Надежность человека как звена сложной технической системы кратко

Обновлено: 02.07.2024

2.7. НАДЕЖНОСТЬ ЧЕЛОВЕКА КАК ЗВЕНА СЛОЖНОЙ ТЕХНИЧЕСКОЙ СИСТЕМЫ

Понятия о системах. Под системой понимается целостное мно­жество (совокупность) объектов (элементов), связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно слож­ной функции (достижение цели).

Целостность означает, что относительно окружающей среды система выступает и соответственно воспринимается как нечто единое.

Признаком системности является структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели.

Обязательными компонентами любой системы являются составля­ющие ее эле-менты (подсистемы). Само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элемен-тов.

Поскольку все подсистемы и элементы, из которых состоит система, определенным образом взаиморасположены и взаимосвязаны, образуя данную систему, можно говорить о структуре системы. Струк­тура системы — это то, что остается неизменным в системе при сохранении ее состояния, при реализации различных форм поведения, при совершении системой операций и т.п.

Любая система имеет, как правило, иерархическую структуру, т.е. может быть представлена в виде совокупности подсистем разного уровня, расположенных в порядке постепенности. При анализе тех или иных конкретных систем достаточно оказывается выделение некото­рого определенного числа ступеней иерархии.

Системы функционируют в пространстве и времени. Процесс функционирования систем представляет собой измерение состояния систем, переход ее из одного состояния в другое. В соответствии с этим системы подразделяются на статические и динамические.

Статическая система — это система с одним возможным состо­янием.

Динамическая система — система с множеством состояний, в которой с течением времени происходит переход от состояния в состояние.

С позиций безопасности производственных процессов одна задач системного метода состоит в том, чтобы увидеть, как системы функционируют в системе во взаимодействии с другими частями.

Понятие о надежности работы человека при взаимодействии техническими системами. Технические системы становятся взаимосвязанными только благодаря наличию такого основного звена, как человек. Согласно данным, примерно 20—30 % отказов прямо или косвенно связаны с ошибками человека; 10—15 % всех отказов непосредственно связаны с ошибками человека.

Ввиду этого, анализ надежности реальных систем должен обязательно включать и человеческий фактор.

Надежность работы человека определяется как потребность успеш­ного выполнения им работы или поставленной задачи на заданном этапе функционирования системы в течение заданного интервала времени при определенных требованиях к продолжительности выполнения работы.

Ошибка человека определяется как невыполнение поставленной задачи (или выполнение запрещенного действия), которое может явиться причиной повреждения оборудования или имущества либо нарушения нормального хода запланированных операций.

В реальных условиях в большинстве систем независимо от степени их автоматизации требуется в той или иной мере участие человека.

Можно утверждать, что там, где работает человек, появляются ошибки. Они возникают независимо от уровня подготовки квалификации или опыта. Поэтому прогнозирование надежности оборудования без учета надежности работы человека не может дат истинной картины.

Ошибки по вине человека могут возникнуть в тех случаях, когда оператор или какое-либо лицо стремится к достижению ошибочно! цели; поставленная цель не может быть достигнута из-за неправильных действий оператора; оператор бездействует в тот момент, когда его участие необходимо.

2. Операторские ошибки: возникают при неправильном выпол­нении обслуживающим персоналом установленных процедур или в тех случаях, когда правильные процедуры вообще не предусмотрены.

3. Ошибки изготовления: имеют место на этапе производства вследствие (а) неудовлетворительного качества работы, например не­правильной сварки, (б) неправильного выбора материала, (в) изготов­ления изделия с отклонениями от конструкторской документации.

4. Ошибки технического обслуживания: возникают в процессе эксплуатации и обычно вызваны некачественным ремонтом оборудо­вания или неправильным монтажом вследствие недостаточной подго­товленности обслуживающего персонала, неудовлетворительного оснащения необходимой аппаратурой и инструментами.

5. Внесение ошибок: как правило, это ошибки, для которых трудно установить причину их возникновения, т.е. определить, возникли они по вине человека или же связаны с оборудованием.

6. Ошибки контроля: связаны с ошибочной приемкой как годного элемента или устройства, характеристики которого выходят за пределы 160 допусков, либо с ошибочной отбраковкой годного устройства или элемента с характеристиками в пределах допусков.

7. Ошибки обращения: возникают вследствие неудовлетворитель­ного хранения изделий или их транспортировки с отклонением от рекомендаций изготовителя.

8. Ошибки организации рабочего места: теснота рабочего поме­щения, повышенная температура, шум, недостаточная освещенность и т.п.

9. Ошибки управления коллективом: недостаточное стимулиро­вание специалистов, их психологическая несовместимость, не позво­ляющие достигнуть оптимального качества работы.

Свойства человека ошибаться является функцией его психо­логического состояния. Интенсивность ошибок во многом определя­ется параметрами внешней среды, в которой человек работает.

Ошибки человека можно распределить по трем уровням и на каждом уровне возможно предусмотрение ошибок. Например, на уровне 1 можно предотвратить ошибки человека; на уровне 2 можно избежать нежелательных последствий ошибок, корректируя не­правильное функционирование системы вследствие ошибок, внесен­ных по вине человека; на уровне 3 можно исключить повторное возникновение тех или иных ситуаций, приводящих к ошибкам чело­века.

Зависимость эффективности работы человека от уровня нагрузок. Соотношение между качеством работы человека и действующими нагрузками показывает, что зависимость частоты появления ошибок от действующих нагрузок является нелинейной. При очень низком уровне нагрузок большинство операторов работают неэффективно (так задание кажется скучным и не вызывает интереса) и качество работы далеко от оптимального. При умеренных нагрузках качество работы оператора оказывается оптимальным, и поэтому умеренную нагрузку можно рассматривать как достаточное условие обеспечения внимательной работы человека-оператора. При дальнейшем увеличении нагрузок качество работы человека начинает ухудшаться, что объясняется, главным образом, такими видами физиологического стресса, как страх, беспокойство и т.п.

Критерии оценки деятельности оператора. В общем виде деятель­ность человека-оператора характеризуется быстродействием и надеж­ностью.

Критерием быстродействия является время решения задачи, время от момента реагирования оператора на поступивший сигнал момента окончания управляющих воздействий. Обычно это время прямо пропорционально количеству преобразуемой человеком инфор­мации:

где а — скрытое время реакции, т.е. промежуток времени от момента появления сигнала до реакции на него оператора и его значений находятся в пределах 0,2 — 0,6 с; b — время переработки одной единицы информации (0,15 — 0,35 м); Н — количество перерабатыва­емой информации; VОП — средняя скорость переработки информации (2 — 4 ед/с) или пропускная способность.

Пропускная способность (VОП) характеризует время, в течении которого оператор постигает смысл информации. Зависит от его психологических особенностей, типа задач, технических и эргономических особенностей систем управления.

Надежность человека-оператора определяет его способность выполнять в полном объеме возложенные на него функции при определенных условиях работы. Надежность деятельности оператор; характеризует его безошибочность, готовность, восстанавливаемое своевременность и точность.

Безошибочность оценивается вероятностью безошибочной работ которая определяется как на уровне отдельной операции, так и в целом,

Вероятность Pj безошибочного выполнения операций j - го вида интенсивность ошибок допущенных при этом, применительно фазе устойчивой работы определяется на основе статистических данных:

Вероятность безошибочного выполнения всей операции в целом определяется при экспоненциальном распределении времени:

где — число выполняемых операций j -го вида; r — число различных видов операций (j = 1, r).

Коэффициент готовности характеризует вероятность включения человека-оператора в работу в любой произвольный момент времени:

где Тб — время, в течение которого человек не может принять поступившую к нему информацию; Т — общее время работы челове­ка-оператора.

Восстанавливаемость оператора оценивается вероятностью исправ­лений им допущенной ошибки:

где РК — вероятность выдачи сигнала контрольной системой; Робн — вероятность обнаружения сигнала оператором; РН — вероятность исправления ошибочных действий при повторном выполнении всей операции.

Этот показатель позволяет оценить возможность самоконтроля оператором своих действий и исправления допущенных им ошибок.

Своевременность действий оператора оценивается вероятностью выполнения задачи в течение заданного времени:

где f(t) — функция распределения времени решения задачи операто­ром; t" — лимит времени, превышение которого рассматривается как ошибка.

Эта же вероятность может быть определена и по статистическим данным как:

где N и Nнс — общее и несвоевременное выполненное число задач.

Точность — степень отклонения измеряемого оператором количес­твенного параметра системы от его истинного, заданного или номина­льного значения.

Количественно этот параметр оценивается погрешностью, с кото­рой оператор измеряет, устанавливает или регулирует данный параметр:

где Аи — истинное или номинальное значение параметра; Аон фактическое измеряемое или регулируемое оператором значение этого параметра.

Значение погрешности, превысившее допустимые пределы, явля­ется ошибкой и ее следует учитывать при оценке надежности.

Точность оператора зависит: от характеристик сигнала, сложности1,! задачи, условий и темпа работы, функционального состояния нервной системы, квалификации, утомляемости и других факторов.

Под надежностью системы (или ее элемента) понимают свойство выполнять заданные функции в течение определенного времени при заданных условиях работы. Надежность следует понимать как совокуп­ность трех свойств: безотказности, восстанавливаемости и долговеч­ности. Фундаментальным понятием теории надежности является понятие отказа. Под отказом понимают случайное событие, состоящее в том, что система (элемент) полностью или частично утрачивает свою работоспособность, в результате чего заданные системе (элементу) функции не выполняются.

В системотехническом методе оценки надежности СЧМ чело представляется в виде компонента системы. При этом выделяют следующие случаи оценки надежности системы при взаимодействии технических средств и человека-оператора при допущении, что отказы техники и ошибки оператора являются редкими, случайными независимыми событиями, что появление более одного однотипно; события за время работы системы от t0 до t0 + t практически невозможно, что способности оператора к компенсации ошибок и безошибочно работе — независимые свойства оператора.

Если компенсация ошибок оператора и отказов техники невозможна, то вероятность безотказной работы системы:

где — вероятность безотказной работы технических средств течение времени ; P0(t) —вероятность безошибочной работы оператора в течение времени t при условии, что техника работает безотказно; t0 — общее время эксплуатации системы; t — рассматрива­емый период работы.

В случае компенсации только отказов технических средств вероят­ность безотказной работы системы:

где — условная вероятность безотказной работы системы в течение времени (t0 + t) с компенсацией последствий отказов, при условии, что в момент произошел отказ.

Вероятность безотказной работы системы с компенсацией ошибок оператора и отказов технических средств:

Выигрыш в надежности по вероятности безотказной работы Gр за счет компенсации ошибок и отказов характеризуется отношением:

Выигрыш надежности увеличивается с ростом р и , т.е. с увеличением уровня натренированности оператора на компенсации отказов и ошибок.

Если рассматривать системы по степени непрерывности участия человека в процессе управления, то для каждого из этих типов сущес­твуют соответствующие критерии надежности. Для систем первого типа таким критерием является вероятность безотказного, безошибочного и своевременного протекания управляемого процесса в течение задан­ного времени t. Такое протекание процесса возможно в следующих случаях:

1) технические средства работают исправно;

2) произошел отказ технических средств, но при этом: оператор безошибочно и своевременно выполнил требуемые действия по ликвидации аварийной ситуации;

3) оператор допустил ошибочные действия, но своевременно их исправил.

Для СЧМ второго типа критерием надежности является вероят­ность безотказного, безошибочного и своевременного выполнения возникающей задачи. Задача системой может быть выполнена в то; случае, если в требуемый момент времени оператор готов к прием; поступающей информации и, кроме того: 1) в течение паузы и времени решения задачи техника работала безотказно, оператор правильно ц своевременно выполнял требуемые действия или 2) произошел отказ техники, но оператор своевременно устранил его и при решении задачи не допускал ошибок, или 3) при безотказной работе техники оператор допустил ошибку, но своевременно компенсировал ее. Расчет надежности примет вид

где — вероятность восстановления техники.

где — коэффициент готовности техники.

Широкое и многообразное применение техники предъявляет более высокие требования к ее соответствию человеческим возможностям. Современные человеко-машинные системы следует рассматривать как сложные автоматизированные системы, в которые наряду с контурами чисто автоматического регулирована состоящими только из технических звеньев, включены функционируют контуры, замыкаемые через человеческое звено.

Целесообразно передавать машине такие функции, которые она выполняет лучше человека (прием, переработка информации).

Взаимосвязь, функционирование и надежность технических систем возможны только благодаря наличию такого основного звена, как человек. Поэтому анализ надежности реальных систем должен обязательно включать человеческий фактор.

Практически во всех технических системах независимо от сте­пени их автоматизации в той или иной мере требуется участие человека. Естественно, что там, где работает человек, появляются ошибки. Они возникают независимо от уровня подготовки, квали­фикации или опыта. Поэтому прогнозирование надежности оборудования без учета надежности работы человека не может дать истинной картины.

Ошибки по вине человека могут возникнуть в следующих слу­чаях: 1)оператор или какое-либо лицо стремится к ошибочной цели; 2)поставленная цель не может быть достигнута из-за не­правильных действий оператора; 3)оператор бездействует в тот момент, когда его участие необходимо.

В процессе эволюции чел-кий организм приспособился к экстрем. климат.усл.: низ. t севера, выс. t экватор/ зоны, к жизни в сухой пустыне и в сырых болотах. Потенциал. опас-сть закл-ся в скрытом хар-ре проявления опасностей. Углек. газ не имеет цвета, запаха, и нарастание его концентрации прояв-ся ч/з усталость, вялость, снижение работоспособности. Любой вид труд. деят-ти пред-ет слож. комплекс физиолог. процессов, в который вовлекаются все органы и сист. чел-го организма. Важн. роль в этой работе играет центр. нерв. сист. (ЦНС), обеспечива­ющая координацию функцион. измен, развивающихся в организме при выполнении работы. Разл-ют центр. и периферич. НС. ЦНС — голов. и спинной мозг. Эта сист. формирует и регулирует поведение и мыслит. деят-ть чел-ка. Перифери­ч. НС — нервы, по которым распрост-ся нерв. импульсы с периферии в нерв. центры, и наоборот, из нерв. центров к периферич. органам. Вегетативная НС регулирует жизнь орга­низма, деят-ть его внутр. органов, выполняющих ф-ции жизнеобеспечения. Вся деят-ть клеток, тканей, органов и сис­тем чел-го организма регул-ся, управл-ся ЦНС, благодаря деят-ти которой организм пред-ет собой единое целое. ЦНС осущ-ет связь организма с окр. средой. НС выполняет 2 осн. ф-ции: 1. обеспечивает норм. взаимодействие организма с окр. средой; 2. объединяет и регулирует все ф-ции жизнедеят-ти всего организма, его органов, клеток. Важн. предпосылкой правил. ориентации чел-ка в окр. среде явл-ся зрение. Слух. анализатор обладает выс. чувствительностью, позволяя чел-ку воспринимать широкий диапазон звуков окр. среды и анализировать их по силе, высоте тона, окраске, отмечать изменения по интенсивности и частотному составу, опред-ть направл. прихода звука. Двигат. аппарат позволяет осущ-ть труд. дея­т-ть чел-ка. Интенсивная работа, как физ., так и умств., м/т привести к утомлению и переутомлению.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНИ

КРАСНОДОНСКИЙ ГОРНИЙ ТЕХНИКУМ Реферат по предмету "БЕЗОПАСНОСТЬ

ПРОЦЕССОВ И ПРОИЗВОДСТВ"

на тему: "НАДЕЖНОСТЬ ЧЕЛОВЕКА КАК ЗВЕНА СЛОЖНОЙ ТЕХНИЧЕСКОЙ СИСТЕМЫ" Студента группы 1ЕП-06

Проверила: Дрокина Т.М. Краснодон 2010

Понятия о системах. Под системой понимается целостное множество (совокупность) объектов (элементов), связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно сложной функции (достижение цели).

Целостность означает, что относительно окружающей среды система выступает и соответственно воспринимается как нечто единое.

Признаком системности является структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели.

Обязательными компонентами любой системы являются составляющие ее элементы (подсистемы). Само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элементов.

Поскольку все подсистемы и элементы, из которых состоит система, определенным образом взаиморасположены и взаимосвязаны, образуя данную систему, можно говорить о структуре системы. Структура системы - это то, что остается неизменным в системе при сохранении ее состояния, при реализации различных форм поведения, при совершении системой операций и т.п.

Любая система имеет, как правило, иерархическую структуру, т.е. может быть представлена в виде совокупности подсистем разного уровня, расположенных в порядке постепенности. При анализе тех или иных конкретных систем достаточно оказывается выделение некоторого определенного числа ступеней иерархии.

Системы функционируют в пространстве и времени. Процесс функционирования систем представляет собой измерение состояния систем, переход ее из одного состояния в другое. В соответствии с этим системы подразделяются на статические и динамические.

Статическая система - это система с одним возможным состоянием.

Динамическая система - система с множеством состояний, в которой с течением времени происходит переход от состояния в состояние.

Основой системного подхода является анализ, т.е. разделен" целого на составляющие элементы в противоположность синтез, который объединяет части в сложное целое.

С позиций безопасности производственных процессов одна задач системного метода состоит в том, чтобы увидеть, как системы функционируют в системе во взаимодействии с другими частями.

Понятие о надежности работы человека при взаимодействии техническими системами. Технические системы становятся взаимосвязанными только благодаря наличию такого основного звена, как человек. Согласно данным, примерно 20-30% отказов прямо или косвенно связаны с ошибками человека; 10-15% всех отказов непосредственно связаны с ошибками человека.

Ввиду этого, анализ надежности реальных систем должен обязательно включать и человеческий фактор.

Надежность работы человека определяется как потребность успешного выполнения им работы или поставленной задачи на заданном этапе функционирования системы в течение заданного интервала


3 чел. помогло.

Надежность человека как звена сложной технической системы

Понятия о системах. Под системой понимается целостное множество (совокупность) объектов (элементов) связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно сложной функции (достижение цели).

^ Понятие о надежности работы человека при взаимодействии с техническими системами. Технические системы становятся взаимосвязанными только благодаря наличию такого основного звена как человек. Согласно данным, примерно 20—30 % отказов прямо или косвенно связаны с ошибками человека; 10—15 % всех отказов непосредственно связаны с ошибками человека.

Ввиду этого, анализ надежности реальных систем должен обязательно включать и человеческий фактор.

Надежность работы человека определяется как потребность успешного выполнения им работы или поставленной задачи на заданном этапе функционирования системы в течение заданного интервала времени при определенных требованиях к продолжительности выполнения работы.

Ошибка человека определяется как невыполнение поставленной задачи (или выполнение запрещенного действия), которое может явиться причиной повреждения оборудования или имущества либо нарушения нормального хода запланированных операций.

В реальных условиях в большинстве систем независимо от степени их автоматизации требуется в той или иной мере участие человека.


  1. Ошибки проектирования: обусловлены неудовлетворительным качеством проектирования. Например, управляющие устройства и индикаторы могут быть расположены далеко друг от друга.

  2. Операторские ошибки: возникают при неправильном выполнении обслуживающим персоналом установленных процедур или в тех случаях, когда правильные процедуры вообще не предусмотрены.

  3. Ошибки изготовления: имеют место на этапе производства вследствие (а) неудовлетворительного качества работы, например неправильной сварки, (б) неправильного выбора материала, (в) изготовления изделия с отклонениями от конструкторской документации.

  4. Ошибки технического обслуживания: возникают в процессе эксплуатации и обычно вызваны некачественным ремонтом оборудования или неправильным монтажом вследствие недостаточной подготовленности обслуживающего персонала, неудовлетворительного оснащения необходимой аппаратурой и инструментами.

  5. Внесение ошибок: как правило, это ошибки, для которых трудно установить причину их возникновения, т.е. определить, возникли они по вине человека или же связаны с оборудованием.

  6. Ошибки контроля: связаны с ошибочной приемкой как годного элемента или устройства, характеристики которого выходят за пределы 160 допусков, либо с ошибочной отбраковкой годного устройства или элемента с характеристиками в пределах допусков.

  7. Ошибки обращения: возникают вследствие неудовлетворительного хранения изделий или их транспортировки с отклонением от рекомендаций изготовителя.

  8. Ошибки организации рабочего места: теснота рабочего помещения, повышенная температура, шум, недостаточная освещенность и т.п.

  9. Ошибки управления коллективом: недостаточное стимулирование специалистов, их психологическая несовместимость, не позволяющие достигнуть оптимального качества работы

Критерием быстродействия является время решения задачи, т.е. время от момента реагирования оператора на поступивший сигнал до момента окончания управляющих воздействий. Обычно это время прямо пропорционально количеству преобразуемой человеком информации:

Ton = a + bH = a + (H / Von)

где а — скрытое время реакции, т.е. промежуток времени от момента появления сигнала до реакции на него оператора и его значения находятся в пределах 0,2—0,6 с; b — время переработки одной единицы информации (0,15—0,35 м); Н—количество перерабатываемой информации; Von — средняя скорость переработки информации (2— 4 ед/с) или пропускная способность.

Пропускная способность (Von) характеризует время, в течение которого оператор постигает смысл информации. Зависит от его психологических особенностей, типа задач, технических и эргономических особенностей систем управления.

Надежность человека-оператора определяет его способность выполнять в полном объеме возложенные на него функции при определенных условиях работы. Надежность деятельности оператора характеризует его безошибочность, готовность, восстанавливаемость, своевременность и точность.

Безошибочность оценивается вероятностью безошибочной работы, которая определяется как на уровне отдельной операции, так и в целом.

Производственная среда и условия труда

Производственная среда — это пространство, в котором осуществляется трудовая деятельность человека , Негативные факторы производственной среды, которые существенно отличаются от негативных факторов природного характера. Эти факторы формируют элементы производственной среды (среды обитания), к которым относятся: (1) предметы труда; (2) средства труда (инструмент, технологическая оснастка, машины и т.п.); (3) продукты труда (полуфабрикаты, готовые изделия); (4) энергия (электрическая, пневматическая, химическая, тепловая и др.); (5) природно-климатические факторы (микроклиматические условия труда: температура, влажность и скорость движения воздуха); (6) растения, животные: (7) персонал.

Производственные помещения — это замкнутые пространства производственной среды, в которых постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется трудовая деятельность людей, связанная с участием в различных видах производства, в организации, контроле и управлении производством. Внутри производственных помещений находятся рабочая зона и рабочие места.

^ Рабочей зоной называется пространство (до 2 м) над уровнем пола или площадки, на котором находятся места постоянного или временного пребывания работающих.

^ Рабочее место — часть рабочей зоны; оно представляет собой место постоянного или временного пребывания работающих в процессе трудовой деятельности.

Условия труда — сочетание различных факторов, формируемых элементами производственной среды, оказывающих влияние на здоровье и работоспособность человека.
^

Производственный микроклимат и его влияние на организм человека

Микроклимат производственных помещений — это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей.

Длительное воздействие на человека неблагоприятных метеорологических условий резко ухудшает его самочувствие, снижает производительность труда и приводит к заболеваниям.

Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару или профзаболеванию. Низкая температура воздуха может вызвать местное или общее охлаждение организма, стать причиной простудного заболевания либо обморожения.

Влажность воздуха оказывает значительное влияние на терморегуляцию организма человека. Высокая относительная влажность (отношение содержания водяных паров в 1 м 3 воздуха к их максимально возможному содержанию в этом же объеме) при высокой температуре воздуха способствует перегреванию, организма, при низкой же температуре она усиливает теплоотдачу с поверхности кожи, что ведет к переохлаждению организма. Низкая влажность вызывает пересыхание слизистых оболочек дыхательных путей работающего.

Подвижность воздуха эффективно способствует теплоотдаче организма человека и положительно проявляется при высоких температурах, но отрицательно при низких.

Для создания нормальных условий труда в производственных помещениях обеспечивают оптимальные и допустимые, показатели микроклимата в производственных помещениях. Оптимальные показатели распространяются на всю рабочую зону, а допустимые устанавливают раздельно для постоянных и непостоянных рабочих мест в тех случаях, когда по технологическим, техническим или экономическим причинам невозможно обеспечить оптимальные нормы.

^ Оптимальные микроклиматические условия представляют собой сочетание количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния его организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

^ Допустимые микроклиматические условия представляют собой сочетание количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения теплового состояния его организма, сопровождающиеся напряжением механизма терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. При этом не возникает ухудшения или нарушения состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и снижение работоспособности.

При нормировании метеорологических условий в производственных помещениях учитывают время года и физическую тяжесть выполняемых работ. Под временем года подразумевают два периода: холодный (среднесуточная температура наружного воздуха составляет + 10° С и ниже) и теплый (соответствующее значение превышает + 10° С).

Читайте также: