Почему броуновские частицы участвуют в непрерывном и беспорядочном движении кратко

Обновлено: 02.07.2024

БРОУНОВСКОЕ ДВИЖЕНИЕ – видимое в микроскоп хаотическое перемещение очень малых частиц вещества под действием ударов молекул. Названо в честь английского ученого Броуна (1773–1858).

Открытие Броуна.

Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.

Как это часто бывает в науке, спустя многие годы историки обнаружили, что еще в 1670 изобретатель микроскопа голландец Антони Левенгук, видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.

Броуновское движение и атомно-молекулярная теория.

Объяснение броуновского движения (как назвали это явление) движением невидимых молекул было дано только в последней четверти 19 в., но далеко не сразу было принято всеми учеными. В 1863 преподаватель начертательной геометрии из Карлсруэ (Германия) Людвиг Кристиан Винер (1826–1896) предположил, что явление связано с колебательными движениями невидимых атомов. Это было первое, хотя и очень далекое от современного, объяснение броуновского движения свойствами самих атомов и молекул. Важно, что Винер увидел возможность с помощью этого явления проникнуть в тайны строения материи. Он впервые попытался измерить скорость перемещения броуновских частиц и ее зависимость от их размера. Любопытно, что в 1921 в Докладах Национальной Академии наук США была опубликована работа о броуновском движении другого Винера – Норберта, знаменитого основателя кибернетики.

Первоначала вещей сначала движутся сами,
Следом за ними тела из мельчайшего их сочетанья,
Близкие, как бы сказать, по силам к началам первичным,
Скрыто от них получая толчки, начинают стремиться,
Сами к движенью затем побуждая тела покрупнее.
Так, исходя от начал, движение мало-помалу
Наших касается чувств, и становится видимым также
Нам и в пылинках оно, что движутся в солнечном свете,
Хоть незаметны толчки, от которых оно происходит.

Броуновские частицы имеют размер порядка 0,1–1 мкм, т.е. от одной тысячной до одной десятитысячной доли миллиметра, потому-то Броуну и удалось разглядеть их перемещение, что он рассматривал крошечные цитоплазматические зернышки, а не саму пыльцу (о чем часто ошибочно пишут). Дело в том, что клетки пыльцы слишком большие. Так, у пыльцы луговых трав, которая переносится ветром и вызывает аллергические заболевания у людей (поллиноз), размер клеток обычно находится в пределах 20 – 50 мкм, т.е. они слишком велики для наблюдения броуновского движения. Важно отметить также, что отдельные передвижения броуновской частицы происходят очень часто и на очень малые расстояния, так что увидеть их невозможно, а под микроскопом видны перемещения, происшедшие за какой-то промежуток времени.

Теория броуновского движения.

В начале 20 в. большинство ученых понимали молекулярную природу броуновского движения. Но все объяснения оставались чисто качественными, никакая количественная теория не выдерживала экспериментальной проверки. Кроме того, сами экспериментальные результаты были неотчетливы: фантастическое зрелище безостановочно мечущихся частиц гипнотизировало экспериментаторов, и какие именно характеристики явления нужно измерять, они не знали.

Несмотря на кажущийся полный беспорядок, случайные перемещения броуновских частиц оказалось все же возможным описать математической зависимостью. Впервые строгое объяснение броуновского движения дал в 1904 польский физик Мариан Смолуховский (1872–1917), который в те годы работал в Львовском университете. Одновременно теорию этого явления разрабатывал Альберт Эйнштейн (1879–1955), мало кому известный тогда эксперт 2-го класса в Патентном бюро швейцарского города Берна. Его статья, опубликованная в мае 1905 в немецком журнале Annalen der Physik, называлась О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты. Этим названием Эйнштейн хотел показать, что из молекулярно-кинетической теории строения материи с необходимостью вытекает существование случайного движения мельчайших твердых частиц в жидкостях.

Ответ на страстный призыв Эйнштейна не заставил себя долго ждать.

В соответствии с теорией Смолуховского-Эйнштейна, среднее значение квадрата смещения броуновской частицы (s 2 ) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости h , размеру частицы r и постоянной Авогадро

NA: s 2 = 2RTt/6 ph rNA,

где R – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10 = 30 мкм, за 25 мин – на 10 = 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен (1870–1942).

В 1908 Перрен начал количественные наблюдения за движением броуновских частиц под микроскопом. Он использовал изобретенный в 1902 ультрамикроскоп, который позволял обнаруживать мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Крошечные шарики почти сферической формы и примерно одинакового размера Перрен получал из гуммигута – сгущенного сока некоторых тропических деревьев (он используется и как желтая акварельная краска). Эти крошечные шарики были взвешены в глицерине, содержащем 12% воды; вязкая жидкость препятствовала появлению в ней внутренних потоков, которые смазали бы картину. Вооружившись секундомером, Перрен отмечал и потом зарисовывал (конечно, в сильно увеличенном масштабе) на разграфленном листе бумаги положение частиц через равные интервалы, например, через каждые полминуты. Соединяя полученные точки прямыми, он получал замысловатые траектории, некоторые из них приведены на рисунке (они взяты из книги Перрена Атомы, опубликованной в 1920 в Париже). Такое хаотичное, беспорядочное движение частиц приводит к тому, что перемещаются они в пространстве довольно медленно: сумма отрезков намного больше смещения частицы от первой точки до последней.

Последовательные положения через каждые 30 секунд трех броуновских частиц – шариков гуммигута размером около 1 мкм. Одна клетка соответствует расстоянию 3 мкм. Если бы Перрен смог определять положение броуновских частиц не через 30, а через 3 секунды, то прямые между каждыми соседними точками превратились бы в такую же сложную зигзагообразную ломаную линию, только меньшего масштаба.

Используя теоретическую формулу и свои результаты, Перрен получил достаточно точное для того времени значение числа Авогадро: 6,8 . 10 23 . Перрен исследовал также с помощью микроскопа распределение броуновских частиц по вертикали (см. АВОГАДРО ЗАКОН) и показал, что, несмотря на действие земного притяжения, они остаются в растворе во взвешенном состоянии. Перрену принадлежат и другие важные работы. В 1895 он доказал, что катодные лучи – это отрицательные электрические заряды (электроны), в 1901 впервые предложил планетарную модель атома. В 1926 он был удостоен Нобелевской премии по физике.

Броуновское движение и диффузия.

Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалось конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой).

Почему получился шарик, понятно: ионы MnO4 – , образующиеся при растворении кристалла, переходят в раствор (гель – это, в основном, вода) и в результате диффузии равномерно движутся во все стороны, при этом сила тяжести практически не влияет на скорость диффузии. Диффузия в жидкости идет очень медленно: чтобы шарик вырос на несколько сантиметров, потребуется много часов. В газах диффузия идет намного быстрее, но всё равно если бы воздух не перемешивался, то запах духов или нашатырного спирта распространялся в комнате часами.

Теория броуновского движения: случайные блуждания.

Теория Смолуховского – Эйнштейна объясняет закономерности и диффузии, и броуновского движения. Можно рассматривать эти закономерности на примере диффузии. Если скорость молекулы равна u, то, двигаясь по прямой, она за время t пройдет расстояние L = ut, но из-за столкновений с другими молекулами данная молекула не движется по прямой, а непрерывно изменяет направление своего движения. Если бы можно было зарисовать путь молекулы, он принципиально ничем бы не отличался от рисунков, полученных Перреном. Из таких рисунков видно, что из-за хаотичного движения молекула смещается на расстояние s, значительно меньшее, чем L. Эти величины связаны соотношением s = , где l – расстояние, которое молекула пролетает от одного столкновения до другого, средняя длина свободного пробега. Измерения показали, что для молекул воздуха при нормальном атмосферном давлении l ~ 0,1 мкм, значит, при скорости 500 м/с молекула азота или кислорода пролетит за 10 000 секунд (меньше трех часов) расстояние L = 5000 км, а сместится от первоначального положения всего лишь на s = 0,7 м (70 см), поэтому вещества за счет диффузии передвигаются так медленно даже в газах.

Пусть подвыпивший матрос вышел поздно вечером из кабачка и направился вдоль улицы. Пройдя путь l до ближайшего фонаря, он отдохнул и пошел. либо дальше, до следующего фонаря, либо назад, к кабачку – ведь он не помнит, откуда пришел. Спрашивается, уйдет он когда-нибудь от кабачка, или так и будет бродить около него, то отдаляясь, то приближаясь к нему? (В другом варианте задачи говорится, что на обоих концах улицы, где кончаются фонари, находятся грязные канавы, и спрашивается, удастся ли матросу не свалиться в одну из них). Интуитивно кажется, что правилен второй ответ. Но он неверен: оказывается, матрос будет постепенно все более удаляться от нулевой точки, хотя и намного медленнее, чем если бы он шел только в одну сторону. Вот как это можно доказать.

sN = от начала. А пройдя еще раз (в одну из сторон) до ближайшего фонаря, – на расстоянии sN+1 = sN ± l , или, используя квадрат смещения, s 2 N+1 = s 2 N ± 2sN l + l 2. Если матрос много раз повторит это перемещение (от N до N + 1), то в результате усреднения (он с равной вероятностью проходит N-ый шаг вправо или влево), член ± 2sN l сократится, так что 2 N+1 = s 2 N + l 2> (угловыми скобками обозначено усредненная величина).

Так как s1 2 = l 2, то

s2 2 = s1 2 + l 2 = 2 l 2, s3 2 = s2 2 + l 2 = 3 ll 2 и т.д., т.е. s 2 N = N l 2 или sN = l . Общий пройденный путь L можно записать и как произведение скорости матроса на время в пути (L = ut), и как произведение числа блужданий на расстояние между фонарями (L = N l ), следовательно, ut = N l , откуда N = ut/ l и окончательно sN = . Таким образом получается зависимость смещения матроса (а также молекулы или броуновской частицы) от времени. Например, если между фонарями 10 м и матрос идет со скоростью 1 м/с, то за час его общий путь составит L = 3600 м = 3,6 км, тогда как смещение от нулевой точки за то же время будет равно всего s = = 190 м. За три часа он пройдет L = 10,8 км, а сместится на s = 330 м и т.д.

Произведение u l в полученной формуле можно сопоставить с коэффициентом диффузии, который, как показал ирландский физик и математик Джордж Габриел Стокс (1819–1903), зависит от размера частицы и вязкости среды. На основании подобных соображений Эйнштейн и вывел свое уравнение.

Теория броуновского движения в реальной жизни.

Чтобы рассчитать, насколько сместится человек в результате случайных блужданий, надо знать величину l , т.е. расстояние, которое человек может пройти по прямой, не имея никаких ориентиров. Эту величину с помощью студентов-добровольцев измерил доктор геолого-минералогических наук Б.С.Горобец. Он, конечно, не оставлял их в дремучем лесу или на заснеженном поле, все было проще – студента ставили в центре пустого стадиона, завязывали ему глаза и просили в полной тишине (чтобы исключить ориентирование по звукам) пройти до конца футбольного поля. Оказалось, что в среднем студент проходил по прямой всего лишь около 20 метров (отклонение от идеальной прямой не превышало 5°), а потом начинал все более отклоняться от первоначального направления. В конце концов, он останавливался, далеко не дойдя до края.

Пусть теперь человек идет (вернее, блуждает) в лесу со скоростью 2 километра в час (для дороги это очень медленно, но для густого леса – очень быстро), тогда если величина l равна 20 метрам, то за час он пройдет 2 км, но сместится всего лишь на 200 м, за два часа – примерно на 280 м, за три часа – 350 м, за 4 часа – 400 м и т. д. А двигаясь по прямой с такой скоростью, человек за 4 часа прошел бы 8 километров, поэтому в инструкциях по технике безопасности полевых работ есть такое правило: если ориентиры потеряны, надо оставаться на месте, обустраивать убежище и ждать окончания ненастья (может выглянуть солнце) или помощи. В лесу же двигаться по прямой помогут ориентиры – деревья или кусты, причем каждый раз надо держаться двух таких ориентиров – одного спереди, другого сзади. Но, конечно, лучше всего брать с собой компас.

Возьмём краску, разотрём её до мельчайших крупинок и добавим в воду. Рассматривая полученную смесь в микроскоп, можно увидеть, что крупинки краски непрерывно движутся.

Самые мелкие частички беспорядочно перемещаются с одного места на другое, а более крупные только беспорядочно колеблются.

Подобный опыт первым наблюдал в 1827 году английский ботаник Роберт Броун.


Роберт Броун (1773-1858 г.)

Он поместил частички цветочной пыльцы в воду и наблюдал в микроскоп. При наблюдении обнаружил, что частицы пыльцы оживленно и беспорядочно двигались с места на место.

Движение очень мелких частиц, находящихся в жидкости, и называют броуновским движением, а сами частицы называют броуновскими.

Наблюдения показывают, что броуновское движение никогда не прекращается. Движение не прекращается ни зависимо от времени суток, ни от времени года.

Причина Броуновского движения

Причина броуновского движения заключается в непрерывном движении молекул жидкости, в которой находятся крупинки твердого тела.

Разумеется, эти крупинки во много раз крупнее самих молекул, и когда мы видим под микроскопом движение крупинок, то не следует думать, что мы видим движение молекул. Ведь все мы знаем, что молекулы нельзя увидеть в обычный микроскоп, но от их толчков непрерывно и беспорядочно двигаются крупинки.

Так как молекулы движутся хаотично, то броуновские частицы получают толчки с разных сторон, и совершают движение столь причудливой формы.

Анимация 1: Броуновское движение. Желтый круг — броуновская частица, черные кружки вокруг — молекулы воды.

В 1905 году Альберт Эйнштейн осознал, что броуновское движение служит экспериментальным подтверждением атомной теории строения вещества.

Объясняя его так: взвешенная в воде частичка подвергается постоянному столкновению со стороны хаотично движущихся молекул воды. Молекулы воздействуют на нее со всех сторон с равной интенсивностью и равные промежутки времени. Частичка пыльцы (или другого мельчайшего вещества) получает импульс со стороны молекулы, ударившей ее с одной стороны, потом с другой стороны и т.д. что и приводит к хаотичному движению частиц в жидкости.

В 1908 году французский физик Жан Батист Перрен провел серию опытов, подтвердивших правильность эйнштейновского объяснения броуновского движения. Окончательно стало ясно, что наблюдаемое хаотичное движение броуновских частиц — не что иное, как следствие межмолекулярных соударений.

Броуновское движение – это движение взвешенных в жидкости или газе частиц.

Благодаря открытию броуновского движения стало более ясно строение вещества. Оно показало, что тела состоят из отдельных частиц – молекул и что эти молекулы находятся в непрерывном беспорядочном движении.

Отличие броуновского движение от теплового

Тепловое движение — движение частиц, образующих вещество. Например, хаотичное движение молекул — пример теплового движения.

Броуновские частицы, например крупинки твёрдого тела, не являются частицами вещества, они плавают в жидкости и движутся из-за ударов молекул с разных сторон.

Таким образом, тепловое движения является причиной броуновского движения.

Нам известно, что все вещества состоят из огромного числа очень и очень маленьких частиц, которые находятся в непрерывном и беспорядочном движении. Откуда нам это стало известно? Как учёные смогли узнать о существовании настолько маленьких частиц, которые ни в один оптический микроскоп невозможно увидеть? И уж тем более, как им удалось выяснить, что эти частицы находятся в непрерывном и беспорядочном движении? В этом учёным помогли разобраться два явления — броуновское движение и диффузия. Об этих явлениях мы и поговорим более подробно.

2. Броуновское движение

Английский учёный Роберт Броун не был физиком или химиком. Он был ботаником. И он совсем не ожидал, что откроет столь важное для физиков и химиков явление. И он не мог даже подозревать о том, что в своих довольно простых экспериментах он будет наблюдать результат хаотичного движения молекул. А это было именно так.

Что же это были за эксперименты? Они были почти такие же, что делают ученики на уроках биологии, когда с помощью микроскопа пытаются рассмотреть, например, клетки растений. Роберт Броун хотел рассмотреть в микроскоп пыльцу растений. Рассматривая зёрна пыльцы в капле воды, он заметил, что зёрна не находятся в покое, а непрерывно дёргаются, будто они живые. Наверное, сначала он так и подумал, но будучи учёным, конечно же отбросил эту мысль. Ему не удалось понять, почему эти зёрна пыльцы ведут себя таким странным образом, но он описал всё увиденное, и это описание попало в руки физиков, которые тут же поняли, что перед ними наглядное доказательство непрерывного и беспорядочного движения частиц.

Видео. Диффузия в жидкостях

Диффузия — это ещё один пример наглядного доказательства непрерывного и беспорядочного движения молекул. И заключается оно в том, что газообразные вещества, жидкости и даже твёрдые вещества, хотя и намного медленнее, могут самоперемешиваться друг с другом. К примеру, запахи различных веществ распространяются в воздухе даже в отсутствие ветра именно благодаря этому самоперемешиванию. Или вот ещё пример — если в стакан с водой бросить несколько кристаллов марганцовки и, не перемешивая воду, подождать около суток, то мы увидим, что вся вода в стакане будет окрашена равномерно. Это происходит из-за непрерывного движения молекул, которые меняются местами, и вещества постепенно перемешиваются самостоятельно без внешнего воздействия.

Знакомьтесь: наш мир. Физика всего на свете.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

4. Свойства броуновского движения и диффузии

Когда учёные-физики стали более подробно рассматривать явление, описанное Робертом Броуном, они заметили, что, как и диффузию, этот процесс можно ускорить, повышая температуру. То есть в горячей воде и окрашивание с помощью марганцовки будет происходить быстрее, и движение мелких твёрдых частичек, к примеру, графитовой крошки или тех же зёрен пыльцы, происходит с большей интенсивностью. Это подтверждало тот факт, что скорость хаотичного движения молекул напрямую зависит от температуры. Не вдаваясь в подробности, перечислим, от чего может зависеть и интенсивность броуновского движения, и скорость протекания диффузии:

1) от температуры;

2) от рода вещества, в котором эти процессы происходят;

3) от агрегатного состояния.

То есть при равной температуре диффузия газообразных веществ протекает значительно быстрее, чем жидкостей, не говоря уже о диффузии твёрдых тел, которая происходит настолько медленно, что её результат, и то очень незначительный, можно заметить или при очень высоких температурах, или за очень большое время — годы или даже десятилетия.

5. Практическое применение

Диффузия и без практического применения имеет огромное значение не только для человека, но и для всего живого на Земле: именно благодаря диффузии в нашу кровь через лёгкие попадает кислород, именно посредством диффузии растения добывают из почвы воду, поглощают углекислый газ из атмосферы и выделяют в ней кислород, а рыбы дышат в воде кислородом, который из атмосферы посредством диффузии попадает в воду.

Явление диффузии применяется и во многих областях техники, причём именно диффузии в твёрдых телах. К примеру, есть такой процесс — диффузионная сварка. В этом процессе детали очень сильно прижимаются друг к другу, нагреваются до 800 °C и посредством диффузии происходит их соединение друг с другом. Именно благодаря диффузии земная атмосфера, состоящая из большого количества различных газов, не разделяется на отдельные слои по составу, а везде примерно однородна — а ведь будь иначе, мы вряд ли смогли бы дышать.

Существует огромное количество примеров влияния диффузии на нашу жизнь и на всю природу, которые может найти любой из вас, если захочет. А вот о применении броуновского движения мало что можно сказать, кроме того, что сама теория, которая описывает это движение, может применяться и в других, казалось бы совершенно не связанных с физикой, явлениях. К примеру, эту теорию используют для описания случайных процессов, с применением большого количества данных и статистики — таких, как изменение цен. Теория броуновского движения используется для создания реалистичной компьютерной графики. Интересно, что человек, заблудившийся в лесу движется примерно так же, как и броуновские частички — блуждает из стороны в сторону, многократно пересекая свою траекторию.

6. Методические рекомендации учителям

1) Рассказывая классу о броуновском движении и диффузии, необходимо сделать акцент на том, что эти явления не доказывают факт существования молекул, но доказывают факт их движения и то, что оно беспорядочное — хаотичное.

2) Обязательно обратите особое внимание на то, что это непрерывное движение, зависящее от температуры, то есть тепловое движение, которое не может прекратиться никогда.

3) Продемонстрируйте диффузию с помощью воды и марганцовки, дав задание наиболее любознательным ребятам провести подобный эксперимент в домашних условиях и делая фотографии воды с марганцовкой через каждый час-два в течение дня (в выходной дети это с удовольствием сделают, а фото пришлют вам). Лучше, если в подобном эксперименте будет две ёмкости с водой — холодной и горячей, чтобы можно было продемонстрировать наглядно зависимость скорости диффузии от температуры.

4) Попробуйте измерить скорость диффузии в классе с помощью, к примеру, дезодоранта — в одном конце класса распыляем небольшое количество аэрозоля, а в 3-5 метрах от этого места ученик с секундомером фиксирует время, через которое он почувствует запах. Это и весело, и интересно, и запомнится детьми надолго!

5) Обсудите с детьми понятие хаотичности и тот факт, что даже в хаотических процессах учёные находят некие закономерности.

Броуновское движение

Броуновским движением называется хаотическое и беспорядочное движение маленьких частиц, как правило, молекул в разных жидкостях или газах. Причиной возникновения броуновского движения является столкновение одних (более мелких частиц) с другими частицами (уже более крупными). Какая история открытия броуновского движения, его значение в физике, и в частности в атомно-молекулярной теории? Какие примеры броуновского движения есть в реальной жизни? Обо всем этом читайте далее в нашей статье.

Открытие

Наблюдение Броуна подтвердили и другие ученые. В частности было подмечено, что частицы имеют свойство ускоряться с увеличением температуры, а также с уменьшением размера самих частиц. А при увеличении вязкости среды, в которой они находились, их движение наоборот, замедлялось.

Роберт Броун

Роберт Броун, открыватель броуновского движения.

Это интересно: вы и сами можете наблюдать броуновское движение своими глазами, для этого вам понадобится не сильный микроскоп (ведь во время жизни Роберта Броуна еще не было мощных современных микроскопов). Если рассматривать через этот микроскоп, например, дым в зачерненной коробке и освещенный боковым лучом света, то можно будет увидеть маленькие кусочки сажи и пепла, которые будут непрерывно скакать туда-сюда. Это и есть броуновское движение.

Атомно-молекулярная теория

Открытое Броуном движение вскоре стало очень известным в научных кругах. Сам первооткрыватель с удовольствием показывал его многим своим коллегам. Однако долгие годы и сам Роберт Броун, ни его коллеги не могли объяснить причины возникновения броуновского движения, то почему оно вообще происходит. Тем более что броуновское движение было совершенно беспорядочным и не поддавалось никакой логике.

Его пояснение было дано лишь в конце ХIX века и оно не сразу было принято научным сообществом. В 1863 году немецкий математик Людвиг Кристиан Винер предположил, что броуновское движение обусловлено колебательными движениями неких невидимых атомов. По сути это было первое объяснение этого странного явления, связанное со свойствами атомов и молекул, первая попытка при помощи броуновского движения проникнуть в тайну строения материи. В частности Винер попытался измерить зависимость скорости движения частиц от их размера.

Впоследствии идеи Винера были развиты другими учеными, среди них был известный шотландский физик и химик Уильям Рамзай. Именно ему удалось доказать, что причиной броуновского движения мелких частиц являются удары на них еще более мелких частиц, которые в обычный микроскоп уже не видны, подобно тому, как не видны с берега волны качающие далекую лодку, хотя движение самой лодки видно вполне ясно.

Уильям Рамзай в своей лаборатории

Уильям Рамзай в своей лаборатории.

Таким образом броуновское движение стало одной из составных частей атомно-молекулярной теории и одновременно важным доказательством того факта, что вся материя, состоит из мельчайших частиц: атомов и молекул. В это трудно поверить, но еще в начале ХХ века часть ученых отрицала атомно-молекулярную теорию, и не верила в существование молекул и атомов. Научные работы Рамзая связанные с броуновским движением нанесли сокрушительный удар противникам атомизма, и заставили всех ученых окончательно убедиться, что вот смотрите сами, атомы и молекулы существуют, и их действие можно видеть собственным глазами.

Теория броуновского движения

Несмотря на внешний беспорядок хаотического движения частиц, их случайные перемещения все-таки попытались описать математическими формулами. Так родилась теория броуновского движения.

К слову, одним из тех, кто разрабатывал эту теорию, был польский физик и математик Мариан Смолуховский, который как раз в то время работал во Львовском университете и жил в родном городе автора этой статьи, в прекрасном украинском городе Львове.

Львовский университет

Львовский университет, ныне университет им. И. Франка.

Параллельно с Смолуховским теорией броуновского движения занимался один из светочей мировой науки – знаменитый Альберт Эйнштейн, который в то время еще был молодым и никому известным работником в Патентном бюро швейцарского города Берна.

альберт эйнштейн

Оба ученых в результате создали свою теорию, которую можно также называть теорией Смолуховского-Эйнштейна. В частности была сформирована математическая формула, согласно нее среднее значение квадрата смещения броуновской частицы (s 2 ) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости n, размеру частицы r и постоянной Авогадро.

NA: s 2 = 2RTt/6 ph rNA – так выглядит эта формула.

R в формуле – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10 = 30 мкм, за 25 мин – на 10= 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен.

Для наблюдений за броуновскими частицами Перрен использовал новейший на то время ультрамикроскоп, через который уже были видны мельчайшие частицы вещества. В своих опытах ученый, вооружившись секундомером, отмечал положения тех или иных броуновских частиц через равные интервалы времени (например, через 30 секунд). Затем соединяя положения частиц прямыми линями, получались разнообразные замысловатые траектории их движения. Все это зарисовывались на специальном разграфленном листе.

броуновское движение Перрена

Так выглядели эти рисунки.

Составляя теоретическую формулу Эйнштейна со своими наблюдениями Перрен смог получить максимально точное для того времени значение числа Авогадро: 6,8 . 10 23

Своими опытами он подтвердил теоретические выводы Эйнштейна и Смолуховского.

Диффузия

Перемещения частиц при броуновском движении, внешне очень похоже с движением частиц при диффузии – взаимному проникновению молекул разных веществ под действием температуры. Тогда в чем же различие между броуновским движением и диффузией? В действительности, и диффузия и броуновское движение происходят по причине хаотического теплового движения молекул, и как результат описываются похожими математическими правилами.

Броуновское движение

Если же смотреть на микро уровне, то причиной движения броуновской частицы является ее столкновение с более мелкими частицами, в то время как при диффузии частицы сталкиваются с себе подобными другими частицами.

И диффузия и броуновское движение происходит под действием температуры. С уменьшением температуры, как скорость частиц при броуновском движении, так и скорость движения частиц при диффузии замедляются.

Примеры в реальной жизни

Теория броуновского движения, этих случайных блужданий имеет и практическое воплощение в нашей реальной жизни. Например, почему, человек, который заблудился в лесу, периодически возвращается на одно и то же место? Потому, что он ходит не кругами, а примерно так, как движется обычно броуновская частица. Поэтому свой собственный путь он пересекает сам много раз.

Поэтому, не имея четких ориентиров и направлений движения, заблудившийся человек уподобляется броуновской частице, совершающей хаотические движения. Но чтобы выйти из леса нужно иметь четкие ориентиры, разработать систему, вместо того, чтобы совершать разные бессмысленные действия. Одним словом, не стоит вести себя в жизни подобно броуновской частице, бросаясь из стороны в сторону, а знать свое направление, цель и призвание, иметь мечты, смелость и упорство их достигать. Вот так из физики мы плавно перешли к философии. На этом заканчиваем эту статью.

Сейчас вы познакомитесь с самым очевидным доказательством теплового движения молекул (второе основное положение молекулярно-кинетической теории). Обязательно постарайтесь посмотреть в микроскоп и увидеть, как движутся так называемые броуновские частицы.

Ранее вы узнали, что такое диффузия, т. е. перемешивание газов, жидкостей и твердых тел при их непосредственном контакте. Это явление можно объяснить беспорядочным движением молекул и проникновением молекул одного вещества в пространство между молекулами другого вещества. Этим можно объяснить, например, тот факт, что объем смеси воды и спирта меньше объема составляющих ее компонентов. Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие, взвешенные в воде частицы какого-либо твердого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским.

Броуновское движение - это тепловое движение взвешенных в жидкости (или газе) частиц.

Наблюдение броуновского движения

Английский ботаник Р. Броун (1773-1858) впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна. Позже он рассматривал и другие мелкие частицы, в том числе частички камня из египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммигут, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Самым поразительным и непривычным для нас является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броун вначале думал, что споры плауна проявляют признаки жизни.

Броуновское движение - тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растет. На рисунке 8.3 приведена схема движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.

Броуновское движение

Броуновское движение можно наблюдать и в газе. Его совершают взвешенные в воздухе частицы пыли или дыма.

В настоящее время понятие броуновское движение используется в более широком смысле. Например, броуновским движением является дрожание стрелок чувствительных измерительных приборов, которое происходит из-за теплового движения атомов деталей приборов и окружающей среды.

Объяснение броуновского движения

Объяснить броуновское движение можно только на основе молекулярно-кинетической теории. Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга. На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул. При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.

Броуновское движение

Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если площадка имеет размер порядка нескольких диаметров молекулы, то действующая на нее сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.

Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955).

Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории.

Опыты Перрена

Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле, то за счет теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определенное распределение молекул по высоте, о чем сказано выше, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причем, чем больше масса молекул, тем быстрее с высотой убывает их концентрация.

Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжелых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.

Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашел, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счет большой массы броуновских частиц убывание происходит очень быстро.

Более того, подсчет броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с известным.

Все эти факты свидетельствуют о правильности теории броуновского движения и, соответственно, о том, что броуновские частицы участвуют в тепловом движении молекул.

Вы наглядно убедились в существовании теплового движения; увидели, как происходит беспорядочное движение. Молекулы движутся еще более беспорядочно, чем броуновские частицы.

Сущность явления

Теперь давайте попробуем разобраться в сущности явления броуновского движения. А происходит оно потому, что все абсолютно жидкости и газы состоят из атомов или молекул. Но также нам известно, что эти мельчайшие частицы, находясь в непрерывном хаотическом движении, постоянно толкают броуновскую частицу с разных сторон.

Но вот что интересно, ученые доказали, что частицы более крупных размеров, которые превышают 5 мкм остаются неподвижными и в броуновском движении почти не участвуют, чего не скажешь о более мелких частицах. Частицы, имеющие размер менее 3 мкм, способны двигаться поступательно, совершая вращения или выписывая сложные траектории.

При погружении в среду крупного тела, происходящие в огромном количестве толчки, как бы выходят на средний уровень и поддерживают постоянное давление. В этом случае в действие вступает теория Архимеда, так как окруженное средой со всех сторон крупное тело уравновешивает давление и оставшаяся подъемная сила позволяет этому телу всплыть, или утонуть.

Но если тело имеет размеры такие, как броуновская частица, то есть совершенно незаметные, то становятся заметны отклонения давления, которые способствуют созданию случайной силы, которая приводит к колебаниям этих частиц. Можно сделать вывод, что броуновские частицы в среде находятся во взвешенном состоянии, в отличие от больших частиц, которые тонут или всплывают.

Значение броуновского движения

Давайте попробуем разобраться, имеет ли какое-либо значение броуновское движение в природной среде:

• Во-первых, броуновское движение играет значительную роль в питании растений из почвы;
• Во-вторых, в организмах человека и животных всасывание питательных веществ происходит через стенки органов пищеварения благодаря броуновскому движению;
• В-третьих, в осуществлении кожного дыхания;
• Ну и последнее, имеет значение броуновское движение и в распространении вредных веществ в воздухе, и в воде.

Домашнее задание

Внимательно прочитайте вопросы и дайте письменные ответы на них:

1. Вспомните, что называется диффузией?
2. Какая существует связь между диффузией и тепловым движением молекул?
3. Дайте определение броуновскому движению.
4. Как вы думаете, является ли броуновское движение тепловым, и обоснуйте свой ответ?
5. Изменится ли характер броуновского движения при нагревании? Если изменится, то, как именно?
6. Каким прибором пользуются при изучении броуновского движения?
7. Меняется ли картина броуновского движения при увеличении температуры и как именно?
8. Произойдут ли какие-либо изменения в броуновском движении, если водную эмульсию заменить на глицериновую?

Читайте также: