Какие задачи стоят перед клеточной и генной инженерией биология 10 класс беляев кратко

Обновлено: 05.07.2024

Генная инженерия (технология рекомбинантных ДНК, молекулярной клонирование) — современное направление биотехнологии, объединяющее знания, приемы, методики комплекса смежных наук, в частности генетики, химии, биологии. С их помощью удается выделить необходимый ген из генома, перенести этот генетический материал из одного организма в другой с целью получения новых полезных для человека наследственных свойств.

Обычно этот термин связывают с клонированием генов, молекулярным клонированием, технологией рекомбинантных ДНК либо генетическими манипуляциями.

Генную инженерию можно определить как систему экспериментальных приемов, манипуляций, которые с помощью молекулярной биологии позволяют лабораторным путем создать искусственные генетические детерминанты в виде рекомбинантных (измененных) молекул ДНК. Таким образом, благодаря генной инженерии можно целенаправленно конструировать новые биологические объекты.

Характерной чертой генной инженерии является то, что лабораторное воспроизведение некоторых ключевых генетических процессов осуществляется на молекулярном уровне (уровне клетки и молекул). Внедрение в клетку новой генетической информации в виде рекомбинантных молекул ДНК изменяет ее фенотип и генотип, в результате чего экспериментатор получает измененный в соответствии с поставленной целью микроорганизм.

В генах содержится информация, позволяющая синтезировать в организме молекулы РНК и белки, в том числе ферменты. Для того чтобы заставить клетку образовывать новые, неизвестные ей вещества, в ней должны синтезироваться соответствующие наборы ферментов. Для этого нужно целенаправленно изменить находящиеся в ней гены либо внедрить в нее новые, ранее отсутствовавшие.

Изменения генов в живых клетках называют мутациями. Они могут происходить под действием, например, мутагенов — химических излучений или ядов.

Генно-модифицированный организм (ГМО) — это организм, генотип которого был искусственно изменен при помощи генно-инженерных методов.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате их использования можно получать рекомбинантные, то есть модифицированные молекулы ДНК и РНК.

С этой целью выделяют отдельные гены (кодирующие необходимый продукт) из клеток какого-то организма и внедряют их в другие организмы: дрожжи, бактерии, млекопитающие. Получив новые гены, они смогут синтезировать конечные продукты с измененными свойствами, необходимыми человеку.

Генная инженерия широко используется во многих сферах человеческой жизни с целью наделения живых организмов желательными свойствами, которыми они не обладали ранее, комбинируя имеющийся генетический материал, удаляя старые или синтезируя новые гены.

На основе генной инженерии сформировалась одна из современных ветвей биотехнологии — отрасль фармацевтической промышленности.

История развития, зачем нужно вмешиваться

Основы классической генетики были заложены в середине XIX В. Так, в 1865 г. чешско-австрийский биолог Грегор Мендель раскрыл принципы передачи наследственных признаков от родительских организмов к их потомкам на примере растений. К сожалению его эксперименты не получили заслуженного признания, и только в 1900 г. Хуго де Фриз, а также другие европейские ученые независимо друг от друга вновь открыли законы наследственности.

Одновременно с этим происходило формирование знаний о ДНК:

  1. Швейцарский биолог Фридрих Мишер в 1869 г. открыл факт существования макромолекулы.
  2. Американский биолог Томас Морган в 1910 г., основываясь на характере наследования у дрозофил, обнаружил, что на хромосомах гены расположены линейно и образуют группы сцепления.
  3. Эйвери Мак Леод и Мак Карти в 1944 г. показали, что именно ДНК является носителем наследственной информации.
  4. Американец Джон Уотсон и британец Фрэнсис Крик в 1953 г. сделали важнейшее открытие, определив молекулярную структуру ДНК — двойную спираль.

В конце 1960-х гг. происходит активное развитие генетики, а важными объектами ее изучения становятся плазмиды и вирусы. Ученые разработали методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, вирусов и плазмид, а в 1970-х г.г. открыли ряд ферментов, катализирующих реакции превращения ДНК.

Как отдельное направление исследовательской работы генная инженерия зародилась в США в 1972 г., когда в Стэнфордском университете ученые Стэнли Норман Коэн, Пол Берг, Герберт Бойер со своей научной группой смогли создать первую рекомбинантную ДНК, внедрив новый ген в бактерии кишечной палочки (E. coli).

В 1980-х гг. американский биохимик Кэри Маллис (будущий лауреат Нобелевской премии по химии) впервые разработал технику ПЦР. Он обнаружил фермент, участвующий в репликации ДНК — ДНК-полимеразу. Этот специфический фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их как шаблон для дальнейшего копирования генетической информации.

В 1987 г. впервые были проведены полевые испытания генетически модифицированных сельскохозяйственных растений. В итоге вывели устойчивый к вирусным инфекциям сорт помидор.

В 1996 произошел прорыв в истории развития генной инженерии, так как на свет появилась овца Долли — первое клонированное млекопитающее методом пересадки ядра соматической клетки в цитоплазму яйцеклетки. Благодаря этому революционному достижению в генной инженерии впервые стало возможным серьезно относиться к клонированию и выращиванию живых организмов на основе молекул.

Можно выделить 3 стадии в развитии генной инженерии:

  1. Выдвижение гипотезы и доказывание принципиальной возможности получения рекомбинантных молекул ДНК in vitro (в пробирке). Начался этап формирования гибридов между различными плазмидами.
  2. Начало работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами. В ходе исследований была доказана их реальная жизнеспособность, стабильность, адаптация к окружающей среде.
  3. Экспериментальные исследования по внедрению в векторные молекулы ДНК (то есть молекулы, способные переносить генетический код и встраиваться в генетическую структуру клетки-реципиента) генов эукариот. В основном использовались гены животных.

В настоящее время генная инженерия развивается как экспериментальная наука, с помощью которой многие люди избавляются от различных заболеваний, создаются новые сорта растений и т. д.

Какие задачи стоят перед ней

Основными задачами генной инженерии являются:

  1. Конструирование рекомбинантных ДНК, способных придать клеткам-реципиентам полезные для человечества свойства (синтезирование пищевого и коровьего белка).
  2. Создание и применение генно-инженерных штаммов бактерий, животных и человека для культивирования вирусов с целью получения вакцин, сывороток, диагностических препаратов, лекарственных средств.
  3. Создание трансгенных животных.
  4. Получение трансгенных растений с желаемыми свойствами.
  5. Разработка методов генной терапии человека.
  • получение изолированного гена путем синтеза либо выделения из клеток;
  • создание рекомбинантных молекул ДНК, состоящих из фрагментов молекул ДНК, полученных от разных организмов;
  • клонирование генов или генетических структур;
  • внедрение гена в вектор для переноса в организм;
  • перенос вектора с геном в модифицируемый организм и синтез чужеродного белка;
  • преобразование клеток организма;
  • отбор генетически модифицированных организмов (ГМО) и устранение неудачных вариантов.

Виды, сферы применения генной инженерии

Человек использует генную инженерию для получения трансгенных растений и животных, генной терапии наследственных заболеваний, производства лекарственных препаратов, вакцин, гормонов и т. д.

В настоящее время генная инженерия широко распространена в отраслях народного хозяйства: фармакологической, микробиологической, пищевой промышленности, в сельском хозяйстве.

В медицине:

  1. Разработка с помощью синтезированных генов интерферонов — белков, вырабатываемых организмом в ответ на вирусную инфекцию, а также гормонов. Ученые рассматривают возможность использования интерферонов в качестве средства лечения от СПИДа и рака. Массовое производство этого полезного белка очень эффективно, ведь всего один литр бактериальной культуры дает столько интерферона, сколько добывают из тысяч литров человеческой крови.
  2. Производство в промышленных масштабах путем использования генномодифицированных бактерий инсулина, необходимого для лечения сахарного диабета.
  3. Используя рекомбинантную ДНК, получение человеческого гормона роста — единственного лекарства от гипофизарной карликовости (редкого детского заболевания).
  4. Клинические испытания около 200 новых диагностических препаратов (генных, а не белковых), а также более 100 лекарственных веществ.

С помощью генно-инженерных методов создали ряд вакцин, которые сейчас проходят испытания по проверке их эффективности против ВИЧ — вируса иммунодефицита человека, вызывающего СПИД.

В настоящее время интенсивно развивается и генная терапия. Так, для борьбы со злокачественными опухолями в организм вводят сконструированную копию гена, который кодирует мощный противоопухолевый фермент.

Важным направлением генной инженерии является обеспечение больных людей органами для пересадки. Например, трансгенная свинья, может стать донором сердца, почек, печени, сосудов и кожи для людей, так как по размерам внутренних органов и физиологии она наиболее близка к человеку.

В сельском хозяйстве:

Главными задачами являются:

  • выведение устойчивых к вирусам видов животных и растений, сельскохозяйственных культур;
  • защита растений от насекомых-вредителей;
  • уменьшение интенсивности обработки полей пестицидами и т. д;
  • увеличение витаминов и полезных веществ в зерновых культурах;
  • улучшение качества и вкуса пищи;
  • получение дизельного топлива из животных и растительных жиров;
  • решение экологических проблем — например, очистка почвы от промышленных отходов, защита окружающей среды от загрязнений, разработка новых очистительных сооружений.

В генной терапии —проведение в клетке пациента различных манипуляций с генетическим материалом, в частности с ДНК или РНК, для лечения определенных заболеваний:

  • замена мутировавшего гена, провоцирующего болезнь, здоровой копией;
  • инактивация неправильно функционирующих мутирующих генов;
  • внедрение нового гена, помогающего бороться с заболеванием.

Этапы создания трансгенного организма

Роль в жизни человека, примеры

Генная инженерия как одно из главных направлений научно-технического прогресса способствует ускорению решения вопросов здравоохранения, продовольственных, энергетических, сельскохозяйственных, экологических и иных актуальных задач.

Существует несколько сотен генетически измененных продуктов, употребляемых людьми во всем мире. Чаще всего на упаковке таких продуктов должно быть написано, что они сделаны из генетически модифицированного продукта.

Защитники генетически модифицированных организмов считают, что только они могут спасти человечество от голода, способствуя увеличению мирового производства сельскохозяйственной продукции. Ведь генетически модифицированные сорта растений:

  • быстрее созревают и дольше хранятся;
  • устойчивые к погоде, болезням;
  • могут самостоятельно вырабатывать инсектициды против вредителей;
  • способны приносить хороший урожай в отличие от старых сортов, погибающих при неблагоприятных условиях.

Особые возможности открывает генная инженерия перед медициной и фармацевтикой. Благодаря генно-инженерным методам во всем мире успешно практикуют производство лекарств. Так, многие болезни, не поддающиеся в настоящее время диагностике и лечению, например: сердечно-сосудистые, раковые заболевания, умственные и нервные расстройства, вирусные и паразитные инфекции — с помощью генной инженерии можно будет своевременно диагностировать и вылечить.

По мнению медиков, генномодифицированные продукты — основа специальных диет, помогающих в профилактике и лечении различных болезней. Ученые утверждают, что благодаря таким продуктам люди с остеопорозом, сахарным диабетом, онкологическими, сердечно-сосудистыми заболеваниями, болезнями кишечника, печени и др. смогут расширить свой рацион питания.

Некоторые ученые считают, что внесение изменений в генный код животных и растений не противоречит, а соответствует природе, ведь абсолютно все живые организмы, включая и бактерии, и человека — результат естественного отбора и мутаций. Отличие заключается лишь в том, что ученым для образования их новых видов нужно несколько лет, а природа затрачивает на этот процесс столетия и даже тысячелетия.

Самыми распространенными в мире генно-модифицированными растениями являются: хлопок, масличный рапс, кукуруза, соя. В некоторых странах разрешают выращивать трансгенные кабачки, помидоры, рис, проводятся эксперименты на винограде, сахарной свекле, табаке, подсолнечнике, деревьях и т. д.

Основную массу трансгенов выращивают в Аргентине, США, Китае, Канаде. В странах Европы часто действует запрет на ввоз генетически измененного продовольствия, либо требуется обязательная маркировка таких продуктов. В странах ЕС разрешены только три вида генетически измененных растений — три сорта кукурузы.

В России разрешено использовать лишь 14 видов ГМО для продажи и производства пищевых продуктов: 4 сорта картофеля, 1 сорт сахарной свеклы, 8 сортов кукурузы и 1 сорт риса.

Следует отметить, что при употреблении такой пищи сохраняется потенциальная опасность отдаленных последствий для здоровья человека. Хотя опасность продуктов с ГМО официально не доказана, и они разрешены к применению Всемирной организацией здравоохранения, по мнению некоторых ученых к ним нужно относиться с осторожностью до завершения полномасштабных исследований воздействия ГМО на организм.

И тем более, во избежание непредсказуемых последствий, следует особо тщательно подходить к вопросам их применения в детском питании.

Несмотря на существующие риски, на обвинения в бесчеловечности защитников животных и растений, генная инженерия открывает перед человечеством огромные возможности, если умело распоряжаться полученными знаниями.

Лечение генетически наследственных болезней, выведение новых сортов растений и пород животных, создание лекарственных препаратов, изучение генома человека
Клеточная инженерия – это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования. Клеточная инженерия включает реконструкцию жизнеспособной клетки из отдельных фрагментов разных клеток, объединение целых клеток, принадлежавших различным видам (и даже относящихся к разным царствам — растениям и животным) , с образованием клетки, несущей генетический материал обеих клеток, и другие операции. Клеточная инженерия используется для решения теоретических проблем в биотехнологии и является одним из основных её методов для создания новых форм растений и животных.
Генная инженерия - направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

Нажмите, чтобы узнать подробности

Показать возможности биотехнологии в современном мире, воспитание критического мышления учащихся.

ПЛАН-КОНСПЕКТ УРОКА

Урок № 39. 10 класс. 06.02.2019 г.

Тема: Генная и клеточная инженерия.

Цели: сформировать у учащихся знания о генной инженерии, познакомить со стадиями метода рекомбинантных плазмид: созданием вектора, трансформацией, скринингом; с задачами генной инженерии и значением для человека, растений, животных; продолжить формирование умений работать с текстом учебника и выделять главное, вести грамотно и аккуратно записи со слов учителя, работать с тестами, дополнительной литературой.

Формирование УУД:

Личностные действия: (самоопределение, смыслообразование, нравственно-этическая ориентация)

Регулятивные действия: (целеполагание, планирование, прогнозирование, контроль, коррекция, оценка, саморегуляция)

Познавательные действия: (общеучебные, логические, постановка и решение проблемы)

Коммуникативные действия: (планирование учебного сотрудничества, постановка вопросов, разрешение конфликтов, управление поведением партнера, умение с достаточной точностью и полнотой выражать свои мысли в соответствии с задачами и условиями коммуникации)

I. Организационный момент.

II. Подготовка к восприятию нового материала.

Что называется геном?

В виде чего записана информация о белках? Обо всех белках организма?

Почему именно о белках?

Одинаковые ли белки образуются у различных организмов?

Можно ли утверждать, что белки определяют видовую специфичность?

Проблемный вопрос. Как вы думаете, может ли какой-нибудь другой организм, например, бактерия, синтезировать белок человеческого организма?

III. Изучение нового материала.

Генная инженерия — это метод биотехнологии, который занимается

исследованиями по перестройке генотипов.

Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Для передачи информации необходимы векторы

Вектор (в генетике) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке.

Плазмиды Плазми́ды — небольшие молекулы ДНК, физически отдельные от геномных хромосом и способные реплицироваться автономно. Как правило, плазмиды встречаются у бактерий и представляют собой двухцепочечные кольцевые молекулы

фазмиды молекулярные векторы, являющиеся искусственными гибридами между фагом и плазмидой. Фазмиды после встройки чужеродной ДНК могут в одних условиях развиваться как фаги, а в других как плазмиды.

векторы на основе вируса SV40 Вирус SV40 — вид полиомавирусов, обнаруженный в клетках обезьян, из рода Betapolyomavirus, является типовым видом рода. Как и у других полиомавирусов, геном SV40 представлен кольцевой двуцепочечной ДНК.

векторы на основе аденовирусов Аде́новирусы (лат. Adenoviridae) — семейство ДНК-содержащих вирусов позвоночных, лишённых липопротеиновой оболочки. Аденовирусы имеют диаметр 70—90 нм, содержат единичную двухцепочечную молекулу ДНК

векторы на основе герпесвирусов

векторы на основе ретровирусов

векторы на основе аденоассоциированного вируса малый вирус, инфицирующий клетки человека и некоторых других приматов. Аденоассоциированный вирус, по-видимому, не вызывает заболевания у человека и, соответственно, вызывает слабый иммунный ответ.

Аденоассоциированный вирус может инфицировать делящиеся и неделящиеся клетки и может встраивать свой геном в геном хозяина. Эти особенности делают AAV особенно привлекательным кандидатом для создания вирусных векторов для генной терапии[4].

Наиболее распространенным методом генной инженерии является метод

получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

1. Рестрикция — разрезание ДНК, например, человека на фрагменты.

2. Лигирование — фрагмент с нужным геном включают в плазмиды и сшивают их.

3. Трансформация —введение рекомбинантных плазмид в бактериальные клетки.

Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков — клон.

4. Скрининг — отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования

можно получить более миллиона копий любого фрагмента ДНК человека или

другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того,клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма.

Генная инженерия – это искусственный перенос нужных генов от одного вида живых организмов (бактерий, животных, растений) в другой вид, часто очень отдаленный по происхождению. (посредством операций in vitro (в пробирке, вне организма).

Цель генной инженерии в получении клеток (в первую очередь бактериальных), способных в промышленных масштабах нарабатывать некоторые “человеческие” белки; в возможности преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим (использование в селекции растений, животных).

История генной инженерии.

Формальной датой рождения генной инженерии считают 1972 год. В этот год группа исследователей во главе с американским биохимиком Полом Бергом, работавшим в Стэнфордском университете, что неподалеку от Сан-Франциско в Калифорнии, сообщила о создании вне организма первой рекомбинантной ДНК. Ее еще называют гибридной, т.к. она состоит из ДНК-фрагментов различных организмов. Первая рекомбинантная молекула ДНК состояла из фрагментов кишечной палочки (E. Coli – Escherihia coli), группы генов самой этой бактерии и полной ДНК вируса SV40, вызывающего развитие опухолей у обезьяны.

Основные методы генной инженерии были разработаны в начале 70-х годов прошлого (XX) века. Их суть заключается во введении в организм нового гена. Для этого создают специальные генетические конструкции ? векторы, т.е. устройство для доставки нового гена в клетку. В качестве вектора используют плазмиды.

В бактериальной клетке, кроме основной, не покидающей клетку ДНК, может содержаться несколько различных плазмид, которыми она обменивается с другими бактериями. Плазмиды являются автономными генетическими элементами, редуплицирующимися в бактериальной клетке не в то же время, что основная молекула ДНК. Плазмиды несут жизненно важные для бактерии гены – гены лекарственной устойчивости к антибактериальным препаратам. Бактерия, имеющая различные плазмиды, приобретает устойчивость к различным антибиотикам, к солям тяжелых металлов. Поскольку плазмиды могут переходить из одной бактериальной клетки в другую, то они быстро распространяясь среди бактерий, сохраняют им жизнь. Поэтому плазмиды называют даром природы генным инженерам.

Методы генной инженерии.

• Рестриктазы – ферменты, разрезающие молекулу ДНК;

• Лигазы – ферменты, сшивающие молекулу ДНК;

• Плазмиды – внехромосомные двухцепочечные кольцевидные молекулы ДНК.

Они легко выделяются из бактериальных клеток хозяев и в них легко встроить любые гены, которые они переносят в ДНК нового хозяина.

Направления современной биотехнологии:

Наиболее распространенными методом генной инженерии является метод конструирования и переноса рекомбинантных ДНК. Этот метод включает несколько этапов.

1. Создание вектора.

Этот этап состоит из двух последовательных стадий: рестрикции и лигирования.


Рестрикция – означает “разрезание”, “ограничение”. При помощи фермента ? рестрикционной эндонуклеазы или рестриктазы, открытой в 1974 году швейцарским ученым Вернером Арбером, происходит разрезание плазмидной ДНК, образуется расщепленная плазмида с “липкими” концами ? ТТАА и ААТТ. ( Бактериальные клетки вырабатывают рестриктазы для разрушения инородной ДНК, чтобы защищаться от вирусной инфекции.) Этой же рестриктазой разрезают ДНК человека (выделенную из клетки) на множество различных фрагментов, но с одинаковыми “липкими” концами. Поскольку используется один и тот же фермент ? рестриктаза ? “ липкие” концы плазмиды и “липкие” концы ДНК человека (чужеродный ген) будут являться комплементарными.

Эндонуклеазы рестрикции Эндонуклеазы рестрикции, рестриктазы — группа ферментов, относящихся к классу гидролаз, катализирующих реакцию гидролиза нуклеиновых кислот.В отличие от экзонуклеаз, рестриктазы расщепляют нуклеиновые кислоты не с конца молекулы, а в середине.При этом каждая рестриктаза узнаёт определённый участок ДНК длиной от четырёх пар нуклеотидов и расщепляет нуклеотидную цепь внутри участка узнавания или вне его.Защита бактериального генома от собственной рестриктазы осуществляется с помощью метилирования нуклеотидных остатков аденина и цитозина

Лигирование - “сшивание”. Фрагменты ДНК человека включают в плазмиды и их комплементарные “липкие” концы “сшивают” ферментом лигазой. Образуется рекомбинантная плазмида.

2. Трансформация – введение.


Рекомбинантные плазмиды вводят в бактериальные клетки (E. Coli), обработанные специальным образом, чтобы они на короткое время стали проницаемы для макромолекул. Однако, плазмиды проникают лишь в часть обработанных клеток. . Трансформированные бактерии вместе с плазмидой приобретают устойчивость к определённому антибиотику. Это позволяет отделить трансформированные бактерии от нетрансформированных, так как они погибают на среде, содержащей антибиотик. Чтобы их отделить друг от друга, бактерии высевают на питательную среду так, чтобы клетки находились на расстоянии друг от друга. Каждая из трансформированных клеток размножается и образует колонию из многочисленных потомков – клон.

3. Скрининг – отбор среди клонов трансформированных бактерий тех, которые содержат плазмиды, несущие нужный ген человека.

Все бактериальные колонии покрывают специальным фильтром. Когда его снимают, на нём остаётся отпечаток колоний. Затем проводят молекулярную гибридизацию. Фильтры погружают в раствор с радиоактивно меченым зондом. Зонд – это полинуклеотид, комплементарный части искомого гена (Р 32 ). Он гибридизируется лишь с теми рекомбинантными плазмидами, которые имеют нужный ген. После гибридизации на фильтр в темноте накладывают рентгеновскую плёнку и через несколько часов её проявляют. Засвечиваются те участки на плёнке, где располагаются клоны трансформированных бактерий с нужным геном. Их отбирают, размножают (клонируют), так как они способны вырабатывать белок, кодируемый этим геном.

Генно-модифицированный организм (ГМО) - организм, полученный с применением методов генной инженерии и содержащий гены, их фрагменты или комбинации генов других организмов.

Трансгенные организмы - животные, растения, микроорганизмы, вирусы, геном которых изменен.

Скрестили японцы арбуз с блохой. Разрезаешь арбуз, а из него семечки выпрыгивают”. Когда-то этот анекдот казался очень смешным. Кто бы мог предположить, что он может стать реальностью!

Закрепление объяснённого материала.

- Как называется рассмотренный нами метод генной инженерии?

- Из каких этапов он состоит?

- Что такое вектор?

- Сколько стадий включает этап создания вектора?

- Опишите эти стадии.

- Что такое трансформация?

- Что такое скрининг?

4. Синтез гена искусственным путём.

Не всегда удаётся вырезать точный ген с помощью рестриктаз. Многие гены расщепляются этими ферментами на несколько частей, некоторые не содержат последовательностей, узнаваемых рестриктазами. Тогда поступают другим образом. Самостоятельная работа с текстом учебника.Прочитайте текст стр. 102 – 103 со слов “Поэтому в ряде случаев…” до слов “ С помощью клонирования….” и ответьте на вопрос: “Как получить клон с нужным в данном случае геном?”

5. Значение и перспективы генной инженерии.

VI. Домашнее задание. Изучить параграф 24.

Запись в тетрадь. Основные этапы создания генетически измененных организмов:

Получение гена, кодирующего определенный признак (рестрикция).

Объединение его с плазмидой-вектором (лигирование).

Введение вектора с определенным геном в клетку-хозяина (трансформация).

Отбор клеток с дополнительным генетическим признаком и их практическое использование (скрининг).

Тест. Приложение 2.

Введение рекомбинантных плазмид в бактериальные клетки – это:

а.) отбор клонов трансформированных бактерий, содержащих плазмиды, несущий нужный ген человека;

б.) введение рекомбинантных плазмид в бактериальную клетку;

в.) разрезание ДНК человека и плазмиды ферментом рестрикционной эндонуклеазой;

3. Совокупность методов, позволяющих путем операций in vitro переносить информацию из одного организма в другой – это:

а.) хромосомная инженерия;

б.) генная инженерия;

в.) клеточная инженерия;

4. Генная инженерия зародилась в:

5. Участок ДНК, в котором записана информация о первичной структуре белка:

Современные направления биотехнологии предполагают внедрение в клетку, в процессы метаболизма, перестройку генов. За использованием подобных манипуляций стоит желание человека добиться создания необходимых продуктов питания и химических веществ. Биотехнология – наука затратная, которая требует не только финансовых вложений, но и фундаментальных знаний в области биологии.

Клеточная инженерия

Клеточная инженерия предполагает создание клеток нового типа путем их культивирования, гибридизации и реконструкции. Клетки видоизменяют, вводя в них новые хромосомы, ядра, клеточные органоиды.

Направления деятельности клеточной инженерии

Направления деятельности клеточной инженерии:

Клеточная инженерия научилась культивировать (выращивать) изолированные клетки и ткани на специально подобранной питательной среде в контролируемых условиях (влажность, температура, освещенность). Из одной клетки таким путем получают полноценное растение или клеточную массу (каллус). Такие эксперименты проводят благодаря способности растительной клетки к регенерации и чаще всего применяют для с/х растений и лекарственных трав.

Селекция и клеточная инженерия относятся к неразделимым понятиям. В селекции применяют новые, не стандартные методики:

  • соматическая гибридизация;
  • гаплоидия;
  • селекция на уровне клеток;
  • преодоление не скрещиваемости сортов или видов растительных культур.

Такие способы позволяют экспериментировать и создавать новые гибриды и сорта, которые невозможно получить традиционными путями, используя только методы селекции.

Генетическая инженерия

Генетическая инженерия

Фрагмент молекулы ДНК - носителя наследственной информации в клетке

Генная инженерия, соединив достижения химии и генетики, помогает:

  • расшифровывать структуру гена;
  • синтезировать новые гены;
  • вставлять в живые клетки синтезированные гены, с заранее продуманной программой, для изменения их наследственных свойств.

Внедрение гена из одного организма в другой требует выполнение цепочки последовательных действий:

Внедрение гена из одного организма в другой

Выращены трансгенные животные, содержащие геном с не родными генами. Уже получены трансгенные мыши, кролики, свиньи, овцы. Они содержат ДНК, в которой работают чужеродные гены разного происхождения. Животные и растения в качестве наследственного материала получают гены бактерий, дрожжей, млекопитающих, человека.

Важно! Трансгенные организмы устойчивы к факторам внешней среды, вредителям и болезням, наделены теми чертами, которые запрограммировал в них человек.

Клонирование

Клонирование

Удачные эксперименты по клонированию, проведенные на овцах

К сведению: Иногда клонирование путают с искусственным оплодотворением, когда оплодотворенную яйцеклетку вводят в матку будущей матери (родной или суррогатной). Это метод решения проблемы бесплодия, но он не относится к клонированию.

Читайте также: