлиус Сакса сделал научный прорыв в исследовании процессов фотосинтеза и практически завершил цепочку открытий. Именно этот ученый смог доказать, что соотношение углекислого газа, потребляемого растениями, и вырабатываемого кислорода составляет пропорцию 1:1.

Особенности прохождения процессов фотосинтеза

  • углекислый газ
  • хлоропласты
  • солнечный свет
  • вода
  • температура

Рис. 2. Механизм бесхлорофилльного фотосинтеза галобактерий В морских и речных водорослях хлорофилл располагается в хроматофорах - светоотражающих и пигментсодержащих клетках. У обитающих на глубине водоемов бурых и красных водорослей в этом процессе участвуют другие пигменты, что связано с незначительным количеством поступающего к ним солнечного света. Если проанализировать пищевую цепочку живых существ, то фотосинтезирующие организмы будут находится в ее начале. Таким образом, автотрофы употребляются в пищу практически всеми живыми организмами Земли.

Важно! В результате фотосинтеза выделяющийся кислород поступает в атмосферу. Он необходим для дыхания всех растений и животный. Поднимаясь же в верхние слои атмосферы, кислород участвует в образовании озонового слоя, защищающего поверхность планеты от чрезмерного воздействия ультрафиолетовых лучей.

Как выполняется процесс фотосинтеза?

  1. Свет попадает на хлоропласты, которые располагаются в листьях и стеблях зеленых растений.
  2. Полуавтономные органеллы, расположенные внутри растительных клеток, начинают потреблять из почвы влагу, которая постепенно расщепляется на водород и кислород.

Важно! Эта химическая реакция также приводит к выработке кислорода. Важно! Оптимальным условием для фотосинтеза является наличие солнечных лучей, однако для некоторых фотосинтезирующих растений достаточно присутствия и искусственно созданного освещения.

Рис. 3. Хлоропласты в клетках листа

Основные фазы

Особенности световой фазы

  1. Свет, попадающий на растение, поглощается зеленым пигментом хлорофилла, что приводит к возбуждению молекулы и ее участию в процессе дальнейшего синтеза.
  2. Вода расщепляется на несколько составляющих, одной из которых являются атомы водорода. Именно это вещество в итоге используется для синтеза углеводных соединений.
  3. Синтез Аденозинтрифосфорной кислоты (АТФ) - действующего вещества, играющего роль энергетического накопителя в большинстве биологических процессов.

Особенности темновой фазы

Этот процесс осуществляется в стромах хлоропластов, обеспечивая выделение растениями кислорода и синтез глюкозы. Для синтезирования моносахаридов из углекислого газа активно используются вещества и энергия, которые были запасены в результате химических реакций под влиянием солнца. К примеру, для получения 1 молекулы глюкозы растению необходимо израсходовать 12 НАДФН и 18 АТФ. Рассматриваемая фаза проходит круглосуточно, ведь для ее успешного осуществления не требуется расхода световой энергии. Стоит заметить, что, несмотря на определенные энергетические потери во время темновой фазы фотосинтеза, общий КПД биологического процесса остается достаточно высоким.

Рис. 4. Химическая формула фотосинтеза

Значимость фотосинтеза для человека

В процессе фотосинтеза каждый листочек зеленого растения выполняет роль небольшой лаборатории, отвечающей за образование кислорода и органических веществ. Именно результат этой химической реакции обеспечивает органическую жизнь планеты необходимыми ресурсами. Поэтому крайне важно следить за жизнеспособностью флоры, охранять экологию и избегать чрезмерной вырубки лесов. Однако в мало засаженных растениями областях, например, пустынях или мегаполисах, человек также может продолжать свою жизнедеятельность.

Важно! Наземные растения обеспечивают Земле лишь 20% необходимого для существования живых организмов кислорода. Остальные же 80% синтезируются за счет морских, речных и океанических водорослей. Поэтому мировой океан нередко сравнивают с легкими планеты.


Мы все знаем, что растения способны фотосинтезировать – они могут преобразовывать энергию солнечного света в органические вещества с помощью хлоропласт или каротиноидов. Однако в последние годы было обнаружено небольшое количество фотосинтезирующих животных, которые перерабатывают солнечный свет через симбиоз с водорослями и даже вырабатывают собственный электрический ток.

Восточная изумрудная элизия (Elysia chlorotica)


Первым из этих удивительных фотосинтетических животных является моллюск восточная изумрудная элизия, который эффективно крадет гены у водорослей, входящих в его рацион. Когда Elysia chlorotica поедает водоросли, она интегрирует хлоропласты в свои собственные клетки – этот процесс стал возможным благодаря тому, что моллюск имеют гораздо менее сложный процесс расщепления пищи, чем большинство животных. Его кишечная оболочка содержит клеточный мешок, который поглощает целые части клеток того, что он переваривает, позволяя хлоропластам проходить через него.

Исследователи обнаружили, что в дополнение к хлоропластам восточная изумрудная элизия может поглощать другие фотосинтетические гены в процессе горизонтального переноса генов (ГПГ), при котором генетический материал передается организму-непотомку. ГПГ очень редко встречается у организмов, отличных от бактерий, и позволяет Elysia chlorotica не только сохранять клетки водорослей для себя, но и передавать их своему потомству. Украденные хлоропласты могут быть настолько эффективны, что эти моллюски способны жить до девяти месяцев без еды и и при этом поддерживать нормальный уровень питания.

Желтопятнистая амбистома (Ambystoma maculatum)


Желтопятнистая амбистома похожа на восточную изумрудную элизию в том, что для того, чтобы быть частично фотосинтетической, она поддерживает симбиотические отношения с клетками водорослей. Хотя уже давно было известно, что между желтопятнистой амбистомой и водорослями существует связь, предполагалось, что организмы не влияют друг на друга. Однако, когда исследователь Райан Керни изучал эмбрионов желтопятнистого амбистома, он обнаружил ярко-зеленый цвет, исходящий из их клеток.

Хлоропласты были обнаружены рядом с митохондриями внутри клеток животного, что означает, что митохондрии, вероятно, непосредственно потребляли кислород и углеводы, которые образуются в результате фотосинтеза. Самое удивительное в этой взаимосвязи то, что все позвоночные обладают сильной иммунной системой, стремящейся уничтожить любой чужеродный материал в своих клетках. Хотя остается еще много вопросов, тем не менее желтопятнистая амбистома является первым позвоночным, у которого была обнаружена способность к фотосинтезу.

Шершень восточный (Oriental hornet)


В отличие от кражи хлоропластов из водорослей, желтая полоса этого фотосинтетического насекомого содержит ксантоперин, который активно поглощает свет и преобразует его в электричество. Микроскопические бороздки в экзоскелете шершня восточного задерживают солнечный свет, и когда фотоны достигают желтого пигмента, создается напряжение.

Это напряжение высвобождается в виде тока, когда шершень находится в темноте, и, по-видимому, имеет важное значение для развития его куколок. Шершень восточный также отличается от других представителей семейства настоящие осы тем, что более высокие температуры и потоки тока соответствуют более высокой активности в колонии – что делает их максимально активными в начале дня, в отличие от большинства ос, которые наиболее активны в первые часы после рассвета.

Гороховая тля (Acyrthosiphon pisum)


Гороховая тля использует свой источник пищи для развития способности фотосинтезировать так же, как и первые два организма, но не применяет хлоропласты. Исследования этих маленьких насекомых показывают, что они используют выработку каротиноидов, необходимых для различных функций организма, таких как зрение, рост костей и выработка витаминов. Возможно, вы более знакомы с бета-каротином, который обычно содержится в моркови и часто применяется для улучшения зрения и роста костей.

После измерения уровня аденозинтрифосфата (АТФ – или энергии) тли можно было увидеть, что у тлей разного цвета были разные уровни АТФ. Окраска тли варьируется от белого до оранжевого и зеленого, при этом белый цвет содержит наименьшее количество каротиноидов, а зеленый – наибольшее. Было обнаружено, что зеленая тля имеет значительно больше АТФ, чем белая, в то время как оранжевая тля вырабатывает больше АТФ на свету, а не в темноте. Хотя необходимы дополнительные исследования, чтобы убедиться, что тля действительно обладает фотосинтетическими способностями, ясно, что каротиноиды могут поглощать свет и передавать эту энергию тли.

Благодаря лучшему пониманию и исследованию этих уникальных животных мы можем лучше понять не только то, как они функционируют, но и то, как они приобрели способность к фотосинтезу, а также как мы можем применить наши знания о них к себе и нашим постоянно развивающимся технологиям.

Каково значение фотосинтеза в природе

Биология

Фотосинтез является уникальным процессом превращения неорганических веществ в органические с помощью энергии солнечного света. Это свойственно только растениям. Значение фотосинтеза в природе сложно переоценить, ведь именно он поддерживает жизнедеятельность всех организмов на планете. Чтобы понять суть процесса, стоит рассмотреть его подробнее.

Определение понятия

Фотосинтез представляет собой цепь уникальных сложных химико-физических реакций. Чтобы понять, каково значение фотосинтеза в природе, необходимо разобраться с его сутью. Все зеленые растения и некоторые виды бактерий обладают способностью поглощать лучи солнца и конвертировать их в электромагнитную энергию.

Значение фотосинтеза в природе

В тканях растения под воздействием солнечного света запускается ряд последовательных окислительно-восстановительных реакций. Водород и вода в них являются своеобразными восстановителями. Эти вещества отдают свои электроны окислителям — ацетату и двуокиси углерода. Конечными продуктами протекающих в листочках реакций являются восстановленные углеводные соединения и кислород, выделяемый в окружающую среду.

Кратко об истории открытия

В течение нескольких тысячелетий люди считали, что растение питается благодаря своей корневой системе. В XVI столетии натуралист из Нидерландов Ян ван Гельмонт решил провести интересный эксперимент с выращиванием саженца ивы в горшке. Взвесив почву до момента посадки деревца и после достижения им определенных размеров, он сделал вывод, что основным источником питательных веществ для растений является вода.

Эта гипотеза просуществовала практически 2 столетия. Ее несостоятельность была доказана в 1771 году английским химиком Джозефом Пристли. Поставленные им опыты наглядно доказали, что растения могут очистить воздух, который прежде был непригоден для дыхания. После дальнейших исследований ученые установили, что растительные организмы не только превращают двуокись углерода в кислород, но и используют углекислый газ вместе с водой и минеральными солями для питания.

Значение фотосинтеза

Роль кислорода

Благодаря работе Джозефа Пристли, люди поняли, почему воздух на планете можно использовать для дыхания. Миллиарды лет назад на Земле жизни не существовало, так как в те древнейшие времена в атмосфере не содержался свободный кислород. Однако ситуация изменилась после появления первых растений в ходе эволюции. Нет сомнений, что именно благодаря им на планете появился кислород.

Фотосинтез дал толчок для развития жизни и навсегда изменил облик Земли. Лишь в конце XVIII столетия человечество осознало, сколь велико значение фотосинтеза. По сути, жизнь людей зависит от состояния растительного мира. Зная это, необходимо сделать все возможное, чтобы растения продолжали процветать и обеспечивать все остальные живые существа кислородом.

Значение процесса в природе

Сегодня ученые хорошо знают, какие именно процессы протекают в зеленых листьях растений, и в чем состоит значение фотосинтеза. Именно благодаря этим реакциям регулируется соотношение кислорода и двуокиси углерода в атмосфере.

Растения как основа питания

Продукты фотосинтеза обеспечивают растения питанием. При этом они сами являются пищей для гетеротрофных живых существ. Однако важность фотосинтеза заключается не только в способности зеленых листьев поглощать двуокись углерода.

Значение фотосинтеза кратко

Растительные организмы способны конвертировать серные и азотистые соединения в другие вещества, которые входят в состав их тел.

В почве находятся ионы нитратов. Благодаря корневой системе они потребляются растениями. Затем их клеточные структуры конвертируют эти вещества в аминокислоты. Именно из этих элементов слагаются все протеины. Также растительные организмы в ходе реакций фотосинтеза способны создавать и компоненты жирных кислот. Они крайне важны для жизнедеятельности человека.

Получение урожая

Сельскохозяйственные предприятия сегодня активно используют знания о росте и развитии растительных организмов. Не секрет, что фотосинтез является основой процесса формирования хорошего урожая. При этом на его интенсивность влияет водный режим, а также качество минерального питания растительных организмов. Таким образом, для получения высокого урожая сельскохозяйственных культур, следует обеспечить выращиваемые растения всеми необходимыми для их жизни веществами.

Сбор урожая

Ученые доказали, что урожайность зависит от двух важных составляющих:

  • общей площади зеленых листочков растений;
  • длительности и интенсивности протекающих в них реакций.

Однако увеличение плотности посевов дает негативный результат. В такой ситуации большое количество листьев затеняются, ухудшается качество вентиляции растений. В результате урожайность падает.

Для биосферы планеты

Ученые приблизительно подсчитали, что обитающие в Мировом океане растения каждый год потребляют 20−140 миллиардов тонн двуокиси углерода, а затем превращают этот газ в органические вещества. Для выполнения этой работы они используют не более 0,2% энергии лучей солнца. Наземные растительные организмы также вносят вклад в поддержание соотношения углекислого газа и кислорода в атмосфере. В среднем ими ежегодно потребляется около 20 миллиардов тонн двуокиси углерода.

Фотосинтез для биосферы планеты

Эти цифры красноречиво говорят о биологическом смысле фотосинтеза. Благодаря зеленым растениям живые существа биосферы получают необходимый для их жизни кислород. Некоторые исследователи считают, что с увеличением концентрации двуокиси углерода в атмосфере, интенсивность фотосинтеза возрастает. Однако на сегодняшний день эта гипотеза не доказана. Кроме этого, человечество активно использует продукты фотосинтеза, которые были созданы миллионы лет назад. Речь идет о различных видах полезных ископаемых:

  • природном газе;
  • нефти;
  • торфе;
  • каменном угле и т. д.

Людям необходимо обратить самое пристальное внимание на экологическую обстановку на планете. Человечество все активнее вмешивается в жизнь планеты, и хрупкий баланс может быть нарушен в любой момент. Учащимся младших и старших классов стоит напоминать, какое важное значение имеет для жизни человечества природа.

Читайте также: