Какие угломерные инструменты используются в астрономии кратко

Обновлено: 05.07.2024

Вся история астрономии связана с созданием инструментов, позволяющих повысить точность астрономических наблюдений. Первыми появились угломерные инструменты.

Самый древний угломерный инструмент - это гномон. Он использовался для определения высоты Солнца над горизонтом и представлял собой вертикальный столб на горизонтальной площадке. С помощью такого простейшего приспособления можно было отмечать дни солнцестояний, а значит, фиксировать продолжительность года. Чем гномон выше, тем длиннее отбрасываемая им тень, тем точнее измерения.

Астрономический посох использовался для определения положения светил над горизонтом. Он представлял собой две скрещенные линейки с укрепленными на концах одной из них стержнями - визирами. Эта линейка перемещалась вдоль делений относительно глаза наблюдателя, и по ее положению можно было судить о высоте светила и угле между направлениями на две звезды.

Армилла - древний астрономический инструмент для измерения углов на небесной сфере, состоявший из подвижных колец, изображавших различные круги небесной сферы.

Наибольшую точность измерений давал квадрант - четверть градуированного круга с подвижной линейкой. Если вместо четверти использовали шестую часть круга, то инструмент назывался секстант, а если восьмую - октант. Чем крупнее был инструмент, чем точнее была его градуировка и установка в вертикальной плоскости, тем более точные измерения можно было с ним выполнить.

Астролябия относится к тому же типу инструментов. Моделью небесной сферы с ее важнеишими точками и кругами, меридианом, горизонтом, полюсами и осью мира, эклиптикой служила армиллярная сфера, или попросту армилла. Ее как наглядное пособие используют до сих пор на учебных занятиях по астрономии.

Древние астрономы умели измерять не только координаты светил, но и время их нахождения в той или иной точке небесной сферы.

Самые древние часы - солнечные. Они состоят из стержня, направленного к Полярной звезде, и циферблата, разделенного на часы и минуты. Тень от стержня выполняла роль стрелки. С помощью таких часов можно было определять время с точностью до минуты, но, к сожалению, в пасмурную погоду они "не работали". Поэтому употребляли песочные и водяные часы, где время измерялось равномерным движением песка или воды.

Телескопы - это астрономические оптические приборы, предназначенные для наблюдения небесных тел. Первые из них были двух видов - линзовые, или рефракторы, и зеркальные, или рефлекторы. У рефракторов объектив, собирающий световые лучи, изготовлен из стеклянных линз, а у рефлекторов объективом служит вогнутое зеркало.

К настоящему времени имя первого изобретателя телескопа доподлинно не установлено. На этот счет существует две версии. Некоторые исследователи отдают пальму первенства голландскому оптику и торговцу стеклянными линзами для очков Захарию Янсену, правда, с оговоркой, что тот, создавая в начале XVII века прибор-дальновидец (так с греческого переводится слово "телескоп"), всего лишь воспользовался идеей неизвестного итальянского изобретателя, сняв с оригинала копию. Другие считают, что первые упоминания о приборе, позднее названном телескопом, встречаются у английского мыслителя, доктора богословия Парижского университета РоЭ-жера Бэкона (1214-1292), и что именно он является его первооткрывателем.

Первым ученым, который провел астрономические исследования с помощью телескопа- рефрактора, был итальянский ученый Галилео Галилей (1564-1642). Узнав в 1609 году об изобретенном в Голландии приборе-дальновидце, он самостоятельно сконструировал зрительную трубу из свинца с двумя стеклянными линзами - плоско-выпуклым объективом и плоско-вогнутым окуляром. Она давала прямое мнимое изображение. Увеличение трубы (первоначально в 3 раза) ученый довел до 32-х раз и в том же году впервые применил этот инструмент для наблюдения неба.

Первые телескопы-рефракторы, имевшие линзовые объективы, давали нечеткое изображение, окрашенное радужным ореолом. В их совершенствовании большая заслуга принадлежит немецкому астроному и математику Иоганну Кеплеру (1571 - 1630). В своем сочинении "Диоптрика" (1611) он разработал схему астрономической трубы с двояковыпуклым объективом и окуляром (труба Кеплера, дающая действительное обратное изображение предмета). Эта схема лежит в основе современных рефракторов.

Первый телескоп-рефлектор появился в 1668 году. Его конструкцию разработал английский ученый Исаак Ньютон (1643-1727), до этого делавший неоднократные попытки усовершенствовать объективы для телескопов-рефракторов. Рефлектор Ньютона (длина - 15 см, диаметр гладкого зеркала - 2,5 см) был свободен от многих оптических недостатков, свойственных рефракторам; с его помощью можно было видеть спутники Юпитера. За свое изобретение ученый был избран членом Лондонского королевского общества (1672).

Совершенствованием телескопов- рефлекторов занимался русский ученый- энциклопедист Михаил Васильевич Ломоносов (1711 - 1765). Он изобрел отражательный телескоп-рефлектор с наклонным (на 4°) зеркалом, дававшим яркое изображение объекта. Наряду с этим, Ломоносов был первым астрономом, который сконструировал и создал прообраз современного горизонтального телескопа с сидеростатом (подвижным зеркалом, с помощью которого свет от небесных объектов направляется в неподвижную астрономическую трубу). Изобретательность помогала русскому ученому создавать приборы для ориентации по звездам при точном измерении времени. Он сам обучал моряков и штурманов. Изобрел даже "ночезрительную трубу" для наблюдения за кораблями ночью и различными небесными явлениями.

Особенно больших успехов в сооружении телескопов-рефлекторов добился великий английский астроном и конструктор Вильям Гершелъ (1738 - 1822). Постепенно увеличивая диаметры изготавливаемых зеркал, он в 1789 году отшлифовал для своего телескопа самое большое зеркало с рабочим диаметром 122 см (полный диаметр зеркала был равен 147 см, а вес - 2 т). В то время это был величайший в мире рефлектор. Конструкция рефлектора Гершеля, сооруженного на открытой площадке, была также весьма внушительной: гигантская труба длиной 12 м приводилась в движение с помощью системы канатов и блоков. Наблюдатель поднимался по приставной лестнице к верхнему концу трубы и, стоя на маленькой площадке, терпеливо ловил слабые лучи, прилетавшие из далекой Вселенной. Уникальный рефлектор Гершеля оставался непревзойденным почти до середины XIX века, когда появился еще более крупный зеркальный телескоп (с фокусным расстоянием более 18 м и диаметром зеркала 183 см) английского астронома Вильяма Пар-сонса (1800-1867).

ПЕРВЫЕ АСТРОНОМИЧЕСКИЕ ОБСЕРВАТОРИИ

Создание первых астрономических обсерваторий (т. е. учреждений, в которых ведутся систематические наблюдения за небесными светилами и явлениями) теряется в глубокой древности. Они существовали в Египте, Вавилоне, Ассирии, Персии, Индии и некоторых других государствах еще за несколько тысячелетий до нашей эры.

Древнейшая обсерватория обнаружена на территории Республики Армения у холма Мецамор близ Еревана. По мнению археологов, обсерватория эта была построена более пяти тысяч лет назад, задолго до образования Урарту - мощного государства древнего мира.

К числу древнейших обсерваторий в мире специалисты относят комплекс сооружений, расположенный на территории американского штата Луизиана в средней части реки Миссисипи (II тыс. до н. э.). Он состоит из шести восьмигранников правильной формы, разделенных четырьмя радиальными проходами, причем две постройки расположены на местах, соответствующих направлениям заката Солнца в дни зимнего и летнего солнцестояния.

По мнению многих специалистов, к числу самых древних обсерваторий относятся и знаменитые на весь мир развалины Стоунхенджа. Это сооружение было построено примерно во II - III тысячелетии до нашей эры в местечке, расположенном посередине Солсберийского плоскогорья в 128 км от Лондона. По внешней окружности Стоунхенджа (что в буквальном смысле слова означает "висящие камни") возвышаются 30 каменных столбов голубоватого цвета высотой около 5,5 м каждый, верхние грани которых связаны между собой мощной каменной цепью. Внутри этой древней крепости находится огромная глыба, выстроенная из еще более гигантских столбов (высота их - 8,5 м, а масса - 50 т). По форме она напоминает подкову. Кроме внешнего "кольца" и главной "подковы" во внутренней части сооружения выложены еще несколько более мелких, расположенных в строгой последовательности одна внутри другой. Принято считать, что в Стоунхендже древние наблюдатели могли определять дни весеннего и осеннего равноденствия, а также зимнего и летнего солнцестояния.

Одна из самых первых постоянно действующих обсерваторий была построена в Китае (XII век до н. э.). Она представляла собой башню с площадкой наверху, предназначенной для размещения переносных угломерных инструментов. Астрономы Древнего Китая ввели в употребление солнечные и лунные календари, составляли звездные каталоги, изготовили звездный глобус, аккуратно регистрировали появление комет, вспышки ярких звезд. Эти наблюдения, сведения о которых пришли из глубины веков, ценны и для современной астрономии. Кроме того, древние китайские астрономы первыми открыли пятна на Солнце, о чем сделана запись в одной из китайских летописей.

Грандиозное сооружение представляла собой великолепная обсерватория, построенная на окраине древнего Самарканда султаном Улуг-беком (1394-1449). Это было цилиндрическое трехэтажное здание с множеством окон и помещений. В центре здания находился широкий проем, расположенный по меридиану, в котором располагался главный угломерный инструмент обсерватории - исполинский секстант. Размеры его огромны - радиус дуги больше 40 м. Визиры инструмента передвигались по специальным рельсам, и с их помощью фиксировалось направление на небесное светило. Наряду с основным измерительным инструментом Улугбек и его помощники использовали при астрономических наблюдениях и переносные угломерные приборы. В обсерватории Улугбека впервые была измерена важнейшая астрономическая величина - наклон эклиптики к экватору, составлен знаменитый звездный каталог, содержащий положения на небе 1018 звезд (в течение долгого времени он считался лучшим в мире), определены географические координаты различных мест в Средней Азии. Улугбеком написана теория затмений. Про него Алишер Навои говорил, что он "протянул руку к наукам и добился много. Перед его глазами небо стало близким и опустилось вниз". Просветительская и научная деятельность столь необычного для средневекового Востока правителя вызывала ненависть мусульманских фанатиков. Улугбек был убит, погибла и его прекрасная обсерватория. В настоящее время она частично восстановлена и превращена в музей.

Астрономические обсерватории современного типа появились в XVII веке после изобретения телескопа. Самыми первыми среди них были Парижская (1667) и Гринвичская (1675), до сих пор считающаяся одной из самых крупных обсерваторий мира. Наряду с угломерными инструментами в этих обсерваториях использовались большие телескопы-рефракторы. К концу XVIII века государственные обсерватории функционировали по всему миру и их число достигло 100, а к концу XIX века таких обсерваторий было уже около 400.

Попробуйте представить себя в роли древнего наблюдателя Вселенной, полностью лишенного каких-либо инструментов. Много ли в таком случае можно увидеть на небе?

Днем обратит на себя внимание движение Солнца, его восход, подъем до максимальной высоты и медленное нисхождение к горизонту. Если такие наблюдения повторять ото дня ко дню, можно легко заметить, что точки восхода и захода, а также наибольшая угловая высота Солнца над горизонтом непрерывно меняются. При длительных наблюдениях во всех этих переменах можно подметить годовой цикл — основу календарного летосчисления.

По-видимому, первыми это сделали египетские жрецы, когда примерно за 6000 лет до наших дней они подметили, что предутреннее появление Сириуса в лучах зари совпадает с разливом Нила. Для этого не нужны были какие-либо астрономические инструменты — требовалась лишь большая наблюдательность. Зато и ошибка в оценке продолжительности года была велика — первый египетский солнечный календарь содержал в году 360 суток.


Рис. 1. Простейший гномон.

Нужды практики заставляли древних астрономов совершенствовать календарь, уточнять продолжительность года. Предстояло разобраться и в сложном движении Луны — без этого счет времени по Луне был бы невозможен. Надо было уточнить особенности движения планет и составить первые звездные каталоги. Все перечисленные задачи предполагают угловые измерения на небе, числовые характеристики того, что до сих пор описывалось лишь словами. Так возникла нужда в угломерных астрономических инструментах.

Самый древний из них гномон (рис. 1). В простейшем варианте он представляет собой вертикальный стержень, отбрасывающий тень на горизонтальную плоскость. Зная длину гномона L и измерив длину I отбрасываемой им тени, можно найти угловую высоту h Солнца над горизонтом по современной формуле:


Древние использовали гномоны для измерения полуденной высоты Солнца в различные дни года, а главное в дни солнцестояний, когда эта высота достигает экстремальных значений. Пусть полуденная высота Солнца в день летнего солнцестояния равна Н, а в день зимнего солнцестояния h. Тогда угол ? между небесным экватором и эклиптикой равен


а наклон плоскости небесного экватора к горизонту, равный 90°—?, где ? — широта места наблюдения, вычисляется по формуле


С другой стороны, внимательно следя за длиной полуденной тени, можно достаточно точно подметить, когда она становится самой длинной или самой короткой, то есть иначе говоря, зафиксировать дни солнцестояний, а значит, и продолжительность года. Отсюда легко вычислить и даты солнцестояний.

Таким образом, несмотря на простоту, гномон позволяет измерять очень важные в астрономии величины. Эти измерения будут тем точнее, чем крупнее гномон и чем, следовательно, длиннее (при прочих равных условиях) отбрасываемая им тень. Так как конец тени, отбрасываемой гномоном, не бывает резко очерчен (из-за полутени), то на некоторых древних гномонах сверху укрепляли вертикальную пластинку с маленьким круглым отверстием. Солнечные лучи, пройдя сквозь это отверстие, создавали четкий солнечный блик на горизонтальной плоскости, от которого измеряли расстояние до основания гномона.

Еще за тысячу лет до нашей эры в Египте был построен гномон в виде обелиска высотой в 117 римских футов. В царствование императора Августа гномон перевезли в Рим, установили на Марсовом поле и определяли с его помощью момент полдня. На Пекинской обсерватории в XIII веке н. э. был установлен гномон высотой 13 м, а знаменитый узбекский астроном Улугбек (XV век) пользовался гномоном, по некоторым сведениям, высотой 55 м. Самый же высокий гномон работал в XV веке на куполе Флорентийского собора. Вместе со зданием собора его высота достигала 90 м.

К числу древнейших угломерных инструментов принадлежит также астрономический посох (рис. 2).


Рис. 2. Астрономический посох (слева вверху) и трикветр (справа). Слева внизу чертеж, поясняющий принцип действия астрономического посоха.

Вдоль градуированной линейки АВ перемещалась подвижная рейка CD, на концах которой иногда укрепляли небольшие стержни — визиры. В некоторых случаях визир с отверстием был и на том конце линейки АВ, к которому наблюдатель прикладывал свой глаз (точка А). По положению подвижной рейки относительно глаза наблюдателя можно было судить о высоте светила над горизонтом, или об угле между направлениями на две звезды.

Древние греческие астрономы пользовались так называемым трикветром, состоящим из трех соединенных вместе линеек (рис. 2). К вертикальной неподвижной линейке АВ на шарнирах прикреплены линейки ВС и АС. На первой из них укреплены два визира или диоптра m и п. Наблюдатель направляет линейку ВС на звезду так, чтобы звезда одновременно была видна сквозь оба диоптра. Затем, удерживая линейку ВС в этом положении, к ней прикладывают линейку АС таким образом, чтобы расстояния ВА и ВС были равны между собой. Это было легко сделать, так как на всех трех линейках, составляющий трикветр, имелись деления одинаковой шкалы. Измерив по этой шкале длину хорды АС, наблюдатель затем по специальным таблицам находил угол ABC, то есть зенитное расстояние звезды.


Рис. 3. Древний квадрант.

И астрономический посох и трикветр не могли обеспечить высокую точность измерений, и потому им нередко предпочитали квадранты — угломерные инструменты, достигшие к концу средневековья высокой степени совершенства. В простейшем варианте (рис. 3) квадрант представляет собой плоскую доску в форме четверти градуированного круга. Около центра с этого круга вращается подвижная линейка с двумя диоптрами (иногда линейку заменяли трубкой). Если плоскость квадранта вертикальна, то по положению трубы или визирной линейки, направленных на светило, легко измерить высоту светила над горизонтом. В тех случаях, когда вместо четверти круга использовали его шестую часть, инструмент назывался секстантом, а если восьмую часть — октантом. Как и в других случаях, чем крупнее был квадрант или секстант, чем точнее была его градуировка и установка в вертикальной плоскости, тем более точные измерения с ним можно было выполнять. Для обеспечения устойчивости и прочности крупные квадранты укрепляли на вертикальных стенах. Такие стенные квадранты еще в XVIII веке считались лучшими угломерными инструментами.

К тому же типу инструментов, что и квадрант, относится астролябия или астрономическое кольцо (рис. 4). Разделенный на градусы металлический круг подвешивается к какой-нибудь опоре за кольцо А. В центре астролябии укреплена алидада — вращающаяся линейка с двумя диоптрами. По положению алидады, направленной на светило, легко отсчитывается его угловая высота.

При изготовлении деталей вручную или с применением различного оборудования всегда стоит вопрос о постоянном контроле за линейными, диаметральными и угловыми размерами. Если с измерением первых и вторых размеров особых вопросов не возникает, то с замерами углов несколько сложнее. Для их проведения применяют угломерный инструмент и для работы с ним необходим определенный навык.

Предназначен для измерения углов

Предназначен для измерения углов

Сведения о методах измерений

Для измерения углов применяют следующие методы:

  1. Путем сравнения с эталонными образцами.
  2. Гониометрическим способом, который основан на использовании измерительных устройств с угломерной шкалой.
  3. Тригонометрический способ, заключающийся в определении параметров, которые жестко связанных с углом посредством тригонометрическим путем.

Методы измерения угломерным инструментом

Методы измерения угломерным инструментом

Размер угла, в абсолютных единицах измеряют с помощью мерительного инструмента под названием угломерный инструмент. У этого термина есть множество аналогов – транспортир, гониометр, секстант, астролябия и пр. Эти приборы отличают по точности выполняемых измерений, они могут иметь разное устройство, но принципы измерения одинаковы. Чаще всего на практике применяют нониусные угломеры.

Конструкция угломера

Это устройство относят к измерительным приборам механического типа. Их главная задача проведение измерения геометрических углов в деталях и конструкциях.

Конструкция угломера универсального

Конструкция угломера универсального

Угломерный инструмент с нониусом относится к механическому типу измерительных приборов, которые служат для измерения геометрических углов в различных деталях и конструкция. Результаты измерения представляются в градусах, наличие дополнительной шкалы, существует возможность получать более точные результаты. Эта дополнительная шкала и называется нониусом. Ее закрепляют на удлиненной линейке. Благодаря использованию этой шкалы точность измерений может быть получена в пределах десятых долей градуса.

К основным преимуществам этого прибора – его точность. Его применение позволяет оперировать довольно точными цифрами и именно это обеспечило его спрос среди специалистов в различных отраслях промышленности. Как и большинство механических приборов измерения, угломерный инструмент отличается длительностью эксплуатации, у него нет какого-то определенного срока годности, разумеется, при полном соблюдении правил эксплуатации и хранения.

К недостаткам этого класса приборов можно отнести сложность в ремонте. В этом изделии нет деталей, которые можно просто заменить, они сложны в изготовлении и чаще всего их приходится заказывать на заводе производителе.

Кстати, нередко приборы для проведения механических измерений часто сравнивают с электронными, и хотя они выглядят довольно устаревшими, они до сих пор находятся в строю.

Угломеры

Устройств для замера углов на самом деле множество, это и:

  • угломерный инструмент с нониусом;
  • угломерный астрономический инструмент и многие другие.

Их применяют везде, где необходимо выполнять соответствующие измерения, например, при изготовлении штамповой оснастки, или определении местоположения судна в пространстве.

Угломерный инструмент с нониусом

Угломерный инструмент с нониусом

  • угломер с нониусом типа 2;
  • угломер с нониусом типа 4;
  • угломер с нониусом 5ум;
  • угломер с нониусом 4ум.

По большей части они предназначены для выполнения измерения наружных углов с точностью 2 минуты. Модели типа 2 применяют для проведения замеров в пределах от 2 до 360 градусов.

Угломерный астрономический инструмент

Угломерный астрономический инструмент

Кроме того, их можно использовать при выполнении лекальных (разметочных) работ, например, при производстве сложного фасонного инструмента (штампы, пресс-формы и пр.). Надо отметить, что производство угломерного инструмента отличает высокая трудоемкость, а материал для его производства обладает высокой стоимостью. Для его производства применяют инструментальные стали, цена которых в нескольких раз превышает стоимость конструкционных.

Конечно, существует угломерный инструмент, который обладает более низкой стоимостью. Для его изготовления применяют более простые материалы. Такую продукцию выпускают множество предприятий, расположенных в нашей стране и за ее пределами. Как пример можно привести

Угломеры с нониусом SKRAB

Один из ярких представителей этой продукции угломерный инструмент с нониусом SKRAB модели 40320. Его применяют для проведения замеров внутренних углов в диапазоне от 0 до 220 градусов. Точность такого прибора составляет 1 градус. В принципе такой точности хватает для проведения большинства работ, например, при разделке пластикового профиля при создании светопрозрачных конструкций (окон, дверей и пр.).

В последние годы производители выпустили на рынок электронные угломерные инструменты. Их точно так же применяют в промышленности, строительстве и пр. Их использование значительно проще, чем угломерных устройств механического типа. По большей части, этот инструмент производят из пластика или алюминиевых сплавов. На раме установлен измерительный блок. Точность электронных угломеров может колебаться в зависимости от качества производства и типа электронного устройства. Но в среднем она может лежать в диапазоне от 0,3 до 1 градуса. Эти угломерные приборы по большей части применяют в строительстве.

Технические характеристики

Технические характеристики угломера универсального

Технические характеристики угломера универсального

Технические характеристики включают в свой состав такие параметры, как твердость, которая должна составляя 57 по HRC на измерительных поверхностях.

Применение

Как уже отмечалось, угломерные устройства нашли свое применение практически во всех отраслях, промышленности, транспорта.

В строительном деле угломеры применяют при выполнении работ по монтажу, разметке и выполнении проектных работ. С его помощью осуществляют контроль над монтажом строительных конструкций, которые расположены под определенным углом по отношению друг к другу. Причем измерения могут проводиться в трех плоскостях. Кроме, угломера в строительстве применяют отвесы и уровни.

Кроме этого, угломерный инструмент применяют в столярном и плотницком деле, в геодезии. Даже в медицине так инструмент применяют для контроля над суставами, позвоночником и пр.

Как пользоваться угломером с нониусом

Как пользоваться угломером с нониусом? Угломерным оборудованием механического типа довольно просто. Его можно использовать на любой поверхности и проводить измерения и внешних, и внутренних углов. При установке прибора нельзя допускать перекосов, это может привести к появлению значительной погрешности.

На приборе установлена специальная шкала, которая позволяет повысить точность измерений на порядок. В чем-то они похожи на традиционный штангенциркуль. Например, для замера внешнего угла, достаточно приложить к одной из плоскостей линейку, находящуюся в основании прибора, а к другой подвести подвижную часть, связанную со шкалой. В результате можно будет узнать искомый угол. Более подробная информация приведена в инструкции по эксплуатации угломерного прибора. Она, как и паспорт входит в комплект поставки.

На базовой шкале показаны градусы, по внешнему виду она похожа на школьный транспортир и измерение углов угломером с нониусом не составит труда даже для новичка.

Другие угломеры

Разумеется, угломерная техника не ограничивается той, которая перечислена выше. На самом деле измерительный инструмент этого класса имеет древнюю историю. Еще финикийские моряки применяли секстанты, древнейшие угломерные инструменты. Кроме, секстантов у мореплавателей в ходу и такой прибор, как морской мореходной октант, в качестве измерительной шкалы в нем установлена шкала, которая охватывает всего 45 градусов. Но этого достаточно, чтобы вести наблюдение за звездами и тем самым определить свое местоположение в пространстве. Использование шкалы нониуса позволяет выполнять более точные расчеты.

Угломерный инструмент секстант Угломерный инструмент октант

При проведении строительных работ широко применяют уклономер транспортир. С его помощью измеряют расположение строительных конструкций в пространстве и относительно друг друга. При производстве мебельных работ также важно соблюдать определенные углы, например, между стенками шкафа или тумбочки.

Недостатки угломеров

Угломерная техника требует к себе особо бережного отношения. И в отличие от другого инструмента ее необходимо хранить в отведенном месте. Несмотря на заявленные производителей сроки его эксплуатации, угломер может выйти из строя даже не от очень сильного удара или падения.

Еще одно неудобство в эксплуатации заключается в относительно мелкой разметке, но эта проблема решается установкой на прибор увеличительного стекла.

Поверка

Весь мерительный инструмент, применяемый на производстве должен пройти обязательную процедуру поверки. По крайне мере на тех предприятиях, где внедрена система управления менеджментом.

Поверка мерительного инструмента – это набор определенных операций, результатом которых становится заключение уполномоченного органа о соответствии предъявляемого инструмента завяленным требованиям.

Поверка угломером с нониусом должны выполнять только в лабораториях прошедших аттестацию в Росстандарте РФ.

Из принципов решения астрономических задач следует, что во время наблюдений необходимо измерять углы в горизонтальной и вертикальной плоскостях и отмечать моменты времени. Измерение углов производится угломерными инструментами различных конструкций. Современные астрономические угломерные инструменты являются довольно сложными, прецизионными приборами. Здесь нет необходимости входить в технические детали и рассматривать все многочисленные конструкции угломерных инструментов. Поэтому в дальнейшем мы ограничимся только кратким описанием главнейших из них и рассмотрим лишь основные идеи их устройства. Основными частями угломерного инструмента являются точно разделенные круги и астрономическая труба, играющая роль визира. Астрономическая труба в принципе состоит из тубуса и двух двояковыпуклых собирающих линз, помещенных на ее концах. Одна из линз, обращенная к рассматриваемому объекту, называется объективом, другая, обращенная к глазу наблюдателя,— окуляром. Прямая, соединяющая центры объектива и окуляра, называется оптической осью трубы. Объектив служит для получения изображений небесных светил. Из оптики известно, что выпуклые линзы дают действительное, уменьшенное и перевернутое изображение удаленных предметов, а так как расстояния до небесных светил очень велики, то их изображения, кроме того, всегда находятся в фокальной плоскости объектива, проходящей через его фокус и перпендикулярной к оптической оси. Для краткости астрономы говорят, что изображение светила получается в фокусе объектива. Это изображение рассматривается в окуляр, который действует как увеличительное стекло (лупа). Чтобы изображение было резким, необходимо совместить фокус окуляра с фокусом объектива. Увеличение п трубы подсчитывается по фокусному расстоянию F объектива и фокусному расстоянию f окуляра: В астрономических трубах фокусные расстояния объективов обычно бывают от нескольких дециметров до двух десятков метров, редко больше; фокусные расстояния окуляров — от 0,5 см до астрономические трубы угломерных инструментов всегда снабжаются несколькими окулярами с различными фокусными расстояниями, позволяющими получать увеличение трубы в пределах от 100 до 300 раз. В угломерных инструментах астрономическая труба должна обязательно иметь крест паутинных нитей, помещаемый в фокальной плоскости объектива. Прямая линия, соединяющая центр объектива с точкой пересечения нитей креста, называется визирной линией. Если изображение точки светила находится на кресте нитей, то визирная линия имеет именно то направление, по которому луч света от этой точки идет к наблюдателю. Кроме этого важного свойства фиксации направления в пространстве, астрономическая труба увеличивает количество света, попадающего в глаз наблюдателя, и позволяет видеть более слабые звезды, чем невооруженным глазом. Действительно, так как диаметр объектива трубы всегда гораздо больше диаметра зрачка, то, глядя в трубу, глаз от каждой светящейся точки получает значительно больше света, чем без трубы.

  • Главная /
  • Обучение /
  • Астрономия /
  • Угломерные инструменты. Астрономическая труба

Читайте нас в twitter

Смотрите также

Отравление углекислым газом

Александров Владимир Леонидович

Авторулевые

Добавить комментарий

Самое читаемое

Изолирующий дыхательный аппарат ИДА-59М

Устройство ИДА-59М Изолирующий дыхательный аппарат ИДА-59М (рис. 9) предс­тавляет собой автономный дыхательный аппарат регенеративного типа с замкнутым циклом дыхания. Аппарат изолирует органы…

Методика проведения искусственной вентиляции легких и закрытого массажа сердца

При различных несчастных случаях, когда у пострадавшего отсутствуют дыхание и признаки сокращения сердца, необходимо как можно раньше приступить к искусственной вентиляции легких и к закрытому…

RSS поток Podlodka.info

изель-электрическая подводная лодка Б-603 Волхов проекта 636.3

ДЭПЛ "Волхов" провела в Японском море пуск из подводного положения крылатой ракеты "Калибр" по наземной цели

Многоцелевая атомная подводная лодка Братск на транспортном судне Transshelf голландской компании Dосkwise

Атомная подлодка "Братск" признана непригодной к ремонту и восстанавливать ее не будут

Головная многоцелевая атомная подводная лодка усовершенствованного проекта 885М (шифр Ясень-М) Казань

Головную многоцелевую атомную подлодку усовершенствованного проекта 885М (шифр "Ясень-М") "Казань", передадут Военно-Морскому Флоту России осенью 2020 года

Подводные силы Тихоокеанского флота отмечают 115-ую годовщину со дня образования

115 лет подводным силам Тихоокеанского флота

Россия отметила 115-ую годовщину со Дня образования подводных сил Тихоокеанского флота. Во Владивостоке в 1905 году появился первый отряд подлодок "миноносцев"

Подводная лодка проекта 877 Дмитров в море

Экипаж дизель-электрической подводной лодки Балтийского флота "Дмитров" приступил к выполнению учебно-боевых задач и отработке нормативов

Читайте также: