Медико биологическое значение химического анализа кратко

Обновлено: 04.07.2024

Основным является сессионный cookie, обычно называемый MoodleSession. Вы должны разрешить использование этого файла cookie в своем браузере, чтобы обеспечить непрерывность и оставаться в системе при просмотре сайта. Когда вы выходите из системы или закрываете браузер, этот файл cookie уничтожается (в вашем браузере и на сервере).

Другой файл cookie предназначен исключительно для удобства, его обычно называют MOODLEID или аналогичным. Он просто запоминает ваше имя пользователя в браузере. Это означает, что когда вы возвращаетесь на этот сайт, поле имени пользователя на странице входа в систему уже заполнено для вас. Отказ от этого файла cookie безопасен - вам нужно будет просто вводить свое имя пользователя при каждом входе в систему.

ХИМИЧЕСКИЙ АНАЛИЗ И МЕДИЦИНА - тема научной статьи по химии из журнала Журнал аналитической химии

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ, 2014, том 69, № 4, с. 359-362

СТАТЬИ ОБЩЕГО ХАРАКТЕРА

ХИМИЧЕСКИМ АНАЛИЗ И МЕДИЦИНА © 2014 г. Ю. А. Золотов

Московский государственный университет имени М.В. Ломоносова 119991 Москва, Ленинские горы, 1, стр. 3 Поступила в редакцию 27.06.2013 г., после доработки 14.10.2013 г.

Рассмотрены основные направления использования химического анализа в медицине: при диагностике заболеваний, санитарно-гигиеническом контроле, допинг-контроле, прямой идентификации микроорганизмов, ДНК-анализе и др.

Ключевые слова: химический анализ в медицине, медицинская диагностика, санитарно-гигиенический контроль, допинг-контроль, геномный анализ.

Тема "Химический анализ и медицина" слишком широка, чтобы ее можно было осветить сколько-нибудь детально. Однако она выбрана сознательно: хотелось бросить общий взгляд на эту область, попытаться ее оконтурить и классифицировать, вычленить важнейшие направления.

Объектами химического анализа в рассматриваемой области являются биологические жидкости (кровь, моча, пот, слюна, слезы, грудное молоко, желудочный сок и другие); волосы, срезы ногтей; мягкие ткани; выдыхаемый воздух; газы, выделяемые организмом через кожу. Ну и, конечно, лекарственные вещества. Что касается болезней, при профилактике, диагностике и лечении которых применяется химический анализ, то это практически все патологические состояния (да и нормальные тоже, если речь идет о диспансеризации, о массовом скрининге). Однако особенно нужен анализ в случае социально опасных заболеваний — диабета, рака, сердечно-сосудистых и легочных болезней. Перечень веществ (аналитов), которые нужно обнаруживать и количественно определять, включает химические элементы и формы их существования (причем последние — чем дальше, тем больше); некоторые неорганические вещества, особенно газообразные и пероксид водорода, многочисленные низкомолекулярные органические соединения — глюкозу, холестерин, жирные кислоты, катехоламины и другие; биополимеры (белки, нуклеиновые кислоты, липиды и т.д.); субстанции лекарств и примеси в фармпрепаратах.

Методы анализа, используемые для решения медицинских задач, конечно, разнообразны по принципам действия и аналитическим характеристикам. Однако в ряде случаев существует стремление применять методы, "мягко" действу-

ющие на объект, как, например, ионизация электрораспылением в масс-спектрометрии по сравнению с электронной ионизацией. Кроме того, существенна нацеленность на неинвазивные методы, а также на методы, пригодные для массового применения, в том числе, с одной стороны, за счет автоматизации, а с другой, путем широкого использования простых и недорогих тестов. В ряде случаев существует стремление к "миниатюрным" методам и средствам, особенно для анализа in vivo, и даже к дистанционно действующим. Разумеется, очень востребованы и самые мощные современные методы анализа, как, скажем, ГХ-МС, ЖХ-МС, МС-ИСП, особенно в научных исследованиях.

Направления самой медицины, использующие химический анализ, довольно многочисленны, хотя и неодинаковы по важности. Рассмотрим их.

Химический анализ как средство диагностики.

Существо этого направления заключается в нахождении, обычно совместно с медиками, ве-ществ-мйркеров, появление которых или существенное изменение их содержания, или изменение соотношения, например, в биожидкостях или выдыхаемом воздухе, свидетельствуют о патологии. Коль скоро такие вещества найдены, практика будет состоять в определении этих веществ в конкретных образцах.

Чтобы найти вещества, содержание которых может служить показателем заболевания, обычно требуется систематическое исследование большого числа здоровых и больных людей (их органов, тканей, биологических жидкостей), набор большого массива данных, их математическая обработка, теперь, как правило, средствами хемо-метрики. Например, чтобы найти мйркеры рака

яичников, исследовали содержание 169 белков в плазме крови больших групп здоровых и больных женщин; было установлено, что концентрация четырех белков (лептина, пролактина и др.) у здоровых и больных отличается. На этой основе разработан диагностический тест; если результаты показывают, что концентрация, по крайней мере, двух белков из этих четырех лежит за пределами нормы, это с вероятностью 95% говорит о заболевании. Или еще один пример из сотен других: проанализированы пробы мочи 62 женщин, больных раком молочной железы, и 100 здоровых женщин на содержание измененных нуклеози-дов. Статистическая обработка результатов показала, что для этих групп женщин наблюдаются различия в содержании нуклеозидов, и диагностическая ценность этих различий достаточно высока.

Обычный клинический лабораторный анализ и массовый биохимический анализ сформировались на основе подобных объемистых исследований, проводившихся в течение десятилетий, и накопленного опыта.

Маркерами, индикаторами болезни могут служить низкомолекулярные неорганические и органические соединения (NO, NH3, CO, CH4, углеводороды, катехоламины, ацетон, сахара, органические кислоты); высокомолекулярные соединения органической природы — пептиды, многочисленные белки; отдельные химические элементы.

Значительный опыт накоплен, к примеру, по диагностике диабета путем контроля содержания глюкозы сначала в моче, потом в крови. Первые тесты на сахар в моче были созданы еще в XIX веке. Так, в 1841 г. Треммер предложил определять глюкозу в моче по реакции восстановления ме-ди(11) глюкозой в горячем щелочном растворе. Позднее для той же цели использовали бумагу, импрегнированную индигокармином; перед использованием бумажку смачивали щелочью. Потом были созданы гораздо более эффективные химические тест-средства, которые в ХХ веке выпускали многие фирмы. Современные же глюкоз-ные анализаторы имеют своим прародителем электрод Кларка — электрохимический сенсор для определения кислорода. В конце 50-х годов Кларк ввел в свой электрод глюкозоксидазу, что позволило определять глюкозу в крови с высокой чувствительностью. Первый массовый прибор для продажи создала фирма Yellow Springs Instrument. В настоящее время домашние глюкометры для определения глюкозы в крови составляют 95% мирового рынка электрохимических приборов. Известно, что при этом требуется очень малый объем крови, особенно в микрокулономет-рических глюкометрах, созданных А. Хеллером в Техасском университете (Остин, США). Решается, пока без особого успеха, задача определения

сахара в крови неинвазивным методом, т.е. вообще без отбора крови.

Для диагностики легочных заболеваний (да и не только легочных) перспективен анализ выдыхаемого воздуха. Еще древние врачи старались по запаху выдыхаемого воздуха определить, чем болен человек. Состав выдыхаемого воздуха начинал исследовать Лавуазье. В XIX веке в этом воздухе уже находили ацетон и этанол; большое число летучих органических веществ определял в выдыхаемом воздухе Лайнус Полинг в 70-х годах прошлого столетия, используя микроконцентрирование. Давно известно, что наличие ацетона в выдыхаемом воздухе служит признаком диабета. В последние годы анализу выдыхаемого воздуха уделяют много внимания и аналитики, и медики. Привлекаются разные методы, прежде всего газовая хромато-масс-спектрометрия, отчасти газовая хроматография с другими детекторами, а также лазерная спектроскопия.

Задача такого анализа довольно сложна, как минимум, по двум взаимосвязанным причинам. Во-первых, вещества, являющиеся маркерами заболеваний, могут находиться и в наружном воздухе, которым дышит пациент. Это означает, что необходимо не только проводить контрольные эксперименты, но и оценивать очень небольшие изменения в содержании этих веществ. Во-вторых, абсолютные количества выделяемых веществ-маркеров обычно очень малы, и обнаружить их можно лишь самыми чувствительными методами. Тем не менее, подобные определения не только возможны, но и уже осуществляются; данному направлению посвящены сотни работ.

При использовании хроматографических методов проблему решают, используя чаще всего сорбцию определяемых веществ, последующую термодесорбцию и определение газовой хромато-масс-спектрометрией. В исследовательском центре Менссана Рисерч (США) были исследованы пробы выдыхаемого воздуха нескольких десятков человек и обнаружено 3500 соединений, но только 27 из них были общими для всех обследованных людей. Самым распространенным летучим органическим компонентом выдыхаемого воздуха оказался изопрен — промежуточный продукт синтеза холестерина. Практически всегда в пробах присутствуют алканы, в том числе с большой молекулярной массой. Американское Агентство по пищевым продуктам и лекарственным препаратам (Food and Drug Administration) уже давно одобрило применение анализа выдыхаемого воздуха как теста для оценки состояния больных, перенесших операции на сердце.

С анализом выдыхаемого воздуха связывают и перспективы ранней диагностики рака легких. У больных в выдыхаемом воздухе возрастает концентрация алканов и метилалканов (С4—С20). Для

ХИМИЧЕСКИЙ АНАЛИЗ И МЕДИЦИНА

диагностики достаточно определить девять углеводородов: бутан, пентан, 3-метилтридекан, 7-метил-тридекан, 4-метилоктан, 3-метилгексан, гептан, 2-метилгексан, 5-метилдекан. Эти углеводороды присутствуют на уровне нано- или пикомолей, поэтому для их определения требуется предварительное концентрирование на адсорбентах, не поглощающих влагу.

Физики-спектроскописты для анализа выдыхаемого воздуха используют диодные лазеры, излучающие в ИК-диапазоне (Институт общей физики РАН). Этими методами можно определять, прежде всего, низкомолекулярные простые соединения, включая оксиды азота, аммиак, монооксид углерода, пероксид водорода, а также метан, метанол, этанол, сероуглерод и другие соединения в диапазоне от 0.1 до 10 мг/м3, а также проводить изотопный анализ (13С/12С).

Много работ посвящается оценке окислительного (оксидативного) стресса. Это та область, где профессиональные аналитики в России в последние годы активно работают.

Не так давно стали анализировать так называемый "кожный газ" (см., например, Analyt. Sci., 2005, vol. 21. p. 625).

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

Читайте также: