Какое вещество на земле существует во всех 3 агрегатных состояниях кратко

Обновлено: 04.07.2024

Загадочный окружающий мир не перестает удивлять. Кубик льда, брошенный в стакан и оставленный при комнатной температуре, в считанные минуты превратится в жидкость, а если оставить эту жидкость на подоконнике на более продолжительное время, – и вовсе испарится. Это — самый простой способ наблюдать за переходами одного агрегатного состояния вещества в другое.

Агрегатное состояние — состояние какого-либо вещества, имеющее определенные свойства: способность сохранять форму и объем, иметь дальний или ближний порядок и другие. При изменении агрегатного состояния вещества происходит изменение физических свойств, а также плотности, энтропии и свободной энергии.

Как и почему происходят эти удивительные превращения? Чтобы разобраться в этом, вспомним, что все вокруг состоит из атомов и молекул. Атомы и молекулы различных веществ взаимодействуют друг с другом, и именно связь между ними определяет, какое у вещества агрегатное состояние .

Выделяют четыре типа агрегатных веществ:

Кажется, что химия открывает нам свои тайны в этих удивительных превращениях. Однако это не так. Переход из одного агрегатного состояния в другое, а также броуновское движение или диффузия относятся к физическим явлениям, поскольку в этих превращениях не происходит изменений молекул вещества и сохраняется их химический состав.

Газообразное состояние

На молекулярном уровне газ представляет собой хаотически движущиеся, сталкивающиеся со стенками сосуда и между собой молекулы, которые друг с другом практически не взаимодействуют. Поскольку молекулы газа между собой не связаны, то газ заполняет весь предоставленный ему объем, взаимодействуя и изменяя направление только при ударах друг о друга.

Это происходит потому, что в замкнутый ограниченный объем шины попадает большое количество молекул, которым становится тесно, и они начинают чаще ударяться друг о друга и о стенки шины, а в результате суммарное воздействие миллионов молекул на стенки воспринимается нами как давление.

Но если газ занимает весь предоставленный ему объем, почему тогда он не улетает в космос и не распространяется по всей вселенной, заполняя межзвездное пространство? Значит, что-то все-таки удерживает и ограничивает газы атмосферой планеты?

Тогда возникает следующий вопрос: почему молекулы газов не падают на землю, а продолжают летать? Оказывается, благодаря солнечной энергии молекулы воздуха имеют солидный запас кинетической энергии, который позволяет им двигаться против сил земного притяжения.

Сборник вопросов и задач. Физика. 9 класс

Жидкое состояние

При повышении давления и/или снижении температуры газы можно перевести в жидкое состояние. Еще на заре ХIХ века английскому физику и химику Майклу Фарадею удалось перевести в жидкое состояние хлор и углекислый газ, сжимая их при очень низких температурах. Однако некоторые из газов не поддались ученым в то время, и, как оказалось, дело было не в недостаточном давлении, а в неспособности снизить температуру до необходимого минимума.

Жидкость, в отличие от газа, занимает определенный объем, однако она также принимает форму заполняемого сосуда ниже уровня поверхности. Наглядно жидкость можно представить как круглые бусины или крупу в банке. Молекулы жидкости находятся в тесном взаимодействии друг с другом, однако свободно перемещаются относительно друг друга.

Если на поверхности останется капля воды, через какое-то время она исчезнет. Но мы же помним, что благодаря закону сохранения массы-энергии, ничто не пропадает и не исчезает бесследно. Жидкость испарится, т.е. изменит свое агрегатное состояние на газообразное.

Испарение — это процесс преобразования агрегатного состояния вещества, при котором молекулы, чья кинетическая энергия превышает потенциальную энергию межмолекулярного взаимодействия, поднимаются с поверхности жидкости или твердого тела.

Испарение с поверхности твердых тел называется сублимацией или возгонкой. Наиболее простым способом наблюдать возгонку является использование нафталина для борьбы с молью. Если вы ощущаете запах жидкости или твердого тела, значит происходит испарение. Ведь нос как раз и улавливает ароматные молекулы вещества.

Жидкости окружают человека повсеместно. Свойства жидкостей также знакомы всем — это вязкость, текучесть. Когда заходит разговор о форме жидкости, то многие говорят, что жидкость не имеет определенной формы. Но так происходит только на Земле. Благодаря силе земного притяжения капля воды деформируется.

Однако многие видели как космонавты в условиях невесомости ловят водяные шарики разного размера. В условиях отсутствия гравитации жидкость принимает форму шара. А обеспечивает жидкости шарообразную форму сила поверхностного натяжения. Мыльные пузыри – отличный способ познакомиться с силой поверхностного натяжения на Земле.

Еще одно свойство жидкости — вязкость. Вязкость зависит от давления, химического состава и температуры. Большинство жидкостей подчиняются закону вязкости Ньютона, открытому в ХIХ веке. Однако есть ряд жидкостей с высокой вязкостью, которые при определенных условиях начинают вести себя как твердые тела и не подчиняются закону вязкости Ньютона. Такие растворы называются неньютоновскими жидкостями. Самый простой пример неньютоновской жидкости — взвесь крахмала в воде. Если воздействовать на неньютоновскую жидкость механическими усилиями, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело.


Наливаете стакан сока и добавляете туда лед, моете стакан водой, а потом можно еще паром обдать, чтобы стакан был совсем чистым. В этом процессе трижды используется вода, но в разных агрегатных состояниях. Давайте разбираться, в каких.

О чем эта статья:

Агрегатные состояния вещества

Чтобы разобраться с тем, какими бывают агрегатные состояния, предлагаю по ходу чтения статьи заполнять таблицу.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

Лед, вода и водяной пар — это все три агрегатных состояния одного вещества. Лед — твердое состояние, вода — жидкая, пар — газообразное. Для каждого вещества существует три состояния.

Твердое состояние

Его очень легко представить — это любой предмет, который мы встречаем в жизни. В этом состоянии тело сохраняет форму и объем. Расстояние между молекулами, приблизительно равно размеру самих молекул, которые, в свою очередь, расположены очень структурированно.

Такая структура называется кристаллической решеткой — из-за четкой структуры молекулам сложно двигаться, и они просто колеблются около своих положений равновесия.

Заполняем нашу табличку

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

Жидкое состояние

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан, то молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.




Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой — он почти не заваривается. А вот если налить кипяточку — чай точно будет готов.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

Газообразное состояние

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

На самом деле, есть еще четвертое — плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором помимо нейтральных частиц есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

С агрегатными состояниями разобрались, ура! Но до сих пор неясно, каким образом у каждого вещества их целых три, и как одно переходит в другое. Для этого узнаем, что такое фазовые переходы.

Фазовые переходы: изменение агрегатных состояний вещества

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.

Фазовые переходы интересны тем, что все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы металлургии и микроэлектроники.

На схеме — названия всех фазовых переходов:


схема фазовых переходов между агрегатными состояниями

Переход из твердого состояния в жидкое — плавление;

Переход из жидкого состояния в твердое — кристаллизация;

Переход из газообразного состояния в жидкое — конденсация;

Переход из жидкого состояния в газообразное — парообразование;

Переход из твердого состояния в газообразное, минуя жидкое — сублимация;

Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

График фазовых переходов

Если взять процесс превращения льда в воду, воды — в пар, и обратные действия, то мы получим очень информативный график.


график фазовых переходов агрегатных состояний

Разбираемся по шагам.

Сначала взяли лед, конечно, при отрицательной температуре, потому что при нуле лед начинает плавиться. Нагрели лед до температуры плавления (до 0 градусов Цельсия).

После того, как лед нагрелся до температуры плавления, он начинает плавиться. В точке B это еще лед, а в точке C — уже вода. Плавление происходит при постоянной температуре и тем дольше длится, чем больше масса плавящегося вещества. Еще этот процесс зависит от свойств самого вещества, но об этом немного позже.

Расплавленное вещество уже в жидком состоянии снова начинает нагреваться, и температура увеличивается, пока не достигает температуры кипения. В данном случае нагревается вода — это значит, что ее температура кипения равна 100 градусам Цельсия.

  • DE — кипение (парообразование) воды

При 100 градусах вода кипит, пока не выкипит целиком. В данном случае процесс, как и плавление, происходит при постоянной температуре. Но парообразование нельзя путать с испарением, потому что парообразование происходит при конкретной температуре, а испарение — при любой .

Далее полученный пар нагревается, но путем нагревания невозможно дойти до другого фазового перехода — можно пойти только обратно.

Первый шаг в обратную сторону — охлаждение до температуры кипения.

Дойдя до температуры кипения (в данном случае 100 градусов), пар начинает переходить в жидкое состояние. Этот процесс также происходит при постоянной температуре.

Сконденсировавшись, вода охлаждается, пока не начнет замерзать.

Кристаллизуется (замерзает) вода при той же температуре, что и плавится лед — 0 градусов. Кристаллизация также происходит при постоянной температуре.

После кристаллизации лед охлаждается.

С нагреванием и охлаждением все совсем просто — мы либо передаем теплоту телу (веществу), и оно идет на увеличение температуры, либо тело отдает тепло и охлаждается.

В остальных процессах температура не меняется. Это связано с тем, что количество теплоты не всегда зависит от температуры. Формулы для всех процессов выглядят так:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг · ˚C]

m — масса [кг]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Плавление

Кристаллизация

Q — количество теплоты [Дж]

λ — удельная теплота плавления вещества [Дж/кг]

m — масса [кг]

Парообразование

Конденсация

Q — количество теплоты [Дж]

L — удельная теплота парообразования вещества [Дж/кг]

m — масса [кг]

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Решение задач по фазовым переходам

С теорией разобрались — а теперь давайте практиковаться!

Задачка раз. Температура медного образца массой 100 г повысилась с 20 °С до 60 °С. Какое количество теплоты получил образец? Удельную теплоёмкость меди считать равной 380 Дж/(кг · °С)


    Сначала нужно перевести массу в килограммы:

Q = 380 · 0,1 · (60 − 20) = 1520 Дж

Ответ: образец получил 1520 Дж

Задачка два. Какое количество теплоты необходимо для плавления 2,5 т стали, взятой при температуре плавления? Удельная теплота плавления стали λ = 80 кДж/кг. Теплопотерями пренебречь.


    Сначала нужно перевести массу в килограммы и удельную теплоту в Дж/кг:

80 кДж/кг = 80 000 Дж/кг

Q = 80 000 · 2500 = 200 000 000 Дж = 200 МДж

Ответ: для плавления 2,5 т стали необходимо 200 МДж теплоты.

Сублимация и десублимация

Мы уже рассказали про такие процессы, как сублимация и десублимация.

  • Переход из твердого состояния в газообразное, минуя жидкое — сублимация (возгонка);
  • Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

Примерчики из жизни🤓

Про белье. Попробуйте повесить белье сушиться на улицу в мороз. Поскольку вода замерзает из-за низких температур, белье должно вернуться домой в виде большого айсберга, но этого не происходит — оно возвращается абсолютно сухим. В данном процессе произошла возгонка молекул воды (сублимация).

Про принтеры. Цветные принтеры (только не лазерные) печатают путем сублимации. Вот как это работает: частицы краски быстро переходят из твердого состояния в газообразное и оседают на бумаге — так получается цветная картинка.

Рисуночки на окнах. Если вы решите проехаться на автобусе в холодную погоду — увидете на стеклах чудесные узоры. Из-за огромной разницы температур между улицей и автобусом, мы можем наблюдать процесс десублимации в виде красивых рисунков на стеклах. Иней образуется похожим способом — резкое похолодание приводит к десублимации воздуха.

Влажность воздуха: испарение и конденсация

Такие процессы, как испарение и конденсация, становятся более логичными и простыми, если их рассмотреть на примере влажности воздуха.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Любое количество пара в воздух не запихнешь, поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре −20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь. Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит, что его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40–50%.

Как влажность влияет на человека

Для человека влажность очень важна, потому что мы состоим из воды на 90%. Если окружающей среде нечего испарять, она будет испарять нас. Поэтому при низкой влажности мы чувствуем сухость во рту, а при высокой — волосы впитывают влагу, разбухают и начинают виться. На этом принципе построены некоторые гигрометры — приборы для измерения влажности. Они так и называются — волосяные гигрометры. Только внутри не человеческий волос, а конский, но принцип от этого не меняется.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой, но при высокой влажности пот не может испариться. При испарении пота мы теряем избыточное тепло, а в данном случае этого не происходит.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно, а при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

Влажностью можно управлять. Существуют мешочки с шариками адсорбентами, которые кладут в коробки с обувью, чтобы впитать лишнюю влагу. Чтобы окна не запотевали, можно насыпать в рамы соль, которая также впитает влагу. А если вам наоборот нужно больше влаги — берем увлажнитель воздуха (классная вещь!): он добавляет в воздух водяной пар.

В школе, да и просто в обычной жизни мы привыкли называть три агрегатных состояния вещества: твёрдое тело, жидкость и газ (они всем известны). Иногда к этим агрегатным состояниям добавляют четвёртое основное – плазма . Плазма, кстати, самое распространённое состояние во Вселенной. Именно в этом состоянии находятся звёзды.

Плазма является ионизированным газом, который возникает на Земле при очень высоких температурах (больше 1000 K). Плазма содержит в себе не только электроны и ионы, что интересно, но и электромагнитное поле, а так её свойства по факту идентичны свойствам обычных газов.

Подразделяется также отдельным видом агрегатного состояния фазовый переход . Это то состояния вещества, когда оно переходит из одного состояния в другое. Это звучит немного странно, но рассмотрим же пример: плавим металлический слиток . Кристаллическая решётка твёрдого тела постепенно разрушается, и тело начинает переходить в жидкость, но в какой-то момент перед нами и не твёрдое тело, и не жидкость одновременно. Именно по этой причине учёные и рассматривают фазовый переход, как отдельное состояние вещества.

Сверхтекучесть являет собой способность вещества при очень низких температурах (абсолютный ноль) протекать через узкие щели без какого-либо трения! До недавних пор сверхтекучесть приписывалась только жидкому гелию, но наука не стоит на месте, поэтому ею открыты и другие вещества, способные проявлять такие же свойства.

Есть ещё среди агрегатных состояний конденсат Бозе-Эйнштейна . По факту это также сверхтекучесть, но только перед нами не жидкость, а бозе-газ (газ, состоящий из бозонов, охлаждённых до температуры, близкой к нулю). Любят они всё к нулю приводить!

Из интересных также имеется и нейтронное состояние , в корне отличающиеся от всех остальных. Это состояние характеризуется нейтронами. Мы берём тело – и оно состоит только из нейтронов. В лабораториях такого ещё создать не могут (не хватает давления), но данное агрегатное состояние существует внутри нейтронных звёзд. При огромном давлении протоны и электроны объединяются и образуют собой нейтроны, отсюда и нейтронное состояние.

Сверхкритический флюид – это состояние вещества, усреднённое между жидкостью и газом. Ни рыба, ни мясо, так сказать. Причём сверхкритический флюид обладает свойствами жидкого и газообразного состояния одновременно. При температуре и давлении, что выше критической точки данного вещества, мы и получаем сверхкритическое вещество. Своё применение в промышленности нашли сверхкритическая вода и сверхкритический диоксид углерода.

И даже в этой статье не описаны все агрегатные состояния вещества, а если и описаны, то очень поверхностно, не подробно, слегка. О, как велик и многогранен этот мир, полный различных форм, загадок и секретов!

В мире множество веществ, которые могут принимать разную форму. Вода в чайнике жидкая, а если начать ее кипятить, то она станет паром. Если эту же воду поставить в морозильную камеру, то она затвердевает. Вещества на нашей планете как актеры, которые могут играть разные роли. Агрегатное состояние – принятие химическими веществами разной формы в зависимости от изменений внешней среды. Всего существует четыре состояния – газовое, жидкое, твердое, плазменное. Но к агрегатным относятся только три состояния– газ, жидкость и твердые вещества. В плазменном состоянии не сохраняется атомно-молекулярный состав вещества, а в трех других – сохраняется.

План урока:

В мире множество веществ, которые могут принимать разную форму. Вода в чайнике жидкая, а если начать ее кипятить, то она станет паром. Если эту же воду поставить в морозильную камеру, то она затвердевает. Вещества на нашей планете как актеры, которые могут играть разные роли.

Агрегатное состояние – принятие химическими веществами разной формы в зависимости от изменений внешней среды. Всего существует четыре состояния – газовое, жидкое, твердое, плазменное. Но к агрегатным относятся только три состояния– газ, жидкость и твердые вещества. В плазменном состоянии не сохраняется атомно-молекулярный состав вещества, а в трех других – сохраняется.

Агрегатное состояние вещества и фазовые переходы. Гуглдиск

Процесс перехода одного состояния в другое называется фазовым переходом. Он характеризуется изменением структуры связей между атомами, молекулами или ионами. Фазовый переход сопровождается поглощением или выделением теплоты. Ему сопутствуют скачкообразные изменения физических и химических свойств — плотности, растворимости и др.

Вещество изменяет агрегатное состояние при следующих условиях.

  • Плавление – переход вещества из твердого состоянияв жидкое (таяние льда).
  • Затвердевание – обратный плавлению процесс (зимние узоры на стекле).
  • Парообразование – переход вещества из жидкого состояния вгазообразное (выделение пара из кипящего чайника).
  • Конденсация – обратный парообразованию процесс (появление капель воды при принятии горячего душа).
  • Сублимация, или возгонка – переход из твердого состояния в газообразное, минуя жидкую стадию(переход сухого льда в состояние углекислого газа).
  • Десублимация – обратный сублимации процесс (появление инея на деревьях).

Газообразное состояние

Газ – состояние, при котором частицы вещества слабо связаны друг с другом, занимают все пространство и движутся хаотично. Расстояния между атомами и молекулами значительно превышают их размеры. Газовое состояние можно сравнить с футбольным полем, на котором быстро и независимо друг от друга передвигаются спортсмены. Футболисты, как и молекулыв газообразном состоянии, взаимодействуют только когда сталкиваются или близко подходят друг к другу.

Расположение молекул газа.

Газообразное состояние находится в виде различных запахов. У газов нет формы и объема, поэтому частицы распространяются по всему пространству. Например, запах газа из невыключеннойплиты быстро охватывает всю квартиру благодаря хаотичности движения молекул и их стремлению заполнить все помещение.

Газы обладают следующими особенными свойствами.

  • Равномерность заполнения всего объема.
  • Небольшая плотность при высокой скорости диффузии.
  • Легкое сжатие.

Газообразноеагрегатное состояние веществаможно оценивать как насыщенный и ненасыщенный пар. Если число молекул, вылетающих из жидкости, станет равным числу молекул пара, возвращающихся в жидкость, то возникает динамическое равновесие между паром и жидкостью – состояние насыщенного пара. В ненасыщенном такого равновесия нет.

При нахождении жидкости в открытом сосуде, объем вещества уменьшается из-за испарения. Если поместить ту же жидкость в закрытый сосуд, объем вещества останется прежним. Сначала начнется процесс испарения и продолжается до тех пор, пока число покинувших жидкость молекул не станет равно возвратившимся назад из паров. Т.е. в закрытом сосуде возникает динамическое равновесие. Изменение внутренней энергии вещества определяется по формуле:

ΔU = ± mr, где m — масса тела, r — удельная теплота парообразования.

Переход веществиз газообразногов жидкое состояние, называется сжижением. Увеличение давления и понижение температуры приводит к уменьшению расстояний между молекулами, увеличению силы взаимодействия и превращению в жидкость. Сжижение характеризуется критической температурой. Она определяется в точке, в которой переход газа в жидкость невозможен.

Жидкое состояние

Жидкость – состояние, в котором происходит заполнение частицами всего объема. В отличие от газов, у жидкости есть поверхность. Также для нее характерно высокое межмолекулярное взаимодействие и низкая сжимаемость. Частицы в жидкости располагаются как гости, приглашенные в небольшую квартиру. Приглашенные, как и молекулы, свободно передвигаются в пространстве и ведут себя по-разному. Из-за того, что гостей много, человеку необходимо постоянно оглядываться, чтобы ни на кого не натолкнуться. Присутствующиенаходятся близко друг к другу.

Жидкие вещества. Гуглдиск:

Жидкое агрегатное состояниеобладает особенным свойством – текучестью. Она объясняется тем, что частицы колеблются внутри квазикристаллической решетки и перемещаются между ними. Получается сложная траектория — колебания вокруг центра, перемещающегося в пространстве.

Твердое состояние

Твердому состоянию свойственна высокая степень упорядоченности частиц. Каждая молекулаколеблется около среднего положения, оставаясь жестко связанной с соседями и образуя кристаллическую решетку. Твердое агрегатное состояние напоминает воинскую часть, в которой все подчиняется строгим правилам. В строю, как и в твердых веществах, каждому солдату предоставлено определенное место. Самостоятельное перемещение внутри строя запрещается. Солдаты стоят плотно плечом к плечу, расстояния между ними маленькие. Столкновения внутри строя невозможны.

Твердые вещества имеют форму и сохраняют свой объем. Их классифицируют на несколько видов.

  • Аморфные – вещества, в которых относительно упорядоченные частицы имеют сильные ковалентные, полярные и неполярные, ионные, металлические связи.
  • Кристаллические – вещества, в которых частицы расположены строго по своим местам.

Аморфные тела по свойствам напоминают жидкости,так как их молекулы передвигаются между хаотично расположенными условными центрами. Примерами аморфных веществ служат пластмассы, смолы и другие неметаллы. Примеры кристаллических тел – железо, серебро и другие металлы.

Нагревание кристаллических веществ ведет к нарушению расположения частиц и увеличению расстояний между ними. При достижении температуры плавленияпроисходит перестройка молекул, и твердое тело превращаетсяв жидкое. Количество теплоты, которое необходимо для расплавления некоторой массы веществ, подчиняется формуле:

Q = km, где k — удельная теплота плавления этого вещества, m — его масса.

Плазма

Плазма – не выдумка из фантастических фильмов и книг, а ионизированный газ. Она характеризуется одновременным присутствием нейтральных и заряженных частиц. Ионизаторы воздуха строятся на принципе перехода из газообразного вещества в плазму.

Получить плазму сложно, т.к. для этого вещество необходимо нагревать до температур порядка сотен тысяч градусов и выше. Полученная смесь состоит из электронов, ядер и положительно заряженных ионов. Плазма электронейтральна, но обладает высокой проводимостью. Внутри нее происходят непрерывные разрежения и сгущения, сопровождающиеся образованием плазмоидов — упорядоченных структур правильной формы. Хотя плазма на нашей планете – редкое явление, каждый человек хотя бы раз в жизни сталкивался с ней. Плазменное состояние характерно для северного сияния и молний. В масштабах Вселенной основная масса вещества находится в виде плазмы.

Сводная таблица агрегатных состояний

Области применения агрегатных состояний

Способность веществ переходить из одного агрегатного состояния в другой активно используется человеком. На ней основаны многие промышленные процессы.

  • Способность металлов плавиться и принимать различную форму используется в черной и цветной металлургии.
  • При получении соли и других химических соединений применяется выпаривание, при котором вещество получается после испарения жидкости.
  • Инертные газы используются в осветительных приборах.
  • Жидкий кислород применяется в медицине в качестве средства анестезии.

Таким образом, без различных агрегатных состояний невозможно было бы представить жизнь на планете. Фазовые переходы веществ используются практически во всех областях жизнедеятельности.

Читайте также: