План урока закон сохранения импульса

Обновлено: 05.07.2024

5) проявление закона сохранения импульса в технике и природе.

Глоссарий по теме

Импульс тела (материальной точки) - векторная величина, равная произведению массы тела на скорость тела.

Импульс силы - произведение силы на время её действия.

Импульс тела равен сумме импульсов отдельных его элементов.

Импульс системы тел равен векторной сумме импульсов каждого из тел системы.

Внутренние силы - это силы, с которыми взаимодействуют тела системы между собой.

Внешние силы - это силы, создаваемые телами, которые не принадлежат к данной системе.

Замкнутая система - это система, в которой внешние силы не действуют или сумма внешних сил равна нулю.

Абсолютно неупругий удар - это столкновение двух тел, которые объединяются и движутся дальше как одно целое.

Абсолютно упругий удар - столкновение тел, при котором тела не соединяются и их внутренние энергии остаются неизменными.

Закон сохранения импульса: векторная сумма импульсов тел, образующих замкнутую систему, не меняется при любых взаимодействиях между телами системы.

Основная и дополнительная литература по теме урока:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 123 – 130.

Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.

Открытые электронные ресурсы:

Основное содержание урока


Импульс тела (материальной точки) представляет собой векторную величину, равную произведению массы тела на скорость тела:


Направление импульса всегда совпадает с направлением скорости, так как m > 0, то


Любое движущееся тела имеет импульс.

Единица измерения импульса:

Произведение силы на время её действия называется импульсом силы.

Второй закон Ньютона в импульсной форме.

Изменение импульса тела (материальной точки) равно импульсу действующей на него силы:


Импульс тела равен сумме импульсов отдельных его элементов:


Импульс системы тела равен векторной сумме импульсов каждого из тел системы:


Импульс обладает интересным свойством сохраняться, которое есть только у нескольких физических величинах.

Силы, с которыми взаимодействуют тела системы друг с другом, называются внутренними, а силы, создаваемые телами, которые не принадлежат этой системе, являются внешними силами.

Система, в которой внешние силы не действуют или сумма внешних сил равна нулю, называется замкнутой.

Полный импульс тел сохраняется, в замкнутой системе тела могут только обмениваться импульсами.

Столкновение тел представляет собой взаимодействие тел при их относительном перемещении. Абсолютно неупругий удар - это столкновение двух тел, которые объединяются и движутся дальше как одно целое.

Закон сохранения импульса при неупругом ударе:


Абсолютно упругий удар - столкновение тел, при котором тела не соединяются в одно целое и их внутренние энергии остаются неизменными.

Закон сохранения импульса при упругом ударе:

Закон сохранения импульса.

Если внешние силы на систему не действуют или их сумма равна нулю, то импульс системы остается неизменным:

Закон сохранения импульса является одним из основных законов физики.

Границы применимости закона сохранения импульса: замкнутая система.

Закон сохранения импульса с честью выдержал испытание временем и до сих пор он продолжает свое триумфальное шествие.

Он дал неоценимый инструмент для исследования ученым, как один из фундаментальных законов физики, ставя запрет одним процессам и открывая дорогу другим.

Действие этого закона проявляется в науке, в технике, в природе и в повседневной жизни. Всюду этот закон работает отлично - реактивное движение, атомные и ядерные превращения, взрыв и т.д.

Во многих повседневных ситуациях помогает разобраться понятие импульса.

Декарт понимал большое значение понятия количества движения — или импульса тела — как произведения массы тела на скорость. Но он совершил ошибку, не рассматривая количество движения как векторную величину. Ошибка эта была исправлена в начале XVIII века.

Разбор тренировочных заданий

1. Тело свободно падает без начальной скорости. Изменение модуля импульса этого тела за промежуток времени 2 с равно 10 кг∙м/с. Чему равна масса тела?

Дано: ∆t =𝟤 c; g ≈ 𝟣0 м∕с 2 ; ∆р =𝟣0 кг∙м ∕с.


т.к. тело свободно падает.

Запишем второй закон Ньютона в импульсной форме:

F = mg – т.к. при свободном падении действует только сила тяжести,

тогда ∆р = mg∆t, откуда:


2. Тело массой 400 г изменяет свои координаты по закону:


Тело будет иметь импульс 8 Н·с после начала движения за промежуток времени равный __________?

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ

БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

«Средняя общеобразовательная школа № 51

имени Героя Советского Союза,

Тема урока:

Цели урока:

Обосновать необходимость введения новой физической величины – импульс тела, ввести понятие - импульс силы.

Формировать понятие о замкнутых системах, вывести закон сохранения импульса.

Задачи:

Образовательные:

- раскрыть содержание закона сохранения импульса, понятий: импульс тела, импульс силы и научить применять полученные знания к анализу явлений взаимодействия тел;

- обеспечить усвоение понятия центра тяжести тела, устойчивого, неустойчивого, безразличного равновесий, устойчивости тел;

- продолжить формирование умения анализировать, устанавливать связи между элементами содержания ранее изученного материала по основам механики;

Развивающие:

- повысить познавательную активность обучающихся;

- развивать умения и навыки решения;

- развивать интеллектуальные способности обучающихся;

- активизировать деятельность обучающихся в процессе урока.

Воспитательные:

- раскрывать общекультурную значимость науки физики и формирование научного мировоззрения и мышления у обучающихся;

- формировать интерес к физике и ее приложениям.

I. Организационный момент.

II . Активизация опорных знаний.

III . Изучение нового материала.

IV . Закрепление изученного материала.

V . Домашнее задание.

VI . Подведение итогов.

Оборудование:

3. Шары разной массы, легко подвижные тележки, наклонная плоскость, штатив с муфтой и лапкой, брусок, плотная полоска бумаги, графин с водой, магнит.

Организационный момент.

Активизация опорных знаний.

Проблема: Почему? (Слайд 1)

- формулировка темы и цели урока (Слайд 2)

1. Что такое механическое движение?

2. Что такое взаимодействие тел?

3. Сформулируйте законы Ньютона.

Изучение нового материала.

Учитель: Зная основные законы механики (законы Ньютона), мы думаем, что можем решить любую задачу о движении тел. Но оказывается – это не так.

Эксперимент (демонстрирует учитель).

Упругое соударение шаров разной массы.

Движение изначально неподвижной тележки, после действия на нее другой тележки.

Учитель: (вопросы к классу):

- Как описать взаимодействие тел в данных опытах?

- Удобно ли использовать для этого законы Ньютона?

Вывод.

- Законы Ньютона позволяют решать задачи, связанные с нахождением ускорения движущегося тела, если известны все действующие на тело силы, т.е. равнодействующая всех сил. Но часто бывает очень сложно определить равнодействующую силу, как это было в наших случаях.

- Для описания подобных ситуаций в механике введены специальная величина, значение которой не изменяется при взаимодействии тел: импульс тела.

Импульс тела – это характеристика движения. Импульс обозначается : р.

Учитель: А теперь давайте попытаемся с вами определить от каких величин зависит импульс тела. Я обращаю ваше внимание на технику безопасности во время проведения экспериментов. (Слайд 4)

1) на штативе укрепить наклонную плоскость;
2) с наклонной плоскости скатывайте шары разной массы;

3) определите результаты взаимодействия шаров с бруском;

Вывод: импульс тела зависит от массы тела, чем больше масса тела – тем больше импульс тела.

1) измените угол наклонной плоскости;
2) повторите опыт с шаром большей массы;

3) определите результаты взаимодействия шара с бруском при разных углах наклона;

Вывод: импульс тела зависит от скорости тела, чем больше скорость тела – тем больше импульс тела.

Учитель: В результате фронтального эксперимента мы получили, что импульс тела зависит от массы и скорости тела. Следовательно, (Слайд 5)

Демонстрация (выполняет учитель)

Опыт: графин с водой и полоска плотной бумаги. ( Описание опыта: графин с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то графин движется вместе с бумагой. А если резко дернуть полоску бумаги – графин остается неподвижным.) (Слайд 6)

1) на поверхность стекла поместите стальной шарик;
2) быстро пронесите магнит над шариком;

3) медленно пронесите магнит над шариком;

4) определите от чего зависит результат взаимодействия тел.

Вывод: результат взаимодействия тел зависит от времени взаимодействия.

1) повторите опыт приблизив магнит к шарику;

Вывод: результат взаимодействия тел зависит от силы взаимодействия.

Учитель: В результате фронтального эксперимента мы получили, что результат взаимодействия двух тел зависит от силы и времени взаимодействия этих тел. Для характеристики этого результата взаимодействия вводят понятие импульс силы .

Учитель: Запишем связь между импульсом тела и импульсом силы. (Слайд 8)

1. Из второго закона Ньютона

2. Используем формулу ускорения

3. Подставляем формулу (1) в формулу (2)

4. Раскрываем скобки и переносим время t в левую часть уравнения

5. Получаем соотношение между импульсом силы и импульсом тела

Импульс силы равен изменению импульса тела.

Уравнение (3) является уравнением второго закона Ньютона в импульсной форме

Демонстрация (выполняет учитель)

Опыт: из учебника, демонстрирующий закон сохранения импульса.

Вывод: правый шар передает левому весь свой импульс. На сколько уменьшится импульс первого шара, на столько же увеличится импульс второго шара. Если же говорить о системе двух шаров, то импульс системы остается неизменным, т.е. сохраняется. (Слайд 9)

1. По третьему закону Ньютона два тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.

http://festival.1september.ru/articles/521443/5.jpg

2. По второму закону Ньютона

3. Используем формулу ускорения

4. Подставляем формулу ускорения в формулу (1)

5. После сокращения на время t и раскрытия скобок получаем

6. Перенесем в левую часть уравнения векторы импульсов тел до взаимодействия, а в правую часть – векторы импульсов тел после взаимодействия.

Это уравнение называется законом сохранения импульса тел.

Но, закон сохранения импульса выполняется только в замкнутых системах.

Определение замкнутой системы (Слайд 10)

Формулировку закона сохранения импульса обучающиеся смотрят в учебнике.

Учитель: В жизни мы встречаемся с такими явлениями как отскакивание мяча при ударе о стенку, землю, при разлете мячей при ударе друг о друга. На даче при поливе с использованием шланга можно наблюдать, как шланг извивается, когда вода выливается из него. В ванной комнате многие наблюдали, что при сильном напоре воды кран начинает крутиться в разные стороны. Охотники и стрелки рассказывают, что при выстреле из ружья ощущается отдача оружия при вылете пули. На уроках биологии вы знакомились с принципами движения морских обитателей: кальмаров, каракатиц, осьминогов.

Закон сохранения импульса проявляется в реактивном движении. А с этим видом движения мы с вами познакомимся на следующем уроке. (Слайд 11,12)

Закрепление изученного материала.

“ Два шарика и тележка” (экспериментальная задача)

На одинаковой высоте укреплены два желоба, по которым с одинаковой высоты скользят два одинаковых шарика.

1. Правый шарик – тележка приходит в движение;

2. Левый шарик – тележка приходит в движение;

3. Если скатываются оба сразу, то тележка остается в покое. Почему? Ответ: в первом и во втором случаях тележка получала импульс при взаимодействии с шариком. В случае, когда скатываются оба шарика сразу, горизонтальные проекции импульсов шариков равны и противоположны по знаку, а их сумма равна нулю, поэтому тележка была неподвижной.

2. а) Из двух тел различной массы,

движущихся с одинаковыми

скоростями, импульс которого больше?

υ 1

υ 2

б) Из двух тел равной массы , движущихся

с различными скоростями, импульс

в) Определите знаки проекций импульсов тел.

υ 1

υ 2

Тело массы небольшой (10 кг.)
скорость развивает (5м/с).
И какой же это тело импульс получает?

4. Скорость легкового автомобиля в 2 раза больше скорости грузового, а масса – в 4 раза меньше массы грузового автомобиля. Сравните модули импульсов автомобилей.

(Импульс легкового автомобиля меньше в два раза.)

5. Два шарика, стальной и алюминиевый, одинакового объема, падают с одной и той же высоты. Сравните их импульсы в момент падения на землю. (Импульс стального больше, так как больше его масса.)

Домашнее задание. (Слайд 15).

§21, упражнение №20 (1 – 3)

Подведение итогов.

Рефлексия – из трех предложенных стихов выбери одно, характеризующее твоё состояние на конец урока.

Не весел я сегодня,
В тишине взгрустнулось мне,
И о законе сохраненья
Все промчалось вдалеке.

Вспоминая, все познания свои,
И физики мир постигая,
Я благодарен матушке судьбе,
Что импульс есть и нам его не счесть.

сформировать понятия: импульс силы, импульс тела, реактивное движение; вывести закон сохранения импульса.

Оборудование:

компьютер с мультимедийным проектором, слайды с логическими и структурными схемами, стеклянная пластина, шарик, магнит, стакан с водой, лист бумаги, металлические шарики.

План урока:

  1. Организация начала урока.
  2. Активизация внимания.
  3. Изучение нового материала.
  4. Закрепление новых знаний.
  5. Подведение итогов урока.
  6. Домашнее задание.

Ход урока:

Учитель приветствует учеников, называет тему урока.

Учитель задает вопросы, ученики отвечают.

1. Формулировка второго закона Ньютона.
2. Формула второго закона Ньютона.
3. Значение и применение второго закона Ньютона.
4. Формулировка третьего закона Ньютона.
5. Формула третьего закона Ньютона.
6. Значение и применение третьего закона Ньютона.

При быстром движении магнита над шариком шарик едва сдвигается с места, при
медленном движении магнита над шариком шарик начинает двигаться вслед за магнитом.

Если медленно тянуть лист бумаги, стакан перемещается вместе с бумагой. Если лист бумаги быстро выдернуть из-под стакана, стакан останется на прежнем месте.

Проведенные эксперименты свидетельствуют о том, что результат взаимодействия тел зависит не только от значения силы, но и от времени ее действия. Законов Ньютона недостаточно для описания взаимодействия тел. Поэтому в физике для характеристики действия силы в зависимости от времени ввели специальную величину – импульс силы I.

Импульс силы – векторная физическая величина, равная произведению силы на время ее действия.

Хотя приведенная формулировка определения импульса силы характеризует его как физическую величину, формула имеет функцию закона, так как изменение значения величины в правой части приводит к изменению значения величины в левой части.

За единицу импульса принят такой импульс, при котором сила в 1 ньютон действует в течение 1 секунды.


Направление вектора импульса совпадает с направлением вектора силы.
Пуля массой 10 г, движущаяся со скоростью 5 м/с, может быть остановлена листом картона. Пулю массой 10 г, движущуюся со скоростью 900 м/с, нельзя остановить даже с помощью трех толстых досок.

  1. При быстром движении магнита над шариком шарик едва сдвигается с места, при медленном движении магнита над шариком шарик начинает двигаться вслед за магнитом.

  2. Если медленно тянуть лист бумаги, стакан перемещается вместе с бумагой. Если лист бумаги быстро выдернуть из-под стакана, стакан останется на прежнем месте.

  3. Пуля массой 10 г, движущаяся со скоростью 5 м/с, может быть остановлена листом картона. Пулю массой 10 г, движущуюся со скоростью 900 м/с, нельзя остановить даже с помощью трех толстых досок.
  4. Отдача при выстреле из ружья.

  5. При упругом взаимодействии шаров они разлетаются с определенными скоростями.
  1. Результат взаимодействия тел зависит не только от значения силы, но и от времени ее действия.
  2. Для характеристики движения тела важны значения массы и скорости движения.
  3. В замкнутой системе тел импульс системы сохраняется.

I - импульс силы.
F - сила.
t - время.

p - импульс тела (Рене Декарт, 1596-1650)

υ0, υ - начальная и конечная скорости тела.

[ I ] = [ F ]⋅[ t ] = нью-тон⋅секунда = Н⋅с

[ p ] = [ m ]⋅[υ] = килограмм⋅метр в секунду = (кг⋅м)/с

  • импульс силы,
  • импульс тела,
  • закон сохранения импульса, реактивное движение.

Направление импульса силы совпадает с направлением силы.

Направление импульса тела совпадает с направлением скорости тела.

Импульс силы равен изменению импульса тела.

Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел между собой.

где М и m – массы ракеты и газа соответственно, u и υ - скорости ракеты и газа соответственно
К.Э.Циолковский

  1. Для расчета F, t, m, υ.
  2. Ракеты, реактивные двигатели в авиации, космонавтике.


  3. Водометные катера.
  4. Движение живых существ: кальмаров, каракатиц, осьминогов.
  5. Придумайте и нарисуйте свой пример.

Следовательно, для характеристики движения тела важно знать его массу и скорость. Поэтому была введена еще одна специальная величина – импульс тела p (количество движения).

Импульс тела – векторная физическая величина, равная произведению массы тела на скорость его движения.

Хотя приведенная формулировка определения импульса тела характеризует его как физическую величину, формула также имеет функцию закона, так как изменение значения величины в правой части приводит к изменению значения величины в левой части.

За единицу импульса принят такой импульс, при котором тело массой 1 килограмм движется со скоростью 1 метр в секунду.

[p]=[m]⋅[υ]=килограмм⋅метр в секунду=(кг⋅м)/с

Направление импульса тела совпадает с направлением скорости тела.

Какова же связь между импульсом силы и импульсом тела?

Из второго закона Ньютона следует, что импульс силы равен изменению импульса тела.

Импульс силы равен изменению импульса тела.

Уравнение (3) является уравнением второго закона Ньютона в импульсной форме.

В жизни мы встречаемся с такими явлениями как отскакивание мяча при ударе о стенку, землю, при разлете мячей при ударе друг о друга. На даче при поливе с использованием шланга можно наблюдать, как шланг извивается, когда вода выливается из него. В ванной комнате многие наблюдали, что при сильном напоре воды кран начинает крутиться в разные стороны. Охотники и стрелки рассказывают, что при выстреле из ружья ощущается отдача оружия при вылете пули. На уроках биологии вы знакомились с принципами движения морских обитателей: кальмаров, каракатиц, осьминогов. При упругом взаимодействии шариков они разлетаются с определенными скоростями. Все наши наблюдения связаны с проявлением закона сохранения импульса тела.

Пусть m1 - масса первого тела, m2 - масса второго тела; υ01, υ02 - начальные скорости тел, υ1, υ2 - конечные скорости тел.

Тогда в замкнутой системе тел векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел между собой.

1. По третьему закону Ньютона два тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.


Это уравнение называется законом сохранения импульса тел.

Замкнутой называется система тел, взаимодействующих только между собой и не взаимодействующих с телами, не входящими в эту систему.

Закон сохранения импульса проявляется в реактивном движении. Реактивное движение – движение тела за счет отделения от него части тела, в результате чего само тело приобретает противоположно направленный импульс. Принцип реактивного движения широко применяется в авиации и космонавтике.

Идея использования ракет для космических полетов была выдвинута в начале 20 века русским ученым Константином Эдуардовичем Циолковским, который разработал теорию движения ракет, вывел формулу для расчета их скорости.

Закрепление новых знаний.

Учитель решает задачу из упр. 22, №2. Ученики самостоятельно решают задачу из упр. 20, №2.

Подведение итогов.

Учитель подводит итоги урока, проверяет решение задачи из упр. 20, №2, выставляет оценки.

Нажмите, чтобы узнать подробности

Обосновать необходимость введения новой физической величины – импульс тела, ввести понятие - импульс силы.

Открытый урок по теме:

9 класс.

Обосновать необходимость введения новой физической величины – импульс тела, ввести понятие - импульс силы.

Формировать понятие о замкнутых системах, вывести закон сохранения импульса.

Образовательные:

- раскрыть содержание закона сохранения импульса, понятий: импульс тела, импульс силы и научить применять полученные знания к анализу явлений взаимодействия тел;

- обеспечить усвоение понятия центра тяжести тела, устойчивого, неустойчивого, безразличного равновесий, устойчивости тел;

- продолжить формирование умения анализировать, устанавливать связи между элементами содержания ранее изученного материала по основам механики;

Развивающие:

- повысить познавательную активность обучающихся;

- развивать умения и навыки решения;

- развивать интеллектуальные способности обучающихся;

- активизировать деятельность обучающихся в процессе урока.

Воспитательные:

- раскрывать общекультурную значимость науки физики и формирование научного мировоззрения и мышления у обучающихся;

- формировать интерес к физике и ее приложениям.

Актуализация знаний.

1.Какой раздел физики называется механикой?

2.В чём заключается основная задача механики?

3.Как формулируется второй закон Ньютона?

4.О чём гласит третий закон Ньютона?

5.В каком случае основную задачу механики можно решить с помощью законов Ньютона?

Учитель: А как быть, если не известны значения сил, действующих на тело? Как тогда решается основная задача механики?

Демонстрационный эксперимент:

а) столкновение на столе двух шаров;

б) на неподвижную тележку, стоящую на столе, бросаем брусок.

Учитель: Как описать взаимодействия тел в этих опытах?

Тела изменяют свою скорость под воздействием силы, действующей со стороны другого тела.

Давайте найдём взаимосвязь между действующей на тело силой, временем её действия и изменением скорости тела.

Учитель работает на доске, учащиеся в тетрадях.

Пусть на тело массой m, которое покоится, действует сила , тогда по второму закону Ньютона: ,по определению:,так как левые части равенств одинаковые, следовательно:, (данная формула устанавливает взаимосвязь между действующей на тело силой, временем её действия и изменением скорости тела.) Обозначим:-импульс тела, а – изменение импульса тела.

Таким образом, мы получили ответ на поставленный вопрос. Не зная значений сил, действующих на тело, многие задачи в механике, можно решить, прибегая к величинам, характеризующим механическое движение, и способным сохранятся при определённых условиях. Одной из таких физических величин является импульс тела.

Итак, тема нашего урока: “Импульс тела. Закон сохранения импульса”

Работа по теме урока:

Сегодня на уроке мы с вами не только будем ставить опыты, но и доказывать их математически.

Зная основные законы механики, в первую очередь три закона Ньютона, казалось бы, можно решить любую задачу о движении тел. Ребята, я вам продемонстрирую опыты, а вы подумайте, можно ли в этих случаях используя только законы Ньютона решить задачи?

Проблемный эксперимент.

Опыт №1.Скатывание легкоподвижной тележки с наклонной плоскости. Она сдвигает тело, находящееся на ее пути.

Можно ли найти силу взаимодействия тележки и тела? (нет, так как столкновение тележки и тела кратковременное и силу их взаимодействия определить трудно).

Опыт №2. Скатывание нагруженной тележки. Сдвигает тело дальше.

Можно ли в данном случае найти силу взаимодействия тележки и тела?

Сделайте вывод: с помощью каких физических величин можно охарактеризовать движение тела?

Вывод: Законы Ньютона позволяют решать задачи связанные с нахождением ускорения движущегося тела, если известны все действующие на тело силы, т.е. равнодействующая всех сил. Но часто бывает очень сложно определить равнодействующую силу, как это было в наших случаях.

Если на вас катится игрушечная тележка, вы можете остановить ее носком ноги, а если на вас катится грузовик?

Вывод: для характеристики движения надо знать массу тела и его скорость.

Поэтому для решения задач используют еще одну важнейшую физическую величину - импульс тела.

Рене Декарт родился в дворянской семье, в школьные годы проявил интерес к математике. Получив образование, Декарт служил в армии, много путешествовал, затем поселился в Нидерландах, посвятив себя науке. Развивая идеи Галилея, сформулировал закон сохранения количества движения.

Найдем взаимосвязь между действующей на тело силой, временем ее действия, и изменением скорости тела.

Пусть на тело массой m, которое покоится, начинает действовать сила F. Тогда из второго закона Ньютона ускорение этого тела будет а. Причем:

одставив в первое выражение значение ускорения, получаем:

Рассмотрим правую часть, мы видим, что произведение массы на скорость есть импульс тела.В тетради записываем определение, что называем импульсом тела.

Произведение массы тела на его скорость называется импульсом тела.

Импульс р – векторная величина. Он всегда совпадает по направлению с вектором скорости тела. Любое тело, которое движется, обладает импульсом.

Выясним, в каких единицах измеряется импульс тела.

Т.к. масса измеряется в кг, а скорость – в м/с, то импульс тела измеряется в кг·м/с.

Но в правой части есть еще произведение массы на начальную скорость. Получаем, что все то, что стоит в правой части мы называем изменением импульса тела и обозначаем ∆p

∆p = mV – mV0 - изменение импульса тела

Задача (устно): Найдите импульс тела массой 5 кг, движущегося со скоростью 2 м/с.

Слева у нас произведение силы на время есть импульс силы

Ft – импульс силы

В каких единицах будет выражаться импульс силы? (Н с)

В векторном виде мы задачи не решаем.

Далеко не все задачи в механике можно решить, используя законы Ньютона. К таким задачам можно отнести расчет скорости тел после соударения и расчет текущей скорости тела, у которого меняется масса.

Рассмотрим опыт с мячами.

Импульс обладает интересным свойством, которое есть лишь у немногих физических величин. Это свойство сохранения. Но закон сохранения импульса выполняется только в замкнутой системе.

Запишем определение в тетрадь.

Замкнутая система тел – это совокупность тел, взаимодействующих между собой, но не взаимодействующих с другими телами.

Импульс каждого из тел, составляющих замкнутую систему, может меняться в результате их взаимодействия друг с другом.

Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

В этом заключается закон сохранения импульса.

1. По третьему закону Ньютона два тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.



2. По второму закону Ньютона


3. Используем формулу ускорения


4. Подставляем формулу ускорения в формулу (1)


5. После сокращения на время t и раскрытия скобок получаем


6. Перенесем в левую часть уравнения векторы импульсов тел до взаимодействия, а в правую часть – векторы импульсов тел после взаимодействия.


Это уравнение называется законом сохранения импульса тел.

Но, закон сохранения импульса выполняется только в замкнутых системах.

Определение замкнутой системы (Слайд 10)

Формулировку закона сохранения импульса обучающиеся смотрят в учебнике.

Закрепление изученного материала.

Учитель: В жизни мы встречаемся с такими явлениями как отскакивание мяча при ударе о стенку, землю, при разлете мячей при ударе друг о друга. На даче при поливе с использованием шланга можно наблюдать, как шланг извивается, когда вода выливается из него. В ванной комнате многие наблюдали, что при сильном напоре воды кран начинает крутиться в разные стороны. Охотники и стрелки рассказывают, что при выстреле из ружья ощущается отдача оружия при вылете пули. На уроках биологии вы знакомились с принципами движения морских обитателей: кальмаров, каракатиц, осьминогов.

Закон сохранения импульса проявляется в реактивном движении. А с этим видом движения мы с вами познакомимся на следующем уроке. (Слайд 11,12)

“Два шарика и тележка” (экспериментальная задача)

На одинаковой высоте укреплены два желоба, по которым с одинаковой высоты скользят два одинаковых шарика.


Если скатывается:

1. Правый шарик – тележка приходит в движение;

2. Левый шарик – тележка приходит в движение;

3. Если скатываются оба сразу, то тележка остается в покое. Почему? Ответ: в первом и во втором случаях тележка получала импульс при взаимодействии с шариком. В случае, когда скатываются оба шарика сразу, горизонтальные проекции импульсов шариков равны и противоположны по знаку, а их сумма равна нулю, поэтому тележка была неподвижной.

2. а) Из двух тел различной массы,

движущихся с одинаковыми

скоростями, импульс которого больше?

б) Из двух тел равной массы , движущихся

с различными скоростями, импульс

в) Определите знаки проекций импульсов тел.

3.Тело массы небольшой (10 кг.)
скорость развивает (5м/с).
И какой же это тело импульс получает?

4. Скорость легкового автомобиля в 2 раза больше скорости грузового, а масса – в 4 раза меньше массы грузового автомобиля. Сравните модули импульсов автомобилей.

(Импульс легкового автомобиля меньше в два раза.)

5. Два шарика, стальной и алюминиевый, одинакового объема, падают с одной и той же высоты. Сравните их импульсы в момент падения на землю. (Импульс стального больше, так как больше его масса.)

Работа по книге:

Задача 1. Из ружья массой 5 кг вылетает пуля массой 5 г со скоростью 600 м\с. Найти скорость отдачи ружья.

Учитель на доске последовательно излагает ход решения задачи на применение закона сохранения импульса.

Задача 2. (№357 стр.49)

m1=0,1 кг

0,2= v*0,3 v=0,2/0,3=0,66≈0,7 м/с

Задача 3. (1-11 стр.71)

Дано: СИ решение


m1=100 кг m1v1 = v (m1 + m2)

Читайте также: