Какое значение несет каталитическая роль белков кратко

Обновлено: 04.07.2024

Наиболее хорошо известная роль белков в организме — катализ различных химических реакций. Ферменты — группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм) , а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие, как, например, пепсин, расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками [28]. Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой, протекает в 1017 быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента) [29]. Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и ещё меньшее количество — в среднем 3—4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности — напрямую участвуют в катализе [30]. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Каталитическая функция присуща особым белкам - ферментам, или энзимам, влияющие на ход биохимических реакций. Катализ (от греч. Катализ - прекращение) - изменение скорости протекания химических реакций под действием определенных химических соединений. Каталитическую функцию в живых организмах - биокатализа - осуществляют ферменты (рис. 10.2).

Ферменты бывают простыми и сложными. Простые ферменты - это белковые молекулы (пепсин, трипсин и т.д.), которые состоят только из аминокислотных остатков. Сложные ферменты, кроме белковой части, содержат еще и небелкового, которую называют кофактором. Кофакторами могут быть неорганические катионы или анионы, а также органические вещества (коферменты), например, производные витаминов. Белковый компонент сложных ферментов определяет, какую реакцию катализирует определенный сложный фермент. Но активность сложных ферментов проявляется лишь тогда, когда белковая часть фермента сочетается с небелковой. Каталитическая активность фермента обусловлена не всей его молекулой, а только небольшим участком - активным центром. Его пространственная структура соответствует химическому строению веществ, вступающих в реакцию. Активный центр отвечает за присоединение и преобразование соединений, вступающих в реакцию. Именно поэтому действие фермента специфическая. Часто в состав активного центра входят производные витаминов или атомы металлов. В одной молекуле фермента может быть несколько активных центров.

Ферменты образуют неустойчивые комплексы с веществами, которые вступают в реакцию. Ферментативная реакция протекает в 106-1012 раз быстрее, чем в среде без ферментов. Через несколько секунд или даже доли секунды в организме происходит сложная последовательность реакций, для проведения которой с применением обычных химических катализаторов нужные дни, недели или даже месяцы и годы. Это объясняют тем, что для осуществления любой химической реакции необходим контакт между реагентами. Чтобы произошла реакция без участия ферментов, требуется высокая концентрация реагирующих веществ в среде или повышенная температура, при которой ускоряется движение молекул и возрастает вероятность контактов молекул реагирующих соединений. Но в организмах концентрация веществ часто очень низкая, а высокие температуры могут быть опасными. Именно поэтому биохимические реакции не могут происходить без участия ферментов.

Одни ферменты обеспечивают расщепление определенных соединений, другие - синтез. Например, фермент целлюлазы обеспечивает расщепление клетчатки (целлюлозы). Если в реакции участвуют два соединения или более, каждая из них взаимодействует с ферментом. Фермент при этом удерживает их близко друг от друга, обеспечивая реакцию.

Активность фермента проявляется лишь при определенных условиях: тех или иных значений температуры, давления, рН и т.д.. Существуют и специальные вещества, способные регулировать активность ферментов. Они связываются с активными центрами ферментов и блокируют их активность. В качестве таких веществ-ингибиторов могут выступать ионы тяжелых металлов свинца (Pb), Арсену (As), Аргентуму (Ag).

Ферментативные реакции происходят в виде ряда последовательных этапов (до нескольких десятков). Цепи взаимосвязанных ферментативных реакций в целом обеспечивают обмен веществ и превращение энергии в отдельных клетках и организме в целом.

Ферменты имеют определенное расположение как в рамках отдельной клетки, так и в организме в целом. В клетке много ферментов связанные с плазматической мембраной или мембранами отдельных органелл (митохондрий, пластид и др.).

Белки представляют собой природные органические соединения, которые обладают высокомолекулярным строением. Молекула данных веществ является неразветвляющимся полимером. Белки построены из 20 аминокислот. Именно они представляют структурную минимальную единицу молекулы – мономер. Все составляющие белка соединены между собой полипептидной, по-другому - карбамидной, связью в достаточно длинные цепи. При этом молекулярная масса может составлять от нескольких тысяч и до миллионов атомных частиц.

биологические функции белков

Каким может быть белок

Чтобы определить основные функции белка, стоит разобраться в строении подобных веществ. На данный момент существует две разновидности этого важного для человека компонента: фибриллярные и глобулярные. Различают их в основном благодаря разнице в строении белковой молекулы.

Глобулярное вещество прекрасно растворяется не только в воде, но и в солевых растворах. При этом молекула такого белка обладает шарообразной формой. Такую хорошую растворимость можно легко объяснить расположением заряженных остатков аминокислот, которые окружены гидратной оболочкой, на поверхности глобулы. Именно это и обеспечивает такие хорошие контакты с различными растворителями. Стоит отметить, что в группу глобулярных компонентов входят все ферменты, а также практически все биологически активные белки.

Что касается фибриллярных веществ, то их молекулы обладают волокнистой структурой. Каталитическая функция белков очень важна. Поэтому сложно представить ее выполнение без вспомогательных веществ. Фибриллярные белки не растворяются ни в солевых растворах, ни в обычной воде. Их молекулы располагаются параллельно в полипептидных цепях. Такие вещества участвуют в процессах образования некоторых структурных элементов соединительных тканей. Это эластины, кератины, коллагены.

Особую группу составляют сложные белки, которые состоят не только из аминокислот, но и нуклеиновых кислот, углеводов и прочих веществ. Все эти компоненты играют особую роль. Особое значение имеет каталитическая функция белков. Помимо этого, вещества подобного плана являются дыхательными пигментами, гормонами, а также надежной защитой для любого организма. Биосинтез белка осуществляется на рибосомах. Этот процесс определяется при трансляции кодом нуклеиновых кислот.

основные функции белка

Каталитическая функция белков

Катализ разнообразных химических веществ – это самая главная функция белков. Подобные процессы осуществляются ферментами. Это белки, которые обладают каталитическими специфическими свойствами. Каждый из подобных веществ может осуществлять одну или же несколько похожих реакций. Катализируют ферменты процесс расщепления сложных молекул, а также их синтез. По-другому эти реакции называют катаболизмом и анаболизмом. Каталитическая функция белков подразумевает также репарацию и репликацию ДНК, а также матричный синтез РНК.

Что такое катализ

Уже к 2013 году учеными было выявлено чуть более 5 тысяч ферментов. Подобные вещества способны влиять на ход практически любых биохимических реакций. Чтобы стала более понятной каталитическая функция белков, стоит разобраться, что же такое катализ. С греческого языка это понятие переводится как "прекращение". Катализ представляет собой изменение скорости протекания любой химической реакции. Происходит это под действием определенных соединений. Ферментами выполняется каталитическая функция белков. Примеры этого явления встречаются в повседневной жизни постоянно. Просто человек этого не замечает.

защитная функция белка

Пример каталитической функции

Чтобы понять, как действуют ферменты, стоит рассмотреть несколько примеров. Итак, в чем заключается каталитическая функция белков. Примеры:

  1. При фотосинтезе рибулезобифосфаткарбоксилаза осуществляет катализ фиксации СО2.
  2. Перекись водорода расщепляется до кислорода и воды.
  3. ДНК синтезирует ДНК-полимераза.
  4. Амилаза способна расщепляет до мальтозы крахмал.
  5. Деградация угольной кислоты: СО2 + Н2О НСО3 + Н + .

Каталитическая функция белков заключается в ускорении любых химических превращений. К подобным реакциям относится синтез, распад веществ, перенос отдельных атомов или электронов от одного компонента к другому.

Транспортная функция

Жизнедеятельность любой клетки должна поддерживаться различными веществами, которые являются для них не только строительным материалом, но и своеобразной энергией. Биологические функции белков включают и транспортную. Именно эти компоненты поставляют в клетки все важные вещества, ведь мембраны построены из нескольких слоев липидов. Именно здесь и находятся различные белки. При этом гидрофильные участки все сосредоточены на поверхности, а хвостики - в толще мембран. Такое строение не позволяет проникать внутрь клеток очень важным веществам – ионам щелочных металлов, аминокислотам и сахарам. Белки переносят все эти компоненты внутрь клеток для их питания. Например, гемоглобин транспортирует кислород.

функции белка в клетке

Рецепторная

Основные функции белка обеспечивают не только питание клеток живых организмов, но и помогают распознать сигналы, которые поступают из внешней среды и соседних клеток. Самый яркий пример такого явления – рецепторы ацетилхолина, который расположен на мембране около межнейронных контактов. Сам процесс очень важен. Белки выполняют рецепторную функцию, их взаимодействие с ацетилхолином проявляется специфическим образом. В результате внутрь клетки передается сигнал. Однако спустя некоторое время нейромедиатор обязательно должен быть удален. Только в этом случае клетка сможет получить новый сигнал. Именно эту функцию выполняет один из ферментов – ацетилхолтнэстераза, который выполняет расщепление до холина и ацетата гидролизацетилхолина.

каталитическая функция белков примеры

Защитная

Иммунная система любого живого существа способна отвечать на появление в организме чужеродных частиц. В данном случае срабатывает защитная функция белка. В организме происходит выработка большого количества лимфоцитов, которые способны наносить вред патогенным бактериям, макромолекулам, раковым клеткам и прочее. Одна из групп данных веществ осуществляет выработку особых белков - иммуноглобулинов. Происходит выделение данных веществ в кровеносную систему. Иммуноглобулины распознают чужеродные частицы и образуют высоко специфический комплекс определенной стадии уничтожения. Так осуществляется защитная функция белка.

Структурная

Функции белка в клетке протекают незаметно для человека. Некоторые вещества имеют по большей части структурное значение. Подобные белки обеспечивают механическую прочность отдельных тканей в организмах. Прежде всего, это коллаген. Это основной компонент внеклеточного матрикса всех соединительных тканей в живом организме.

Стоит отметить, что у млекопитающих коллаген составляет примерно 25 % от общей массы белков. Синтез данного компонента происходит в фибробластах. Это основные клетки любой соединительной ткани. Первоначально образуется проколлаген. Это вещество является предшественником и проходит химическую обработку, которая состоит в окислении до гидроксипролина остатков пролина, а также до гидрксилина остатков лизина. Коллаген образуется в виде трех пептидных цепей, скрученных в спираль.

каталитическая функция белков

Это не все функции белков. Биология - достаточно сложная наука, которая позволяет определить и распознать множество явлений, протекающих в организме человека. Каждая функция белка играет особую роль. Так, в эластичных тканях, например в легких, стенках кровеносных сосудов и коже имеется эластин. Этот белок способен растягиваться, а затем возвращаться к исходной форме.

Двигательные белки

Мышечные сокращения – это процесс, при котором происходит превращение энергии, запасенной в молекулах АТФ в виде пирофосфатных макроэргических связей, именно в механическую работу. В данном случае функции белка в клетке выполняют миозин и актин. Каждый из них имеет свои особенности.

Миозин обладает необычайным строением. Этот белок состоит из нитевидной достаточно длиной части – хвоста, а также из нескольких глобулярных головок. Выделяется миозин, как правило, в виде гексамера. Этот компонент образуется несколькими совершенно одинаковыми полипептидными цепями, каждая из которых обладает молекулярной массой в 200 тысяч, а также 4 цепями, молекулярная масса которых составляет всего 20 тысяч.

функции белков биология

Актин представляет собой глобулярный белок, который обладает способностью полимеризоваться. При этом вещество образует достаточно длинную структуру, которую принято называть F-актином. Только в таком состоянии компонент может нормально взаимодействовать с миозином.

Примеры основных функций белков

Что касается структурной функции, то лучшим примером в данном случае может послужить действие коллагена. Это вещество придает соединительным тканям больше упругости.

Примером транспортной функции является перенос гемоглобином кислорода по всему живому организму.

В заключение

Это все основные биологические функции белков. Каждая из них очень важна для живого организма. При этом определенная функция выполняется соответствующим белком. Отсутствие подобных компонентов может привести к нарушению работы определенных органов и систем в организме.

Наука о питании основывается на точном знании поэтапного расщепления питательных веществ под действием пищеварительной системы, на количественный и качественный состав которых влияет характер нутриентов, которые поступают. Много наследственных заболеваний человека обусловлено нарушением или отсутствием синтеза специфических ферментов. Введение их в комплекс лечебных средств компенсирует их недостаток.

Благодаря ферментам в живых организмах происходят такие дивные превращения, которые в других условиях не всегда возможны даже при условии использования наиболее современных достижений науки и техники. Так, например, для расщепления молекул пероксида водорода на молекулярный кислород и воду в присутствии железа необходимо 300 лет, тогда как фермент каталаза осуществляет этот процесс в живой клетке за одну секунду.

Ферменты характеризуются очень высокой активностью. Ферментативная реакция происходит в 10 6 -10 12 раз быстрее, чем спонтанная реакция в водном растворе, которая не катализируется. В живых организмах в присутствии ферментов за доли секунд могут происходить сложные упорядоченные во времени и пространстве реакции, для проведения которых в лабораторных условиях необходимы были бы дни, недели и даже месяцы. Так, 1 г пепсина, фермента желудочного сока, который катализирует переваривание белков, за 1 час может гидролизовать 100 кг яичного белка.

Реакции, которые катализируются ферментами, в отличие от многих химических реакций органических веществ, осуществляемых в лабораторных условиях, протекают без образования побочных продуктов, почти со 100-процентным выходом.

Ферменты в клетке жестко локализованы. Четкое соответствие биохимических процессов органоидам клетки обуславливает локализацию в них тех или иных индивидуальных ферментов, мультиферментных комплексов – полиферментных блоков. Например, в митохондриях сосредоточены комплексы окислительно-восстановительных ферментов, в рибосомах – ферменты, которые принимают участие в биосинтезе белка, в лизосомах – гидролазы, в протоплазме – ферменты, которые активируют аминокислоты, в ядерном аппарате клетки – в основном ферменты, которые осуществляют биосинтез нуклеиновых кислот. Благодаря такой локализации ферментных систем процесс катализа является серией последовательных элементарных превращений веществ, максимально скоординированных и организованных в пространстве и времени.

Обменные реакции, которые протекают в клетке под действием ферментов, жестко регламентированны: синтезируется только то количество разных видов простых молекул, которое необходимо для биосинтеза белков, нуклеиновых кислот, липидов, полисахаридов и т.п. Такая саморегуляция обеспечивает определенное стационарное состояние живых структур даже в случаях значительных изменений внешней среды.

По химическому строению ферменты представляют собой простые и сложные белки.

Простые ферменты состоят только из белков, поэтому их называют однокомпонентными. Сложные ферменты, кроме белковой, содержат и небелковую часть, поэтому они получили название двукомпонентных.

Белковую часть сложного фермента называют апоферментом (носитель), небелковую – дополнительной, простетической группой, коэнзимом или коферментом (активная часть). Общее название сложного фермента – холофермент (от греч. holos – целое).

Роль коферментов в сложных ферментах выполняют большинство витаминов (В1, В2, В3, В4, В5, В6, В12, Вс, Н и др.) или соединения, в состав которых входят витамины, ионы металлов и др. Например, витамин Н входит в состав кокарбоксилаз, которые катализируют биосинтез высших жирных кислот, потому что он способствует ассимиляции оксида углерода.

В состав кофермента А, или коэнзима А (KoA и HSKoA), входит пантотеновая кислота (витамин В3).

Действующие ныне номенклатура и классификация ферментов были утверждены в 1961 году на V Международном биохимическом конгрессе в Москве.




В основу номенклатуры были положены такие положения:

2) в названии должен быть отражен механизм реакции, название субстрата и кофермента, тип реакции, которая катализируется.

Все ферменты подразделяются на шесть классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы). Каждый класс имеет подклассы.

1. Оксидоредуктазы. К этому классу отнесены все ферменты (дегидрогеназы, оксидазы и др.), которые катализируют окислительно-восстановительные реакции. Эти реакции осуществляются цепью ферментов и промежуточных переносчиков водорода или электронов от первичного субстрата к конечному акцептору – кислороду. Особенностью оксидоредуктаз является их способность ускорять большое количество разнообразных окислительно-восстановительных реакций, что обеспечивает соединение кофермента с многими апоферментами. При этом каждый раз образуется оксидоредуктаза, специфична относительно того или иного субстрата. Оксидоредуктазы принимают участие в химических реакциях, связанных с освобождением энергии.

2. Трансферазы. Ферменты этого класса осуществляют внутренний и межмолекулярный перенос отдельных функциональных групп. В зависимости от характера группировок, которые переносятся, различают метилтрансферазы – переносят метильные группы – СН3, аминотрансферазы – осуществляют перенос аминных груп – NH2, фосфотрансферазы – транспортируют остаток фосфорной кислоты.

3. Гидролазы. Ферменты этого класса обеспечивают расщепление внутримолекулярных связей органических соединений при участии воды. К этому классу принадлежит большая группа ферментов, в том числе почти все энзимы желудочно-кишечного тракта: эстеразы, фосфатазы, пептидазы и др.

4. Лиазы. К этому классу принадлежат ферменты, которые катализируют обратимые реакции отщепления разных групп от субстратов негидролитическим путем. Расщепление идет по связи С-С, С-N, С-О и т.д. К таким ферментам принадлежат, например, декарбоксилазы, которые отщепляют СО2 от карбоновых кислот.

5. Изомеразы. Эти ферменты катализируют разные типы реакций изомеризации. Они также катализируют процессы внутримолекулярнных превращений: переноса водорода, фосфатных и ацильных групп, изменения пространственного расположения атомных группировок, перемещения двойных связей и т.д. Например, L-изомеры превращаются в D-изомеры, глюкоза – в фруктозу и т.п.

6. Лигазы, или синтетазы. Ферменты этого класса принимают участие во всех реакциях синтеза разных соединений. Они ускоряют реакции образования органических соединений. Одним из таких природных донаторов энергии является аденозинтрифосфат (АТФ). Энергия, которая выделяется при отщеплении остатков фосфорной кислоты, используется для процессов биосинтеза.

В пищевой промышленности ферменты используются для получения продуктов с заданными свойствами. При этом могут использоваться микробные ферменты; ферменты, выделенные из некоторых органов, например, из печени, поджелудочной железы, желудка. Более удобным и эффективным является использование иммобилизированных ферментов.

Иммобилизация ферментов – это включение объекта (фермента) в изолированную фазу, которая отделена от фазы свободного раствора, но способна обмениваться с ней молекулами.

Иммобилизированные ферменты получают путем связывания с носителями растворимых ферментов или клеток, которые имеют ферментативную активность, т.е. делают сорбцию фермента на носители и включения в структуру носителей-гелей.

Иммобилизация приближает условия их функционирования к природному.

Преимущество их использования состоит в том, что их можно удалять из реакционной среды, т.е. контролировать ход реакции и многоразово его использовать. Использование иммобилизированных ферментов позволяет осуществлять каждый процесс непрерывно, пропуская раствор субстратов через реакторы с иммобилизированными ферментами.

Иммобилизированные ферменты имеют высокую каталитическую активность, ее можно изменять, изменяя способ связывания и вид носителя. Продукты реакции не загрязняются кристаллическими ферментами.

С помощью иммобилизированных ферментов получают аминокислоты, ароматические кислоты, сахара, органические растворители, антибиотики, их используют для очистки сточных вод и водоемов.

В промышленности применяют ферменты микробного происхождения: протеолитические, липолитические, амилолитические, гидролазы, которые расщепляют пектин, целлюлозу и гемицеллюлозу.

Наука о питании основывается на точном знании поэтапного расщепления питательных веществ под действием пищеварительной системы, на количественный и качественный состав которых влияет характер нутриентов, которые поступают. Много наследственных заболеваний человека обусловлено нарушением или отсутствием синтеза специфических ферментов. Введение их в комплекс лечебных средств компенсирует их недостаток.

Благодаря ферментам в живых организмах происходят такие дивные превращения, которые в других условиях не всегда возможны даже при условии использования наиболее современных достижений науки и техники. Так, например, для расщепления молекул пероксида водорода на молекулярный кислород и воду в присутствии железа необходимо 300 лет, тогда как фермент каталаза осуществляет этот процесс в живой клетке за одну секунду.

Ферменты характеризуются очень высокой активностью. Ферментативная реакция происходит в 10 6 -10 12 раз быстрее, чем спонтанная реакция в водном растворе, которая не катализируется. В живых организмах в присутствии ферментов за доли секунд могут происходить сложные упорядоченные во времени и пространстве реакции, для проведения которых в лабораторных условиях необходимы были бы дни, недели и даже месяцы. Так, 1 г пепсина, фермента желудочного сока, который катализирует переваривание белков, за 1 час может гидролизовать 100 кг яичного белка.

Реакции, которые катализируются ферментами, в отличие от многих химических реакций органических веществ, осуществляемых в лабораторных условиях, протекают без образования побочных продуктов, почти со 100-процентным выходом.

Ферменты в клетке жестко локализованы. Четкое соответствие биохимических процессов органоидам клетки обуславливает локализацию в них тех или иных индивидуальных ферментов, мультиферментных комплексов – полиферментных блоков. Например, в митохондриях сосредоточены комплексы окислительно-восстановительных ферментов, в рибосомах – ферменты, которые принимают участие в биосинтезе белка, в лизосомах – гидролазы, в протоплазме – ферменты, которые активируют аминокислоты, в ядерном аппарате клетки – в основном ферменты, которые осуществляют биосинтез нуклеиновых кислот. Благодаря такой локализации ферментных систем процесс катализа является серией последовательных элементарных превращений веществ, максимально скоординированных и организованных в пространстве и времени.

Обменные реакции, которые протекают в клетке под действием ферментов, жестко регламентированны: синтезируется только то количество разных видов простых молекул, которое необходимо для биосинтеза белков, нуклеиновых кислот, липидов, полисахаридов и т.п. Такая саморегуляция обеспечивает определенное стационарное состояние живых структур даже в случаях значительных изменений внешней среды.

По химическому строению ферменты представляют собой простые и сложные белки.

Простые ферменты состоят только из белков, поэтому их называют однокомпонентными. Сложные ферменты, кроме белковой, содержат и небелковую часть, поэтому они получили название двукомпонентных.

Белковую часть сложного фермента называют апоферментом (носитель), небелковую – дополнительной, простетической группой, коэнзимом или коферментом (активная часть). Общее название сложного фермента – холофермент (от греч. holos – целое).

Роль коферментов в сложных ферментах выполняют большинство витаминов (В1, В2, В3, В4, В5, В6, В12, Вс, Н и др.) или соединения, в состав которых входят витамины, ионы металлов и др. Например, витамин Н входит в состав кокарбоксилаз, которые катализируют биосинтез высших жирных кислот, потому что он способствует ассимиляции оксида углерода.

В состав кофермента А, или коэнзима А (KoA и HSKoA), входит пантотеновая кислота (витамин В3).

Действующие ныне номенклатура и классификация ферментов были утверждены в 1961 году на V Международном биохимическом конгрессе в Москве.

В основу номенклатуры были положены такие положения:

2) в названии должен быть отражен механизм реакции, название субстрата и кофермента, тип реакции, которая катализируется.

Все ферменты подразделяются на шесть классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы). Каждый класс имеет подклассы.

1. Оксидоредуктазы. К этому классу отнесены все ферменты (дегидрогеназы, оксидазы и др.), которые катализируют окислительно-восстановительные реакции. Эти реакции осуществляются цепью ферментов и промежуточных переносчиков водорода или электронов от первичного субстрата к конечному акцептору – кислороду. Особенностью оксидоредуктаз является их способность ускорять большое количество разнообразных окислительно-восстановительных реакций, что обеспечивает соединение кофермента с многими апоферментами. При этом каждый раз образуется оксидоредуктаза, специфична относительно того или иного субстрата. Оксидоредуктазы принимают участие в химических реакциях, связанных с освобождением энергии.

2. Трансферазы. Ферменты этого класса осуществляют внутренний и межмолекулярный перенос отдельных функциональных групп. В зависимости от характера группировок, которые переносятся, различают метилтрансферазы – переносят метильные группы – СН3, аминотрансферазы – осуществляют перенос аминных груп – NH2, фосфотрансферазы – транспортируют остаток фосфорной кислоты.

3. Гидролазы. Ферменты этого класса обеспечивают расщепление внутримолекулярных связей органических соединений при участии воды. К этому классу принадлежит большая группа ферментов, в том числе почти все энзимы желудочно-кишечного тракта: эстеразы, фосфатазы, пептидазы и др.

4. Лиазы. К этому классу принадлежат ферменты, которые катализируют обратимые реакции отщепления разных групп от субстратов негидролитическим путем. Расщепление идет по связи С-С, С-N, С-О и т.д. К таким ферментам принадлежат, например, декарбоксилазы, которые отщепляют СО2 от карбоновых кислот.

5. Изомеразы. Эти ферменты катализируют разные типы реакций изомеризации. Они также катализируют процессы внутримолекулярнных превращений: переноса водорода, фосфатных и ацильных групп, изменения пространственного расположения атомных группировок, перемещения двойных связей и т.д. Например, L-изомеры превращаются в D-изомеры, глюкоза – в фруктозу и т.п.

6. Лигазы, или синтетазы. Ферменты этого класса принимают участие во всех реакциях синтеза разных соединений. Они ускоряют реакции образования органических соединений. Одним из таких природных донаторов энергии является аденозинтрифосфат (АТФ). Энергия, которая выделяется при отщеплении остатков фосфорной кислоты, используется для процессов биосинтеза.

В пищевой промышленности ферменты используются для получения продуктов с заданными свойствами. При этом могут использоваться микробные ферменты; ферменты, выделенные из некоторых органов, например, из печени, поджелудочной железы, желудка. Более удобным и эффективным является использование иммобилизированных ферментов.

Иммобилизация ферментов – это включение объекта (фермента) в изолированную фазу, которая отделена от фазы свободного раствора, но способна обмениваться с ней молекулами.

Иммобилизированные ферменты получают путем связывания с носителями растворимых ферментов или клеток, которые имеют ферментативную активность, т.е. делают сорбцию фермента на носители и включения в структуру носителей-гелей.

Иммобилизация приближает условия их функционирования к природному.

Преимущество их использования состоит в том, что их можно удалять из реакционной среды, т.е. контролировать ход реакции и многоразово его использовать. Использование иммобилизированных ферментов позволяет осуществлять каждый процесс непрерывно, пропуская раствор субстратов через реакторы с иммобилизированными ферментами.

Иммобилизированные ферменты имеют высокую каталитическую активность, ее можно изменять, изменяя способ связывания и вид носителя. Продукты реакции не загрязняются кристаллическими ферментами.

С помощью иммобилизированных ферментов получают аминокислоты, ароматические кислоты, сахара, органические растворители, антибиотики, их используют для очистки сточных вод и водоемов.

В промышленности применяют ферменты микробного происхождения: протеолитические, липолитические, амилолитические, гидролазы, которые расщепляют пектин, целлюлозу и гемицеллюлозу.

Читайте также: