От каких физических величин зависит внутренняя энергия идеального газа кратко

Обновлено: 04.07.2024

Термодинамика опирается на общие закономерности тепловых процессов и свойств макроскопических систем. Выводы термодинамики эмпирические, то есть опираются на факты, проверенные опытным путем с использованием молекулярно-кинетической модели.

Для описания термодинамических процессов в системах, состоящих из большого числа частиц, используются величины, не применимые к отдельным молекулам и атомам: температура, давление, концентрация, объем, энтропия)

Термодинамическое равновесие - состояние макросопической системы, когда описывающие ее макроскопические величины остаются неизменными.

В термодинамике рассматриваются изолированные системы тел, находящиеся в термодинамическом равновесии. То есть в системах с прекращением всех наблюдаемых макроскопических процессов. Особую важность представляет свойство, которое получило название выравнивания температуры всех ее частей.

При внешнем воздействии на термодинамическую систему наблюдается переход в другое равновесное состояние. Он получил название термодинамического процесса. Когда время его протекания достаточно медленное, система приближена к состоянию равновесия. Процессы, состоящие из последовательности равновесных состояний, называют квазистатическими.

Внутренняя энергия. Формулы

Внутренняя энергия считается важнейшим понятием термодинамики. Макроскопические тела (системы) имеют внутреннюю энергию, состящую из энергии каждой молекулы. Исходя из молекулярно-кинетической теории, внутренняя энергия состоит из кинетической энергии атомов и молекул, а также потенциальной энергии их взаимодействия.

Например, внутренняя энергия идеального газа равняется сумме кинетических энергий частиц газа, которые находятся в непрерывном беспорядочном тепловом движении. После подтверждений большим количеством экспериментов, был получен закон Джоуля:

Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема.

Применение молекулярно-кинетической теории говорит о том, что выражение для определения внутренней энергии 1 м о л я одноатомного газа, с поступательными движениями молекул записывается как:

U = 3 2 N А k T = 3 2 R T .

Зависимость от расстояния между молекулами у потенциальной энергии очевидна, поэтому внутренняя U и температура Т обусловлены изменениями V :

Определение внутренней энергии U производится с помощью наличия макроскопических параметров, характеризующих состояние тела. Изменение внутренней энергии происходит по причине действия на тело внешних сил, совершающих работу. Внутренняя энергия является функцией состояния системы.

Когда газ в цилиндре сжимается под поршнем, то внешние силы совершают положительную работу A ' . Силы давления газа на поршень также совершают работу, но равную A = - A ' . При изменении объема газа на величину ∆ V , говорят, что он совершает работу p S ∆ x = p ∆ V , где p – давление газа, S – площадь поршня, ∆ x – его перемещение. Подробно показано в примере на рисунке 1.

Наличие знака перед работой говорит о работе газа в разных состояниях: положительная при расширении и отрицательная при сжатии. Переход из начального в конечное состояние работы газа может быть описан с помощью формулы:

A = ∑ p i d V i или в пределе при ∆ V i → 0 :

A = ∫ V 1 V 2 p d V .

Внутренняя энергия. Формулы

Рисунок 1. Работа газа при расширении.

Обратимые и необратимые процессы

Работа численно равняется площади процесса, изображенного на диаграмме p , V . Величина А зависит от метода перехода от начального состояния в конечное. Рисунок 2 показывает 3 процесса, которые переводят газ из состояние ( 1 ) в состояние ( 2 ) . Во всех случаях газ совершает работу.

Обратимые и необратимые процессы
Обратимые и необратимые процессы

Рисунок 2. Три различных пути перехода из состояния ( 1 ) в состояние ( 2 ) . Во всех трех случаях газ совершает разную работу, равную площади под графиком процесса.

Процессы из рисунка 2 возможно провести в обратном направлении. Тогда произойдет изменение знака А на противоположный.

Процессы, которые возможно проводить в обоих направлениях, получили название обратимых.

Жидкости и твердые тела могут незначительно изменять свой объем, поэтому при совершении работы разрешено им пренебречь. Но их внутренняя энергия подвергается изменениям посредствам совершения работы.

Механическая обработка деталей нагревает их. Это способствует изменению внутренней энергии. Имеется еще один пример опыта Джоуля 1843 года, служащий для определения механического эквивалента теплоты, изображенного на рисунке 3. Во время вращения катушки, находящейся в воде, внешние силы совершают положительную работу A ' > 0 , тогда жидкость повышает температуру из-за наличия силы трения, то есть происходит увеличение внутренней энергии.

Процессы примеров не могут проводиться в противоположных направлениях, поэтому они получили название необратимых.

Обратимые и необратимые процессы

Рисунок 3. Упрощенная схема опыта Джоуля по определению механического эквивалента теплоты.

Изменение внутренней энергии возможно при наличии совершаемой работы и при теплообмене. Тепловой контакт тел позволяет увеличиваться энергии одного тела с уменьшением энергии другого. Иначе это называется тепловым потоком.

Количество теплоты

Количество теплоты Q , полученное телом, называется его внутренней энергией, получаемой в результате теплообмена.

Количество теплоты

Рисунок 4. Модель работы газа.

Процесс передачи тепла тел возможен только при разности их температур.

Направление теплового потока всегда идет к холодному телу.

Количество теплоты Q считается энергетической величиной и измеряется в джоулях ( Д ж ) .

Внутреннюю энергию тела составляют кинетическая энергия всех его молекул и потенциаль­ная энергия их взаимодействия.

Внутреннюю энергию тела составляют кинетическая энергия всех его молекул и потенциаль­ная энергия их взаимодействия.

Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар. Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потен­циальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температу­ру, мы обнаружим, что они нагрелись.

Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации из­меняется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую.

Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внут­ренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.

Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внут­ренней энергии без совершения работы является теплопередача.

Внутренняя энергия идеального одноатомного газа .

Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k NA = R, получим значение внутренней энергии идеального газа:

Термодинамика Внутренняя энергия

.

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева, то выражение для внутренней энергии идеального газа можно представить в виде:

Термодинамика Внутренняя энергия

.

Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы, по оси X, Y и Z приходится одинаковая энергия .

Число степеней свободы — это число возможных независимых направлений движения молекулы.

Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений дви­жения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, по­этому число степеней свободы для двухатомной молекулы равно пяти.

Термодинамика Внутренняя энергия

Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутрен­няя энергия идеального двухатомного газа равна:

Термодинамика Внутренняя энергия

.

Формулы для внутренней энергии идеального газа можно обобщить:

Термодинамика Внутренняя энергия

.

где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).

Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).

Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в тер­модинамике в общем случае однозначно определяется параметрами, характеризующими состоя­ние этих тел: объемом (V) и температурой (T).

U=i/2*v*R*T
где
U - Внутренняя энергия (Джоуль - как удивительно)
i - Количество степеней свободы - безразмерная величина, равна количеству координат необходимых для описания положения атомов молекулы (для одноатомных газов: 3, двухатомных: 5 (шестая координата второго атома двухатомного газо получается по теореме пфагора, поэтому 5, а не 6), для почти всех остальных газов: 6)
v- Количество вещества (Моль)
R- Универсальная газовая константа (8,31 дж/(моль*К))
T- Термодинамическая температура (К)

Для этого надо изучить, что происходит, с температурой газа, если объем его меняется настолько быстро, что теплообмен газа с окружающими телами.

Внутренняя энергия идеального газа представляет собой сумму только кинетической энергии всех молекул, а потенциальной энергией взаимодействия можно пренебречь:

U = ∑ E k 0 = N E k 0 = m N A M . · i k T 2 . . = i 2 . . · m M . . R T = i 2 . . ν R T = i 2 . . p V

i — степень свободы. i = 3 для одноатомного (или идеального) газа, i = 5 для двухатомного газа, i = 6 для трехатомного газа и больше.

Изменение внутренней энергии идеального газа в изопроцессах

Δ U = 3 2 . . · m M . . R T = 3 2 . . ν R T = 3 2 . . ν R ( T 2 − T 1 )

Температура при изотермическом процессе — величина постоянная. Так как внутренняя энергия идеального газа постоянной массы в замкнутой системе зависит только от изменения температуры, то она тоже остается постоянной.

Δ U = 3 2 . . ν R ( T 2 − T 1 ) = 3 2 . . ( p V 2 − p V 1 ) = 3 2 . . p Δ V

Δ U = 3 2 . . ν R ( T 2 − T 1 ) = 3 2 . . ( p 2 V − p 1 V ) = 3 2 . . V Δ p

Δ U = 3 2 . . ν R ( T 2 − T 1 ) = 3 2 . . ( p 2 V 2 − p 1 V 1 )

Пример №1. На рисунке показан график циклического процесса, проведенного с идеальным газом. На каком из участков внутренняя энергия газа уменьшалась?


Внутренняя энергия газа меняется только при изменении температуры. Так как она прямо пропорциональная температуре, то уменьшается она тогда, когда уменьшается и температура. Температура падает на участке 3.

Работа идеального газа

Если газ, находящийся под поршнем, нагреть, то, расширяясь, он поднимет поршень, т.е. совершит механическую работу.


Механическая работа вычисляется по формуле:

Перемещение равно разности высот поршня в конечном и начальном положении:

Также известно, что сила равна произведению давления на площадь, на которое это давление оказывается. Учтем, что направление силы и перемещения совпадают. Поэтому косинус будет равен единице. Отсюда работа идеального газа равна произведению давления на площадь поршня:

Работа идеального газа

p — давление газа, S — площадь поршня

Работа, необходимая для поднятия поршня — полезная работа. Она всегда меньше затраченной работы, которая определяется изменением внутренней энергии идеального газа при изобарном расширении:

A ‘ = p ( V 2 − V 1 ) = p Δ V > 0

Внимание! Знак работы определяется только знаком косинуса угла между направлением силы, действующей на поршень, и перемещением этого поршня.

Работа идеального газа при изобарном сжатии:

A ‘ = p ( V 2 − V 1 ) = p Δ V 0

Работа идеального газа при нагревании газа:

A ‘ = ν R Δ T = ν R ( T 2 − T 1 ) = m M . . ν R Δ T

Внимание! В изохорном процессе работа, совершаемая газом, равна нулю, так как работа газа определяется изменением его объема. Если изменения нет, работы тоже нет.

Геометрический смысл работы в термодинамике

В термодинамике для нахождения работы можно вычислить площадь фигуры под графиком в осях (p, V).

Читайте также: