Какие виды энергии в них преобразуются в электрическую кратко

Обновлено: 20.05.2024

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Рис. 6. Некоторые оксиды, а, так же, чистые вещества, при освещении видимым светом могут отдавать электроны

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Рис. 7. Металлический катод и сетчатый анод в прозрачном стеклянном баллоне образуют вакуумный фотоэлемент

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Рис. 8. Полупроводники способны преобразовывать энергию света в электрическую, поэтому, из них изготавливают солнечные батареи

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено \(\large P_\), по правую сторону — \(\large P_\) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы \(\large \varphi_\) и \(\large \varphi_\). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

\[\large \varphi_ > \varphi_\]

Тепловая электростанция- вырабатывает электроэнергию в результате преобразования тепловой энергии.
ГЭС-преобразует в электроэнергию энергию потока воды.
АЭС-электрическая энергия выделяется при делении ядер каких либо твердых частиц.
Ветроэнергетическая установка-превращает энергию ветра в электроэнергию.
Приливная энергетика-преобразует в электроэнергию энергию прилива и отлива.
Гелиоэнергетика- преобразует в электроэнергию энергию солнечного излучения.
МГД-генераторы-преобразовывает энергию, движущейся в магнитном поле плазмы-раскаленного до очень высокой температуры газа, в электроэнергию.

Витя будет на втором месте, так как Соня на 2 и он займёт её место, и получается что Витя будет на втором месте

Познания аль-Фараби были универсальными. Его интересовали как гуманитарные, так и естественные науки. Всю жизнь аль-Фараби посвятил изучению аристотелевской концепции рассуждений — формальной логике, платоновской онтологии и гносеологии — теории бытия и познания.

Здравствуйте, на этом канале я рассказываю о сложном простыми словами.

Сегодня статья будет о том, какие виды электростанций вообще существуют. Если кто не знает то именно там зарождается электрический ток.

1. Тэплоэлектростанции (ТЭС)

Этот вид электростанций получает энергию за счёт сжигания добываемых из земли ресурсов, такие как уголь, нефть, газ и так далее.

Вообще еще ТЭС делятся на ТЭЦ (теплоэлектроцентраль, стоит рядом с потребителями не дальше, чем 10 км и вырабатывает как электрическую энергию, так и тепловую для отопления и горячего водоснабжения) и КЭС (конденсационная электростанция, стоит далеко от потребителей и вырабатывает только электрическую энергию, использует сырье плохого качества.

2. Атомная электростанция (АЭС)

В АЭС энергию получают за счёт ядерных реакторов, в которые помещают уран (добывают в земле) и искусственно вызывают его распад (обстрел нейтронами). При распаде вырабатывает большое количество энергии. На картинке изображена самая известная атомная электростанция.

3. Гидроэлектростанции (ГЭС и ГАЭС)

Гидроэлектростанции получают энергию за счёт энергии падающей воды. Здесь искусственно создают большой перепад уровня воды специальной дамбой.

ГАЭС - гидроаккамулирующая электростанция, которая ночью, когда нагрузки мало перекачивает воду обратно наверх в специальный бассейн, а в часы, когда нагрузка слишком большая увеличивает тем самым падающий поток воды, а значит и количество получаемой энергии

В настоящее время в нашей стране большая часть электроэнергии производится на мощных электростанциях, на которых в электрическую энергию преобразуется какой-либо другой вид энергии.

В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.

На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (ТЭС).

На тепловых паротурбинных электростанциях (рис. 3.35) в паровых котлах 1 химическая энергия топлива превращается в энергию пара 2. В турбинах 3 энергия пара преобразуется в механическую, а затем в генераторе 4, имеющем общий вал с турбиной, превращается в электрическую. От генератора энергия направляется на шины распределительного устройства станции. Отработанный пар из турбины поступает в конденсатор 5, который охлаждается проточной водой 6, и конденсат 7 в виде горячей дистиллированной воды возвращается в котел. Такие станции принято называть тепловыми конденсационными станциями.


Тепловые конденсационные электростанции большой мощности обычно располагаются недалеко от источников топлива и крупных водоемов.

Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработанным паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60—70%. В настояш;ее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

На гидроэлектростанциях (ГЭС) энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе преобразуется в электрическую (рис. 3.36. Цифрами обозначены: 1 — генератор; 2 — трансформатор; 3 — турбина; 4 — лопатки направляющего аппарата). Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.


На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар дает ядерный реактор.

Кроме мощных электростанций, находящихся в районах сосредоточения энергетических ресурсов (полноводные реки, природные запасы энергии в виде дешевых углей, торфа и т. д.), имеется группа станций местного значения. Они располагаются в непосредственной близости к потребителям. К ним относятся ТЭЦ, станции промышленных предприятий, городские, сельскохозяйственные, ветровые, передвижные и т. д.

Использование электроэнергии

Главным потребителем электроэнергии в нашей стране является промышленность, на долю которой приходится около 70% производимой электроэнергии. На фабриках и заводах, в шахтах и рудниках электродвигатели приводят в движение станки и различные механизмы. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Исключительно важное значение имеет применение электрической энергии в сельском хозяйстве. Здесь электроэнергия используется для освещения, приведения в действие различных машин, а также аппаратов, применяемых для механической дойки, стрижки овец, пастеризации молока, приготовления кормов, на птицеводческих фермах и т. д. и т. п.

Современное строительство немыслимо без использования электроэнергии, прежде всего, для приведения в действие подъемных механизмов и для электросварки.

Крупным потребителем электрической энергии является транспорт: железнодорожный и городской (метро, троллейбус, трамвай).

Без электроэнергии не будет работать телефонная и телеграфная связь, радио,телевидение.

Электрическая энергия используется в автоматике и вычислительной технике. О применении электроэнергии для освещения жилищ, предприятий, учреждений, уличного освещения, а также в быту (электроплиты, холодильники, стиральные машины, пылесосы, электробритвы и другие электробытовые приборы) знает каждый.

В каждом развитом государстве существует собственная энергетика. Данная область включает в себя разные виды электростанций. Они могут использовать традиционные и нетрадиционные источники энергии. В первом случае – это природные ресурсы в виде угля, газа, продуктов переработки нефти, ядерное топливо и т.д. Второй вариант предполагает использование энергии природных явлений – солнца, ветра, приливов-отливов, подземных источников тепла. Независимо от формы использования, каждая электростанция требует много дополнительного оборудования для передачи потребителям полученной энергии.

Что такое электростанция

Виды электростанций

Любая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей.

Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:

  • Обеспечение стабильной продолжительной работы параллельно с другими энергетическими системами, снабжение энергией собственных автономных нагрузок.
  • Возможность мгновенного реагирование на наличие или отсутствие нагрузки, соответствующей его номиналу.
  • Выполняет запуск двигателя, обеспечивающего работу всей станции.
  • Вместе со специальными устройствами осуществляет функцию защиты.

Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты.

В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике.

Основные типы электростанций

Все электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии.


Среди них можно выделить следующие:

    . Работают на природном топливе, а основные типы электростанций могут быть конденсационными (КЭС) и теплофикационными (ТЭЦ). Первые вырабатывают только электричество, а вторые – электроэнергию и теплоту.
  • Гидравлические – ГЭС и гидроаккумулирующие – ГАЭС, функционирующие за счет энергии воды, падающей высоты. , работающие на ядерном топливе. . Бывают стационарными или мобильными. Существуют мини-электростанции малой мощности, используемые в частном секторе. , ветровые, приливные и геотермальные электростанции известны как альтернативные источники электроэнергии, работающим с естественными силами природы. Они имеют ряд недостатков, связанных с климатическими условиями и другими факторами.

Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов.

ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. АЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России.

Тепловые электрические станции – ТЭС

На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.

Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.


Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.

Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.

Преимущества и недостатки гидроэлектростанций

По своей значимости, ГЭС находятся на втором месте после тепловых электростанций. В своей работе они используют энергию воды, преобразующейся в электрический ток, и относящейся к возобновляемым ресурсам. Простое управление такими станциями не требует большого количества персонала. Коэффициент полезного действия доходит до 85%.

Электричество, производимое на ГЭС считается самым дешевым, его цена примерно в 5-6 раз меньше, чем на тепловых электроустановках. Гидроэлектростанции отличаются высокой маневренностью и могут быть запущены в работу в течение 3-5 минут, тогда как на ТЭС для этого требуется несколько часов. Это качество особенно важно при перекрытии пиковых нагрузок в суточном графике электроснабжения.


Основными недостатками подобных сооружений являются:

  • Значительные капиталовложения на их возведение.
  • Привязка к определенной территории или местности с гидроресурсами.
  • В процессе строительства затапливаются огромные территории, большие сельскохозяйственные площади выводятся из пользования, наносится ущерб рыбному хозяйству, нарушается экологическое равновесие.
  • Полная мощность электростанции реализуется лишь в определенное время года, в период максимального подъема воды.

На российских реках сооружаются целые каскады гидроэлектростанций. Наиболее крупными считаются Ангаро-Енисейский каскад, включающий Братскую, Красноярскую, Саяно-Шушенскую, Усть-Илимскую ГЭС, а также Волжский каскад с Рыбинской, Угличской, Иваньковской, Саратовской, Волжской и другими ГЭС.

Достаточно перспективным направлением считается гидроаккумулирующая электростанция – ГАЭС. В основе их работы заложен принцип действия, связанный с цикличным перемещением одинакового объема воды между верхним и нижним бассейнами. Ночью за счет излишков электроэнергии вода подается снизу-вверх, а в дневное время при резком росте энергопотребления она сбрасывается вниз и вращает турбины, производя электричество. Эти станции совершенно не зависят от естественных колебаний речного стока, а под водохранилища требуется гораздо меньше затапливаемых площадей.

Атомные электростанции

На третьем месте по количеству производимой электроэнергии находятся атомные электростанции. В России их доля в энергетике составляет чуть выше 10%. В США этот показатель равен 20%, в Германии – более 30%, во Франции – свыше 75%. Сокращение программ в области атомной энергетики произошло вследствие аварии на Чернобыльской АЭС.

Рассматривая виды электростанций в России, следует отметить, что наиболее известными АЭС считаются Ленинградская, Курская, Смоленская, Нововоронежская, Белоярская и другие. Новым направлением является создание АТЭЦ – атомных теплоэлектроцентралей, вырабатывающих электрическую и тепловую энергию. Подобный объект построен на Чукотке в поселке Билибино. Еще одно направление – строительство АСТ – атомных станций теплоснабжения, предназначенных для производства тепла. Такие установки успешно функционируют в Нижнем Новгороде и Воронеже.


Основные плюсы АЭС заключаются в следующем:

  • Возможность строительства в любых районах, без привязки к энергетическим ресурсам. Транспортировка атомного топлива не отнимает много средств, поскольку 1 кг урана эквивалентен 2500 т угля.
  • При отсутствии нарушений эксплуатации, АЭС являются самыми экологичными установками. Выбросы в атмосферу минимальны, кислород не поглощается, отсутствует парниковый эффект.

Рассматривая вопрос как работает АЭС, нужно в первую очередь остановиться на тяжелых последствиях в случае аварий. Кроме того, серьезные проблемы возникают с радиоактивными отходами в процессе их захоронения. Водоемы, используемые для технических целей АЭС, подвержены тепловому загрязнению.

Дизельные электростанции

Для работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления.

Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения.


Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением.

Нетрадиционные источники электроэнергии

Нетрадиционные источники представлены геотермальными электростанциями (рис. 1), работающими на тепловой энергии, поступающей из земных недр. Чем глубже от поверхности земли, тем выше температура данного слоя. В России такие установки построены на Камчатке и на Курильских островах.


Существуют конструкции приливных электростанций (рис. 2), которые функционируют от энергии, создаваемой приливами и отливами в самом узком месте искусственного залива, отсеченного от моря. В качестве примера можно привести опытную Кислогубскую ПЭС, возведенную на Кольском полуострове.

Классификация электростанций включает в себя солнечные и ветровые альтернативные установки (рис. 3). Все виды таких систем обеспечивают электроэнергией небольшие предприятия и производства, используются в частном секторе для удовлетворения бытовых потребностей. В основном, это районы и места, где отсутствует централизованное электроснабжение и нет возможности подключиться к обычным ЛЭП.

Читайте также: