Почему эталон измерения времени с помощью маятника нельзя считать достаточно точным кратко

Обновлено: 05.07.2024

Железнобитонная плита размером 4 м * 0,5 м * 0,25 м погружена в воду наполовину. какова архимедова сила, действующая сила на нее? плотность воды 1000 кг/м3

Велосипед движется равномерно по окружности радиусом 100 м и делает 1 оборот за 2 мин. Путь и перемещение велосипедиста за 1 мин соответственно равны

1. Классификацию галактик Хаббла часто называют камертонной. Поясните причину такого названия. 2. Определите, какой промежуток времени требуется свету, чтобы пересечь Большое и Малое Магеллановы Облака в поперечнике

Проблема измерения времени издавна стоит перед человеком. Сегодняшнее человеческое общество вообще не смогло бы наверное существовать без часов - приборов для точного измерения времени. Поезда не смогли бы ходить в соответствии с расписанием, рабочие завода не знали бы, когда приходить на работу, а когда уходить домой. С этой же проблемой столкнулись школьники и студенты.


В принципе, отмерять достаточно большие промежутки времени человек научился давно, ещё на рассвете своего развития. Такие понятия, как "сутки", "месяц", "год" появились ещё тогда. Первыми, кто разделил сутки на промежутки времени были, наверное, древние египтяне. В их сутках было 40 унут. И если промежуток времени в одни сутки можно измерить естественным образом (это время между двумя кульминациями Солнца), то для измерения более коротких промежутков времени необходимы специальные приборы. Это - солнечные, песочные и водяные часы. (Хотя, момент кульминации Солнца тоже без специальных приборов не определишь. Простейший специальный прибор - это палка, воткнутая в землю. Но об этом - как-нибудь в другой раз.) Все эти виды часов были изобретены ещё в античные времена и обладают рядом недостатков: они либо слишком неточны, либо отмеряют слишком короткие промежутки времени (например, песочные часы, больше подходящие в качестве таймера).

Особую важность точное измерение времени получило в средние века, в эпоху бурного развития мореплавания. Знание точного времени было необходимо штурману корабля для определения географической долготы. Поэтому, потребовался особо точный прибор для измерения времени. Для работы такого прибора необходим некий эталон, колебательная система, совершающая колебания за строго равные промежутки времени. Такой колебательной системой стал маятник.

Маятником называют систему, подвешенную в поле тяжести и совершающую механические колебания. Простейшим маятником является шарик, подвешенный на нити. Маятник обладает рядом интересных свойств. Важнейшим из них является то, что период колебаний маятника зависит только от длины подвеса и не зависит от массы груза и амплитуды колебаний (то есть, величины размаха). Это свойство маятника было впервые исследовано Галилеем.


Галилея побудило к глубоким исследованиям маятников наблюдение колебаний люстры, в Пизанском Соборе. Эта люстра свисала с потолка на 49-метровом подвесе.

Человек живёт во времени и пространстве, и уже в глубокой древности появилась необходимость измерять время и длину — характеристику пространства. Измерить — значит сравнить измеряемую величину с другой величиной того же рода, называемой единицей измерения. Эта единица должна быть чётко определённой и неизменной величиной — эталоном. Созданием эталонов занимается наука, именуемая метрологией. За эталон времени принята секунда, за эталон длины — метр. Но вот как их определить? Скажем, секунда — это промежуток времени, в течение которого. что? Метр — это расстояние, равное. чему? Эти вопросы отнюдь не просты. Посмотрим, как отвечает на них современная метрология.

Время

Так как истинные солнечные сутки не остаются одинаковыми в течение года, то в повседневной жизни за основную единицу времени принимают средние солнечные сутки, рассчитанные в предположении равномерного движения Земли по орбите. Время в таких сутках называют средним временем. Понятно, что его значение меняется с изменением географической долготы места: когда в Москве 12 часов дня, то, скажем, в Красноярске уже 16 часов, то есть возникает понятие местного времени. Местное среднее время на Гринвичском меридиане называют всемирным временем и обозначают UT (Universal Time). Это всемирное время положено в основу создания нескольких астрономических шкал времени.

Прежде всего заметим, что, хотя UT — среднее солнечное время, то есть определено из условия равномерного движения Земли по орбите, на его основе трудно создать равномерную шкалу по той причине, что положение любого меридиана, и в частности Гринвичского, подвержено изменениям из-за вращения Земли. Происходит это потому, что Земля — не абсолютно твёрдое тело: массы в ней непрерывно перераспределяются, вследствие чего полюса Земли незначительно (до 10–15 м) меняют положение, вызывая смещение меридианов, их соединяющих.

Существует несколько модификаций шкал всемирного времени. Из наблюдений суточных движений звёзд получается всемирное время UT0, не образующее равномерной шкалы. Если учесть поправку за смещение мгновенного полюса относительно его среднего положения, получим более равномерную шкалу UT1. Если принять во внимание ещё и сезонные вариации угловой скорости вращения Земли, получим более равномерную шкалу UT2. Наконец, учёт действия приливных явлений даёт шкалу UT1R.

Неравномерность суточного вращения и орбитального движения Земли не позволяет создать строго равномерные шкалы времени. Поэтому была введена ещё одна шкала — эфемеридное время, названное позже динамическим временем. Под ним понимают аргумент в дифференциальных уравнениях движения тел Солнечной системы в гравитационном поле. Это равномерно текущее время используют при определении эфемерид (элементов кеплеровой орбиты) спутников.

Любое время измеряют при помощи часов. После того как Галилей создал теорию маятника, а Гюйгенс изобрёл вращающийся балансир, появились маятниковые часы. И вскоре лучшие из них позволили обнаружить систематическое замедление суточного вращения Земли, вызванное океаническими приливами.

После изобретения кварцевых часов, в которых роль колебаний маятника играют упругие колебания кварцевых пластинок под действием электрического напряжения (пьезоэффект), было установлено, что и при учёте регулярного замедления длительность суток всё же непостоянна — она может изменяться в обе стороны на тысячные и даже сотые доли секунды.

К середине XX века стало ясно, что точность лучших часов превзошла точность нашего природного эталона времени — суток. Возможности астрономических методов измерения времени оказались исчерпанными.

Принципиально новые и более точные методы измерения времени пришли из радиоспектроскопии и квантовой электроники.

Каждый атом или молекула избирательно поглощает или излучает не только свет, но и радиоволны определённой длины волны λ, или частоты f, которые характеризуются непревзойдённым постоянством. Это позволило создать квантовые стандарты частоты, а следовательно, и времени (вспомним, что частота — величина, обратная периоду, то есть времени одного колебания) и построить шкалу атомного времени AT, задаваемую конкретным атомным или молекулярным эталоном.

Шкала АТ практически совершенно равномерна. В ней единицей измерения служит атомная секунда — промежуток времени, в течение которого совершается 9 192 631 770 колебаний, соответствующих резонансной частоте энергетического перехода между уровнями сверхтонкой структуры основного состояния атома цезия-133 ( 133 Cs). Другими словами, за атомную секунду совершается число периодов колебаний цезиевого генератора, равное его частоте, составляющей 9 192 631 770 Гц (~ 9,2 Ггц). Стабильность этой частоты очень высока (то есть относительная нестабильность Δf/f, где Δf — уход частоты, очень мала). Кроме цезиевого в качестве стандартов частоты используют также рубидиевый и водородный генераторы (последний наиболее стабилен, см. таблицу).

Существует Международное атомное время ТАI (от французского названия Temps Atomic International). Оно устанавливается на основе показаний атомных часов в различных метрологических учреждениях в соответствии с приведённым выше определением атомной секунды.

Так как шкалы AT и UT не согласуются между собой, введена промежуточная шкала, называемая всемирным координированным временем UTС (Universal Time Coordinated). Это атомное время, которое корректируется на 1 с, когда его расхождение с UT1 превышает 0,5 с. Коррекция производится в последнюю секунду 30 июня или 31 декабря либо в обе даты.

Приведённое выше определение атомной секунды принято международными организациями в 1967 году, и в том же году на основе этого определения в СССР был создан новый Государственный эталон времени и частоты. Современный его вариант включает в себя цезиевый и водородный генераторы и обеспечивает хранение и воспроизведение секунды и герца с погрешностью, близкой к 1·10 -14 .

Длина

С развитием точных методов интерферометрических измерений появилась идея выразить метр в длинах световых волн, и в 1927 году VII Генеральная конференция по мерам и весам постановила: 1 метр равен 1 553 164,13 длины волны красной линии кадмия при определённых условиях (температуре, давлении и пр.) К 30-м годам ХХ века точность интерферометрических измерений превысила ширину штрихов на эталоне метра и его копиях. И в 1960 году XI Генеральная конференция по мерам и весам приняла новое определение метра: он стал равен 1 650 763,73 длины волны излучения в вакууме, соответствующей оранжевой линии спектра изотопа криптона с атомным весом 86 ( 86 Kr). Поскольку эта линия намного более узкая, чем у кадмия (чему, в частности, способствует то, что криптоновую лампу помещают в криостат с жидкой углекислотой), новое определение метра повысило точность эталона длины примерно в 100 раз.

Однако она в относительной мере была на четыре порядка ниже точности, достигнутой в эталонах времени. Это, в частности, ограничивало точность измерения скорости света. Действительно, она определялась путём измерения времени распространения света на базисе известной длины. Но если время можно было измерить с погрешностью порядка 10 –12 –10 –13 , то точность измерения длины базиса лимитировала точность криптонового эталона длины.

Это определение полностью отменяет криптоновый эталон длины и вообще делает метр не зависящим ни от какого источника света. Но зато придаёт ему зависимость от размера секунды, а значит, и герца — единицы частоты. Так впервые была установлена связь между длиной, временем и частотой. Эта связь привела к идее о создании единого эталона времени — частоты — длины (ВЧД), основанного на соотношении λ = с/ν, где λ — длина волны излучения стабилизированного лазера, ν — его частота. Плодотворность этой идеи в том, что частоту можно измерить с погрешностью, обеспеченной современным эталоном частоты (скажем, 10 -13 и менее). А так как значение с фиксировано, то и значение λ будет определено с той же погрешностью, что по крайней мере на четыре порядка точнее, чем при использовании прежнего криптонового эталона длины.

Однако эталон частоты, задающий атомную секунду, — цезиевый генератор, частота которого fэт = 9 192 631 770 Гц лежит в радиодиапазоне. И чтобы измерить частоту лазера ν сравнением с эталонной частотой, надо осуществить переход эталонной частоты в оптический диапазон, то есть умножить её до оптических значений. Однако эталонная частота имеет нецелочисленную величину и неудобна для преобразований. Поэтому обычно вместо цезиевого генератора используют более низкочастотный кварцевый генератор с удобным значением частоты, например 5 Мгц. Но такой генератор имеет гораздо меньшую стабильность частоты и сам по себе служить эталоном не может. Необходимо стабилизировать его частоту по цезиевому стандарту, придав ему такую же стабильность.

Это осуществляется при помощи схемы фазовой автоподстройки частоты. Низкая частота кварцевого генератора fкв увеличивается радиотехническими средствами в некоторое число (n) раз и в смесителе вычитается из частоты цезиевого эталона fэт. Подбором конкретных значений n и fкв разностную частоту (fэтnfкв) можно сделать приблизительно равной частоте кварцевого генератора: (fэтnfкв) = fкв.

Сигнал разностной частоты (fэтnfкв) после усиления поступает на один вход фазового детектора, а на другой его вход подаётся сигнал частоты fкв от кварцевого генератора. На выходе фазового детектора возникает напряжение, величина и знак которого зависят от отклонения разностной частоты от частоты fкв. Это напряжение поступает на блок управления частотой кварцевого генератора, сдвигая её до тех пор, пока она не станет точно равной разностной частоте. Другими словами, любая расстройка частот (fэтnfкв) и fкв вызывает появление управляющего сигнала, сводящего эту расстройку к нулю, благодаря чему частота кварцевого генератора автоматически поддерживается неизменной и её стабильность оказывается практически равной стабильности цезиевого эталона. Теперь можно осуществлять передачу этой частоты в оптический диапазон.

Для этой цели используется радиооптический частотный мост (РОЧМ), в котором при помощи многозвенной цепочки различных СВЧ-генераторов и промежуточных лазеров субмиллиметрового и инфракрасного диапазонов выполняется последовательное умножение эталонной частоты 5 МГц до значений 10 14 Гц. Так создаются эталоны частоты в оптическом диапазоне — оптические стандарты частоты. В качестве таких стандартов утверждены пять стабилизированных газовых лазеров.

Следовательно, эталон длины, воспроизводящий метр в его новом определении, реализуется при помощи атомного (цезиевого) эталона времени и частоты, дополненного РОЧМ. Этот комплекс и представляет собой единый эталон ВЧД. При этом характерно, что размеры всех единиц — единицы времени (секунды), частоты (герца) и длины (метра) — задаются всего двумя природными константами: резонансной частотой перехода в атоме цезия-133 и скоростью света в вакууме.

Почему эталон измерения времени с помощью маятника нельзя считать достаточно точным? 1) то что период колебаний не зависит от амплитуды - это лишь приближение. 2) трение в подвесе и сопротивление воздуха могут вносить дополнительные неточности.

Что принято за эталон времени?

Эталон соответствует определению единицы времени – секунды как интервал времени, в течении которого совершается 9192 631 770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями (F = 4, mF = 0 и F = 3, mF = 0) основного состояния атома цезия-133 в соответствии внешних полей.

Как устроен эталон времени?

Современный эталон единицы времени и частоты — сложный комплекс, в состав которого входят: цезиевые реперы частоты (генератора, дающего определенную частоту, воспроизводит размер секунды), водородные реперы частоты, водородные хранители частоты и шкал времени, цезиевый хранитель шкал времени, система формирования .

Что это эталон?

Эталон — средство измерений, служащее для хранения и передачи размера единицы физической величины другим средствам измерений.

Что является эталоном 1 секунды?

Пока вы читали это, атом цезия-133 совершил 9 192 631 770 переходов между энергетическими уровнями сверхтонкой структуры. Таков современный эталон единицы времени – секунды, принятый в 1967 году.

Что является международным эталоном длинным?

Была создана Главная палата мер и весов и заказаны в Англии государственные эталоны длины и массы, согласованные с международными. . Метр в настоящее время определён как длина пути, проходимого светом в вакууме за (1 / 299 792 458) секунды.

Что является эталоном метра?

После проведения измерения длины меридиана был изготовлен эталон метра. . Эталон метра — это такая неудобная линейка весьма странной формы, которой трудно измерять длину, так как на ней всего две метки в виде крестиков. Эта линейка изготовлена из сплава платины и иридия.

Как придумали 1 секунду?

Секунды во времена механических часов

В 1581 году датский учёный Тихо Браге переконструировал часы в своей обсерватории, которые показывали минуты, так, что они стали показывать и секунды.

Где находится мировой эталон времени?

Что служит определением длительности одной атомной секунды?

С 1967 года международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Согласно этому определению, атом цезия-133 является стандартом для измерений времени и частоты.

Что такое эталон простыми словами?

Значение слова Эталон по Ефремовой: Эталон - 1. Точная мера или точный измерительный прибор, служащие для воспроизведения, хранения и передачи единицы измерения чего-л. // Измерительный прибор большой точности, предназначенный для проверки других таких же приборов.

Что называется эталоном физической величины?

Эталон единицы физической величины (англ. measurement standard) – средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.

В чем состоит основное назначение эталонов?

эталон единицы величины - техническое средство, предназначенное для воспроизведения, хранения и передачи единицы величины. Основным назначением эталонов является хранение и воспроизведения единицы физической величины для передачи ее размера другим эталонам и рабочим средствам измерений.

Где хранятся эталоны мер?

Хранителями первичных эталонов являются государственные научные метрологические институты. Четыре из семи первичных эталонов, воспроизводящих единицы СИ, хранятся в Санкт-Петербурге во ВНИИМ им. Д.

Как определяется секунда?

Какие эталоны передают информацию о размерах рабочим средствам измерений?

Читайте также: