Почему двоичное кодирование является универсальным кратко

Обновлено: 03.07.2024

Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную. Чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка.

Алфавит языка – конечный набор отличных друг от друга символов, используемых для представления информации. Мощность алфавита – это количество входящих в него символов.

Алфавит, содержащий два символа, называется двоичным алфавитом. Представление информации с помощью двоичного алфавита называют двоичным кодированием. Двоичное кодирование универсально, так как с его помощью может быть представлена любая информация.

Основная литература:

1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.

Дополнительная литература:

  1. Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
  2. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  4. Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.

Теоретический материал для самостоятельного изучения

Кодирование информации

Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).

Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.

Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную.

Рассмотрим суть процесса дискретизации информации на примере.

На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления. Результатом их работы являются барограммы – кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рисунке 1.

На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений.


Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.

Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).

В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.

Двоичное кодирование

В общем случае, чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка. Таких языков тысячи. Каждый язык имеет свой алфавит.

Алфавит – конечный набор отличных друг от друга символов (знаков), используемых для представления информации. Мощность алфавита – это количество входящих в него символов (знаков).

Алфавит, содержащий два символа, называется двоичным алфавитом (рис. 3). Представление информации с помощью двоичного алфавита называют двоичным кодированием. Закодировав таким способом информацию, мы получим её двоичный код.

Рассмотрим в качестве символов двоичного алфавита цифры 0 и 1. Покажем, что любой алфавит можно заменить двоичным алфавитом. Прежде всего, присвоим каждому символу рассматриваемого алфавита порядковый номер. Номер представим с помощью двоичного алфавита. Полученный двоичный код будем считать кодом исходного символа.


Если мощность исходного алфавита больше двух, то для кодирования символа этого алфавита потребуется не один, а несколько двоичных символов. Другими словами, порядковому номеру каждого символа исходного алфавита будет поставлена в соответствие цепочка (последовательность) из нескольких двоичных символов. Правило получения двоичных кодов для символов алфавита мощностью больше двух можно представить схемой на рисунке.


Двоичные символы (0,1) здесь берутся в заданном алфавитном порядке и размещаются слева направо. Двоичные коды (цепочки символов) читаются сверху вниз. Все цепочки (кодовые комбинации) из двух двоичных символов позволяют представить четыре различных символа произвольного алфавита:


Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 – вдвое больше, чем из двух двоичных символов:


Соответственно, четырёхразрядный двоичный код позволяет получить 16 кодовых комбинаций, пятиразрядный – 32, шестиразрядный – 64 и т. д.

Длину двоичной цепочки – количество символов в двоичном коде – называют разрядностью двоичного кода.

Обратите внимание, что:

32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 и т. д.

Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.

Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода – буквой i, то выявленная закономерность в общем виде будет записана так:


В математике такие произведения записывают в виде:

Задача. Вождь племени Мульти поручил своему министру разработать двоичный код и перевести в него всю важную информацию. Двоичный код какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.

Решение. Так как алфавит племени Мульти состоит из 16 символов, то и кодовых комбинаций им нужно 16. В этом случае длина (разрядность) двоичного кода определяется из соотношения: 16 = 2 i . Отсюда i = 4.

Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Универсальность двоичного кодирования

В начале нашей беседы вы узнали, что информация, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный код. Таким образом, с помощью двоичного кода может быть представлена любая информация на естественных и формальных языках, а также изображения и звуки (рис. 6). Это и означает универсальность двоичного кодирования.


Простота технической реализации – главное достоинство двоичного кодирования. Недостаток двоичного кодирования – большая длина получаемого кода.

Равномерные и неравномерные коды

Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные – разное.

Выше мы рассмотрели равномерные двоичные коды.

Разбор решения заданий тренировочного модуля

№1.Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Переведите десятичное число 273 в двоичную систему счисления.

Воспользуемся алгоритмом перевода целых чисел из системы с основанием p в систему с основанием q:

1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.

2. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.

3. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Почему двоичное кодирование является универсальным?

Ответ

Двоичное кодирование универ­сально, так как с его помощью может быть представлена любая ин­формация на естественных и формальных языках, а также изображения и звуки.

Простота технической реализации — главное достоинство двоич­ного кодирования. Недостаток двоичного кодирования — большая длина получаемого кода.



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Универсальное двоичное кодирование. Равномерные и неравномерные коды."

На прошлом уроке мы узнали:

· Для удобства хранения и передачи информации её часто переводят из непрерывной формы в дискретную. Такой процесс называется дискретизацией.

· В процессе дискретизации информация записывается на одном из языков.

· Алфавитом языка называются все существующие символы, которые используются для представления информации на этом языке.

· Алфавит характеризуется своей мощностью, это количество символов, которые в него входят.

· Двоичный алфавит состоит из двух символов. Запись информации с помощью такого алфавита называется двоичным кодированием.

· Двоичный код – это код информации, получившийся в результате её двоичного кодирования.

· Любой алфавит можно привести к двоичному.

· Двоичное кодирование звука.

· Двоичное кодирование изображения.

· Равномерный и неравномерный коды.

Начнём с изображения. Вполне логично, что любое изображение можно разделить на некоторые участки, каждый из которых имеет свой цвет. Именно так происходит при представлении изображений на компьютере. Изображение разбивается на маленькие фрагменты, которые можно назвать точками. Каждое изображение имеет своё разрешение. Оно состоит из двух цифр, которые разделяются крестиком или двоеточием. Число слева, означает, на сколько точек делится изображение по горизонтали, а справа – на сколько по вертикали. Таким образом изображение на компьютере представляется в виде последовательности точек, каждая из которых имеет свой цвет. То есть изображение на компьютере можно представить, последовательно записав цвета всех точек, которые в него входят.


Немного иначе происходит двоичное кодирование звука. Позже из курса физики вы узнаете, что любой звук можно представить в виде непрерывной волны. Эту волну можно описать, зависимостью её амплитуды, то есть громкости звука от времени. Такую зависимость легко изобразить в виде графика. Чтобы представить звук в виде дискретных сигналов, время, в течение которого продолжается звук, делится на равные небольшие промежутки. И на каждом из промежутков заново определяется амплитуда волны, то есть громкость звука.


То, есть звук можно представить в виде списка чисел, каждое из которых означает амплитуду волны, в течение небольшого промежутка времени. Эти числа можно представить в виде двоичных кодов с одинаковым количеством разрядов. Таким образом звук на компьютере представляется в виде списка двоичных кодов одинаковой разрядности, каждый из которых обозначает амплитуду звуковой волны на некотором небольшом промежутке времени.




Снова ищем минимальные частоты появления. Возьмём две правые частоты и объединим их. Их сумма равна 6.


Теперь объединим две левые частоты. Их сумма равна 8.



Теперь двигаясь, сверху вниз присвоим ветвям дерева значения 0 и 1. Ветви, с большей частотой будем присваивать 1, а ветви с меньшей частотой – 0. Так левой ветви верхнего узла присвоим 1, а правой – 0.


Затем рассмотрим левый узел. Там две частоты равны. Поэтому левой ветви присвоим 0, а правой – 1.


Рассмотрим узел, частота которого равна 6. Частота появления пробела меньше суммарной частоты правой ветви. Поэтому левой ветви присвоим 0, а правой ветви – 1.


По такому же принципу пронумеруем оставшиеся ветви дерева.



Важно запомнить:

· Универсальность двоичного кодирования означает, что его можно применять для кодирования информации на любом формальном или неформальном языке, а также изображений и звука.

· Все коды можно разделить на равномерные и неравномерные, где равномерный код состоит из комбинаций равной длины, а неравномерный код состоит из комбинаций разной длины.

· Использование неравномерного кодирования позволяет сократить длину кода.




Компьютер обрабатывает большое количество информации. Аудиофайлы, картинки, тексты – все это необходимо воспроизвести или вывести на экран. Почему двоичное кодирование является универсальным методом программирования информации любого технического оборудования?

Чем отличается кодирование от шифрования?

Зачастую люди отождествляют понятия "кодирование" и "шифрование", когда на самом деле они имеют разный смысл. Так, шифрованием называют процесс преобразования информации с целью ее сокрытия. Расшифровать зачастую может сам человек, который изменил текст, или специально обученные люди. Кодирование же применяется для обработки информации и упрощения работы с ней. Обычно используется общая таблица кодировки, знакомая всем. Она же встроена в компьютер.

почему двоичное кодирование является универсальным

Принцип двоичного кодирования

Двоичное кодирование основывается на использовании всего лишь двух символов - 0 и 1 - для обработки информации, используемой различными устройствами. Эти знаки назвали двоичными цифрами, на английском – binary digit, или bit. Каждый из символов двоичного кода занимает память компьютера в 1 бит. Почему двоичное кодирование является универсальным методом обработки информации? Дело в том, что компьютеру легче обрабатывать меньшее количество символов. От этого напрямую зависит и продуктивность работы ПК: чем меньше функциональных задач нужно выполнить устройству, тем выше скорость и качество работы.

методы программирования

Где используется двоичное кодирование?

Двоичное кодирование информации в компьютере используется повсеместно. Каждый файл, будь то музыка или текст, должен быть запрограммирован, чтобы в последующем он мог быть легко обработан и прочитан. Система двоичного кодирования полезна для работы с символами и числами, аудиофайлами, графикой.

Двоичное кодирование чисел

Сейчас в компьютерах числа представлены в закодированном виде, непонятном для обычного человека. Использование арабских цифр так, как мы себе представляем, для техники нерационально. Причиной тому является необходимость присваивать каждому числу свою неповторимый символ, что сделать порой невозможно.

двоичное кодирование чисел

Существуют две системы счисления: позиционная и непозиционная. Непозиционная система основана на использовании латинских букв и знакома нам в виде греческих цифр. Такой способ записи достаточно сложен для понимания, поэтому от него отказались.

Позиционная система счисления используется и сегодня. Сюда входит двоичное, десятичное, восьмеричное и даже шестнадцатеричное кодирование информации.

Десятичной системой кодирования мы пользуемся в быту. Это привычные для нас арабские цифры, которые понятны каждому человеку. Двоичное кодирование чисел отличается использованием только нуля и единицы.

Целые числа переводятся в двоичную систему кодирования путем деления их на 2. Полученные частные также поэтапно делятся на 2, пока не получится в итоге 0 или 1. Например, число 12310 в двоичной системе может быть представлено в виде 11110112. А число 2010 будет выглядеть как 101002.

Индексы 10 и 2 обозначаются, соответственно, десятичную и двоичную систему кодирования чисел. Символ двоичного кодирования используется для упрощения работы со значениями, представленными в разных системах счисления.

Методы программирования десятичных чисел основаны на “плавающей запятой”. Для того чтобы правильно перевести значение из десятичной в двоичную систему кодирования, используют формулу N = M х qp. М – это мантисса (выражение числа без какого-либо порядка), p – это порядок значения N, а q – основание системы кодирование (в нашем случае 2).

Не все числа являются положительными. Для того чтобы различить положительные и отрицательные числа, компьютер оставляет место в 1 бит для кодирования знака. Здесь ноль представляет знак плюс, а единица – минус.

Использование такой системы счисления упрощает для компьютера работу с числами. Вот почему двоичное кодирование является универсальным при вычислительных процессах.

двоичное кодирование информации в компьютере

Двоичное кодирование текстовой информации

Каждый символ алфавита кодируется своим набором нулей и единиц. Текст состоит из разных символов: букв (прописных и строчных), арифметических знаков и других различных значений. Кодирование текстовой информации требует использования 8 последовательных двоичных значений от 00000000 до 11111111. Таким образом можно преобразовать 256 различных символов.

Для кодирования 1 символа требуется 8 бит памяти. Для упрощения подстчетов 8 бит приравниваются к 1 байту, поэтому общее место на диске для текстовой информации измеряется в байтах.

принцип двоичного кодирования

Двоичное кодирование звуков

Еще одна причина, почему двоичное кодирование является универсальным методом программирования информации, - это его простота при работе с аудиофайлами. Любая музыка представляет собой звуковые волны разной амплитуды и частоты колебания. От этих параметров зависит громкость звука и его высота тона.

Чтобы воспроизвести аудиофайл, компьютер обрабатывает запрограммированные последовательности двоичного кода и соединяет их в одну непрерывную волну.

символ двоичного кодирования

Кодирование графики

Графическая информация может быть представлена в виде рисунков, схем, картинок или слайдов в PowerPoint. Любая картинка состоит из мелких точек – пикселей, которые могут быть окрашены в разный цвет. Цвет каждого пикселя кодируется и сохраняется, и в итоге мы получаем полноценное изображение.

Если картинка черно-белая, код каждого пикселя может быть либо единицей, либо нулем. Если используется 4 цвета, то код каждого из них состоит из двух цифр: 00, 01, 10 или 11. По этому принципу различают качество обработки любого изображения. Увеличение или уменьшение яркости также влияет на количество используемых цветов. В лучшем случае компьютер различает около 16 777 216 оттенков.

символ двоичного кодирования

Заключение

Существуют разные методы программирования информации, среди которых двоичное кодирование является наиболее эффективным. Всего лишь с помощью двух символов - 1 и 0 - компьютер легко прочитывает большинство файлов. При этом скорость обработки намного выше, нежели использовалась бы, например, десятичная система программирования. Простота этого метода делает его незаменимым для любой техники. Вот почему двоичное кодирование является универсальным среди своих аналогов.

Читайте также: