Какое логическое выражение называется простым кратко

Обновлено: 03.07.2024

Гипермаркет знаний>>Информатика>>Информатика 9 класс>>Информатика: Условия выбора и простые логические выражения

§ 13. Условия выбора и простые логические выражения


Основные темы параграфа:

♦ понятие логического выражения;
♦ операции отношения;
♦ запрос на выборку и простые логические выражения.

Понятие логического выражения

В командах СУБД условие выбора записывается в форме логического выражения.

Логическое выражение, подобно математическому выражению, выполняется (вычисляется), но в результате получается не число, а логическое значение: истина (true) или ложь (false). Логическая величина — это всегда ответ на вопрос, истинно ли данное высказывание.

Таблица 3.4. Высказывания и их логические значения

Вот как выглядят логические выражения, соответствующие восьми высказываниям, приведенным в табл. 3.4:

квартет, компонент, конверт, конвульсия.

Между этими словами истинны следующие отношения:

12:53:08 > 03:40:00;
23:05:12 745.

ДЕНЬ ВЛАЖНОСТЬ
15/03/04 67
16/03/04 62
19/03/04 87

АВТОР НАЗВАНИЕ
Тургенев И.С Повести и рассказы
Олеша Ю.К. Избранное
Тынянов Ю.Н. Кюхля
Толстой Л.Н. Повести и рассказы

.выбрать ФАМИЛИЯ где ТАНЦЫ.

ФАМИЛИЯ
Русанов
Зотова
Шляпина

Выражение, состоящее из имени поля логического типа или одного отношения, будем называть простым логическим выражением.

Многие СУБД позволяют в отношениях использовать арифметические выражения. Арифметические выражения могут включать в себя числа, имена полей числового типа, знаки арифметических операций, круглые скобки*.

*В некоторых СУБД такая возможность реализуется через специально организуемые вычисляемые поля.

Рассмотрим базу данных, содержащую таблицу успеваемости учеников (табл. 2.3).

Требуется получить список учеников, у которых сумма баллов по гуманитарным предметам больше, чем по естественным. Следует отдать команду:

.выбрать УЧЕНИК где РУССКИЙ + ИСТОРИЯ + МУЗЫКА > АЛГЕБРА + ХИМИЯ + ФИЗИКА

В результате получим:

Ботов Иван;
Галкина Нина.

Следующая команда запрашивает фамилии учеников, у которых оценка по алгебре выше их среднего балла:

.выбрать УЧЕНИК где АЛГЕБРА > (РУССКИЙ + АЛГЕБРА + ХИМИЯ + ФИЗИКА + ИСТОРИЯ + МУЗЫКА)/6

Ответ: Аликин Петр;
Галкина Нина.

Коротко о главном

Логическое выражение вычисляется подобно математическому, но может принимать всего два значения: истина (true) или ложь (false).

Простейшая форма логического выражения — одна величина логического типа.

Условия выбора в командах СУБД записываются в виде логических выражений.

Вопросы и задания

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов


Вся информатика онлайн, список тем по предметам, сборник конспектов по информатике, домашняя работа, вопросы и ответы, рефераты по информатике 9 класс, планы уроков


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.


В процессе изучения информатики учащиеся уже ознакомились с логическими величинами, выражениями и операциями. На этом уроке они смогут вспомнить, какие есть логические величины, проанализировать такие логические операции, как конъюнкция, дизъюнкция и инверсия. Также познакомятся с новой логической операцией – исключающее ИЛИ. В данном видео рассматриваются действия с логическими выражениями. При записи сложного логического выражения (предиката) нужно учитывать приоритеты арифметических, логических операций и операций отношений. Все эти правила описаны в данном уроке.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Логические величины, операции и выражения"

На этом уроке мы с вами вспомним, что такое логические величины, проанализируем такие логические операции, как конъюнкция, дизъюнкция и инверсия. Также поработаем с логическими выражениями.

В курсе информатики вы уже проходили логические величины, выражения и операции. Давайте вспомним, что такое высказывание. Высказывание – это повествовательное предложение на любом языке, в котором что-либо утверждается или отрицается. То есть любое высказывание можно определить, как истинное или ложное.

Рассмотрим следующие предложения:

· Клавиатура предназначена для ввода текстовой информации и команд управления компьютером.

· При приёме информации происходит процесс переноса информации от источника к приёмнику.

Эти предложения будут относится к высказываниям, так как можно точно сказать истины они или ложны. Первое высказывание является истинным, а второе – ложным.

А вот следующие предложения:

· Не поднимай телефон!

Не являются высказываниями, так как в определении сказано, что высказывание – это повествовательно предложение.

Для построения высказываний могут использоваться знаки различных формальных языков: математики, физики, химии и других.

Числовые выражения не являются высказываниями. Но, в то же время, если из двух выражений составить одно и соединить их знаком равенства или неравенства, то новое выражение будет высказыванием.


Логические высказывания бывают простыми и составными.

Простое высказывание – это высказывание, в котором никакая его часть сама не является высказыванием.

Сложное или же составное высказывание – это высказывание, которое строится из простых с помощью логических операций.

Логические величины – это понятия, выражаемые словами Истина (True), Ложь (False). Истинность высказывания выражается через логические величины.

Логическая переменная – это символически обозначенная логическая величина. То есть логическая величина может обозначаться, например, буквой латинского алфавита. Сама же буква будет являться переменной логической величины. В свою очередь, она может принимать только значение Истина или Ложь.

Логическое выражение – это простое или сложное высказывание. Сложное высказывание, как мы уже знаем, строиться из простых при помощи логических операций (связок).

К логическим операциям относятся конъюнкция, дизъюнкция и инверсия (отрицание). Давайте рассмотрим каждую логическую операцию.

Итак, первая логическая операция – конъюнкция – логическое умножение.

Конъюнкция – это логическая операция, которая объединяет два высказывания в одно новое, которое будет являться ложным тогда, когда хотя бы одно из исходных высказываний ложно. Конъюнкция – это двухместная операция, то есть в ней должны присутствовать две логические переменные.


Следующая операция – дизъюнкция. Ещё её называют логическим сложением.

Дизъюнкция – это логическая операция, которая объединяет два высказывания в одно новое, которое будет истинным тогда, когда хотя бы одно исходное высказывание истинно. Дизъюнкция также является двухместной операцией, то есть в ней должны присутствовать две логические переменные.


И последняя логическая операция – инверсия – отрицание.

Отрицание – это логическая операция, которая преобразует исходное высказывание в новое, значение которого противоположно исходному. А вот отрицание является унарной (одноместной) операцией.


Давайте составим таблицу истинности для всех логических операций. В ней И – это истина, Л – Ложь.

В первых двух столбцах предоставлены всевозможные исходные данные А и B.


В третьем столбце будет идти ¬А.

Как мы с вами знаем из определения операция отрицания преобразует исходное выражение в новое, значение которого противоположно исходному. То есть, если А было истинно, при отрицании оно станет ложным. И наоборот, если выражение было ложным, то оно станет истинным. Заполним третий столбец таблицы исходя из данных первого.


Далее идёт конъюнкция. Здесь мы будем смотреть на значения, которые принимают выражения А и B. Мы с вами знаем, что при конъюнкции новое высказывание будет являться ложным тогда, когда хотя бы одно из исходных высказываний ложно. То есть, исходя из данных нашей таблицы, в первой строке оба высказывания истины, значит и новое будет истинно. А вот все остальные будут ложными, так как во второй строке ложно высказывание B, в третьей – А, а в четвёртой – оба.


И последний, пятый столбец – дизъюнкция. Снова будем брать значения выражений А и B. Новое высказывание будет истинным тогда, когда хотя бы одно исходное высказывание истинно. Значит в первых трёх строках 5 столбца новые выражения будут истинны, так как в первой строке истинны оба высказывания А и B, во второй – А, в третьей – B. А вот в четвёртой строке мы можем видеть, что значения А и B оба ложны, значит и новое выражение будет ложно.


Логическая формула – это формула, которая содержит только логические величины и знаки логических операций. Результатом вычисления такой формулы будет являться истина или ложь.

При выполнении операций в формуле нужно придерживаться следующего порядка:

Но также стоит помнить, что операции в скобках выполняются в первую очередь. Если же у нас идут несколько равнозначных операций подряд, то выполнение их будет происходить слева направо.

Давайте разберёмся на примере. Вычислить значение логической формулы, если логические переменные имеют следующие значения: А – Истина, B – истина, C – Ложь.

Перейдём к решению. Для начала проставим над каждой операцией номер порядка, в котором она будет исполняться.

В первую очередь будут выполняться операции в скобках. А первой будет ¬C.

Затем дизъюнкция: B V ¬C.

После этого будем выполнять конъюнкцию: A & (B V ¬C).

А затем оставшуюся дизъюнкцию: A & (B V ¬C) V B.

Давайте запишем наши вычисления пошагово:

Первое действие – отрицание. Переменная С имеет значение Ложь. Смотрим на таблицу истинности и видим, что при отрицании мы получим значение Истина.


Вторым действием выполняется дизъюнкция. B = Истине, ¬C = Истине. При дизъюнкции двух истин мы получим истину.


Третье действие. Конъюнкция. А = Истине, B V ¬C = Истине. При конъюнкции двух истин мы получим истину.


И четвёртое действие – дизъюнкция. При дизъюнкции двух истин снова получим истину.


Таким образом значение логической формулы равно истине.

A & (B V ¬C) V B = ИСТИНА

Выражения 1 и 2 – это некоторые математические выражения, которые принимаю числовые значения. В частном случае выражение может представлять собой одну константу или одну переменную величину. В отношениях могут использоваться следующие знаки: =, <>, >, =, y, a 2 + b 2 = c 2 .

Если в отношение входят переменные числовые величины, то и значение отношения будет логической переменной.

Идём дальше. Отношение также можно рассматривать как логическую функцию от числовых аргументов. Например, F (x) = x –2;

Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид

A ¬A
истина ложь
ложь истина

A ¬A
1 0
0 1

Высказывание $A↖$ ложно, когда А истинно, и истинно, когда А ложно.

Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.


Таблица истинности операции имеет вид

A B A ∧ B
истина ложь ложь
ложь истина ложь
ложь ложь ложь
истина истина истина

A B A ∧ B
1 0 0
0 1 0
0 0 0
1 1 1

Высказывание А ∧ В истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то А ∧ В есть пересечение множеств А и В.


Таблица истинности операции имеет вид

A B A ∨ B
истина ложь истина
ложь истина истина
ложь ложь ложь
истина истина истина

A B A ∨ B
1 0 1
0 1 1
0 0 0
1 1 1

Высказывание А ∨ В ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А ∨ В — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.


Таблица истинности операции имеет вид

А В А ⊕ B
истина ложь истина
ложь истина истина
ложь ложь ложь
истина истина ложь

А В А ⊕ B
1 0 1
0 1 1
0 0 0
1 1 0

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

Таблица истинности операции имеет вид

А В А → В
истина ложь ложь
ложь истина истина
ложь ложь истина
истина истина истина

А В А → В
1 0 0
0 1 1
0 0 1
1 1 1

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

Таблица истинности операции эквивалентности имеет вид

А В А ∼ В
истина ложь ложь
ложь истина ложь
ложь ложь истина
истина истина истина

А В А ∼ В
1 0 0
0 1 0
0 0 1
1 1 1

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Сложение по модулю два А ⊕ В $(A↖ ∧B) ∧ (A ∧ B↖)$
Импликация А → В $A↖ ∨ B$
Эквивалентность А ∼ В $(A↖ ∧ B↖) ∨ (A ∧ B)$

Примеры решения задач

Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X 3) ∨ (1 3) ∨ (12 3) ∨ (3 2) → (X > 5)) .

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

  1. вычисление существующих функциональных зависимостей;
  2. выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
  3. выполнение операций сравнения (в произвольном порядке);
  4. выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

$1 ≤ a ∨ A ∨ sin(π/a - π/b) a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным.

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы $↖ ∧ X2 ∨ ↖ ∨ X1$.

X1 X2 $↖$ $↖$ \ X2 X1 ∧ X2 $↖$ $↖$ ∧ X2 ∨ $↖$ $↖$ ∧ X2 ∨ $↖$ ∨ X1
1 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1
0 1 1 1 1 0 1 1
0 0 1 0 0 1 1 1

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ $↖$ ∧ $↖$.

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ $↖$ ∧ $↖$ ∨ X2.

Таким образом, получена запись логической функции в КНФ.

Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ $↖$ ∧ $↖$ ∨ X2 = X1 ∧ $↖$ ∨ X1 ∧ X2 ∨ $↖$ ∧ $↖$ ∨ $↖$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ $↖$ ∧ $↖$ ∨ 0 = X1 ∧ X2 ∨ $↖$ ∧ $↖$.

Пример 2. Построить логическую функцию для заданной таблицы истинности:

X1 X2 F(X1, X2)
1 1 1
1 0 0
0 1 1
0 0 0

Решение. Используем алгоритм ДНФ для построения исходной функции:

X1 X2 F(X1, X2)
1 1 1 X1 ∧ X2
1 0 0
0 1 1 $↖$ ∧ X2
0 0 0

Искомая формула: X1 ∧ X2 ∨ $↖$ ∧ X2 .

Ее можно упростить: X1 ∧ X2 ∨ $↖$ ∧ X2 = X2 ∧ (X1 ∨ $↖$) = X2 ∧ 1 = X2.

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

X1 X2 X3 F(X1, X2, X3)
1 1 1 1 X1 ∧ X2 ∧ X3
1 0 1 0
0 1 1 1 $↖$ ∧ X2 ∧ X3
0 0 1 0
1 1 0 1 X1 ∧ X2 ∧ $↖$
1 0 0 1 X1 ∧ $↖$ ∧ $↖$
0 1 0 0
0 0 0 0

Искомая формула: X1 ∧ X2 ∧ X ∨ $↖$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ $↖$ ∪ X1 ∧ $↖$ ∧ $↖$.

Формула достаточно громоздка, и ее следует упростить:

X1 ∧ X2 ∧ X3 ∨ $↖$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ $↖$ ∨ X1 ∧ $↖$ ∧ $↖$ = X2 ∧ X3 ∧ (X1 ∨ $↖$) ∨ X1 ∧ $↖$ ∧ (X2 ∨ $↖$) = X2 ∧ X3 ∨ X1 ∧ $↖$.

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

X1 X2 X3 Y(X1, X2, X3)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок 2-й урок 3-й урок
Информатика 1 1 0
Математика 1 0 1
Физика 0 1 1

Из таблицы видно, что существуют два варианта искомого расписания:

  1. математика, информатика, физика;
  2. информатика, физика, математика.

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

  1. Борис — самый старший;
  2. играющий в футбол младше играющего в хоккей;
  3. играющие в футбол и хоккей и Петр живут в одном доме;
  4. когда между лыжником и теннисистом возникает ссора, Борис мирит их;
  5. Петр не умеет играть ни в теннис, ни в бадминтон.

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Футбол Хоккей Лыжи Плавание Бадминтон Теннис
Петр 0 0 1 1 0 0
Борис 0 0 0
Алексей 0 0

Из таблицы видно, что в теннис может играть только Алексей.

Футбол Хоккей Лыжи Плавание Бадминтон Теннис
Петр 0 0 1 1 0 0
Борис 0 0 0 0
Алексей 1 0 0 0 0 1

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

Футбол Хоккей Лыжи Плавание Бадминтон Теннис
Петр 0 0 1 1 0 0
Борис 0 1 0 0 1 0
Алексей 1 0 0 0 0 1

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

1. Какую роль выполняет условие выбора? После какого служебного слова записывается это условие в команде выбрать? 2. Чт
1. Какую роль выполняет условие выбора? После какого служебного слова записывается это условие в команде выбрать? 2. Чт

1) Условие выбора позволяет находить в таблице базы данных строки соответствующие требованиям и отделить выборку от ненужной информации.
после слова WHERE
пример:
SELECT список_полей FROM список_таблиц WHERE условия1, условия2 итд.

2) Логическое высказывание -это некоторое высказывание, по поводу которого можно заключить истинно оно или ложно. Оно может принимать всего два значение: истина (true) и ложь (false).
Например
a=b, a>b и т.д.

3) Простым можно назвать логические выражения состоящие из одной логической операции.

4) Существует шесть видов отношений: "равно", "не равно", "больше", "меньше", "больше или равно", "меньше или равно".
Запись:
= равно
<> не равно
> больше
= больше или равно
4 года назад Комментировать

Читайте также: