Какие существуют схемы соединения в трехфазных цепях кратко

Обновлено: 07.07.2024

Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120 o , создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120 o . В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120 o . Запишем мгновенные значения и комплексы действующих значений ЭДС.

Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы - последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу.

Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.

Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис унке:

Существуют различные способы соединения обмоток генератора с нагрузкой. Самым неэкономичным способом явилось бы соединение каждой обмотки генератора с нагрузкой двумя проводами, на что потребовалось бы шесть соединительных проводов. В целях экономии обмотки трехфазного генератора соединяют в звезду или треугольник. При этом число соединительных проводов от генератора к нагрузке уменьшается с шести до трех или до четырех.

На электрической схеме трехфазный генератор принято изображать в виде трех обмоток, расположенных друг к другу под углом 120°. При соединении звездой одноименные зажимы (например, концы х, у, z) трех обмоток объединяют в одну точку (рис. 6.5), которую называют нулевой точкой генератора О. Обмотки генератора обозначают буквами А, В, С; буквы ставят: А — у начала первой, В — у начала второй и С — у начала третьей фазы.

При соединении обмоток генератора треугольником (рис. 6.6) конец первой обмотки генератора соединяют с началом второй, конец второй — с началом третьей, конецтретьей — с началом первой. Геометрическая сумма ЭДС в замкнутом треугольнике равна нулю. Поэтому если к зажимам Л, В, С не присоединена нагрузка, то по обмоткам генератора не будет протекать ток.

Обратим внимание на то, что расположение звезды или треугольника векторов фазовых ЭДС на комплексной плоскости не следует связывать с расположением в пространстве осей трех обмоток генератора.

Пять простейших способов соединения трехфазного генератора с трехфазной нагрузкой изображены на рис. 6.7 — 6.10.

Точку, в которой объединены три конца трехфазной нагрузки при соединении ее звездой, называют нулевой точкой нагрузки и обозначают О. Нулевым проводом называют провод, соединяющий нулевые точки генератора и нагрузки. Ток нулевого провода назовем . Положительное направление тока возьмем от точки к точке О.

Провода, соединяющие точки А, В, С генератора с нагрузкой, называют линейными.

Схему рис. 6.7 называют звезда — звезда с нулевым проводом; схему рис. 6.8 — звезда — звезда без нулевого провода; схему рис. 6.9, а — звезда — треугольник; схему рис. 6.9, б — треугольник — треугольник; схему рис. 6.10 — треугольник — звезда.

Текущие по линейным проводам токи называют линейными; их обозначают Условимся за положительное направление токов принимать направление от генератора к нагрузке. Модули линейных токов часто обозначают (не указав никакого дополнительного индекса), особенно тогда, когда все линейные токи по модулю одинаковы.

Напряжение между линейными проводами называют линейным и часто снабжают двумя индексами, например (линейное напряжение между точками А и В); модуль линейного напряжения обозначают .

Каждую из трех обмоток генератора называют фазой генератора; каждую из трех нагрузок — фазой нагрузки; протекающие по ним токи — фазовыми токами генератора или соответственно нагрузки, а напряжения на них — фазовыми напряжениями

Существует два основных способа соединения обмоток генераторов, трансформаторов и приемников в трехфазных цепях: соединение звездой и соединение треугольником. Соединение генератора и приемника звездой показано на рис. 3.2, а соединение треугольником – на рис. 3.3.


Рис. 3.2. Соединение фаз источника и нагрузки в звезду

Между линейными и фазными напряжениями и токами в симметричной трехфазной системе существуют следующие соотношения.

1) При соединении в звезду (рис. 3.2):

2) При соединении в треугольник (рис. 3.3):


Рис. 3.3. Соединение фаз источника и нагрузки в треугольник

Расчет трехфазных систем.

Трехфазные цепи являются разновидностью цепей синусоидального тока, поэтому расчет и исследование процессов в них производятся при помощи символического метода и сопровождается построением векторных и топографических диаграмм.

Расчет симметричных трехфазных цепей производится только для одной фазы системы, так как здесь IА=IВ=IС; ZА=ZВ=ZС; jА=jВ=jС, т.е. имеет место полная симметрия. В этом случае при соединении звездой (рис. 3.2) линейные напряжения равны разностям соответствующих фазных напряжений:

а при соединении треугольником (рис. 3.3) линейные токи равны разностям соответствующих фазных токов:

На рис. 3.4 и 3.5 представлены топографические векторные диаграммы (ТВД) для случаев соединения фаз приемника звездой и треугольником соответственно.


Рис. 3.4. ТВД для соединения Рис. 3.5. ТВД для соединения

фаз приемника звездой фаз приемника треугольником

Расчет несимметричных трехфазных цепей при соединении в звезду и звезду с нулевым проводом следует начинать с определения напряжения смещения нейтрали:

где – фазные напряжения источника; – проводимости фаз нагрузки и нулевого провода.

Токи в фазах нагрузки и нейтральном проводе:

причем фазные напряжения в несимметричной нагрузке равны

Если нагрузка соединена в звезду без нулевого провода, то и в (3.1) следует принять .

Если известны (в случае ) линейные напряжения и проводимости фаз нагрузки, то фазные напряжения нагрузки можно найти по формулам:

Порядок расчета несимметричной нагрузки с соединением фаз в треугольник зависит от учета либо неучета сопротивлений в линейных проводах (рис. 3.6).

Рис. 3.6. Несимметричная нагрузка с соединением фаз в треугольник

Если известны линейные напряжения между зажимами , , , к которым присоединены сопротивления приемника, то задача определения токов в нагрузке решается по закону Ома, а затем находятся токи в линейных проводах. Однако обычно бывают известны напряжения на зажимах A, B, C источника питания, поэтому расчет несколько усложняется. Проще всего его провести, заменяя треугольник сопротивлений эквивалентной звездой. Определив токи в линейных проводах, нетрудно определить фазные напряжения приемника в эквивалентной звезде и получить линейные напряжения на фазах приемника как разность фазных напряжений эквивалентной звезды, а затем вычислить токи в ветвях треугольника нагрузки. Формулы преобразования звезды сопротивлений ( ) в эквивалентный треугольник сопротивлений ( ) и обратно имеют вид:



Существует два основных способа соединения обмоток генераторов, трансформаторов и приемников в трехфазных цепях: соединение звездой и соединение треугольником. Соединение генератора и приемника звездой показано на рис. 3.2, а соединение треугольником – на рис. 3.3.


Рис. 3.2. Соединение фаз источника и нагрузки в звезду

Между линейными и фазными напряжениями и токами в симметричной трехфазной системе существуют следующие соотношения.

1) При соединении в звезду (рис. 3.2):

2) При соединении в треугольник (рис. 3.3):


Рис. 3.3. Соединение фаз источника и нагрузки в треугольник

Расчет трехфазных систем.

Трехфазные цепи являются разновидностью цепей синусоидального тока, поэтому расчет и исследование процессов в них производятся при помощи символического метода и сопровождается построением векторных и топографических диаграмм.

Расчет симметричных трехфазных цепей производится только для одной фазы системы, так как здесь IА=IВ=IС; ZА=ZВ=ZС; jА=jВ=jС, т.е. имеет место полная симметрия. В этом случае при соединении звездой (рис. 3.2) линейные напряжения равны разностям соответствующих фазных напряжений:

а при соединении треугольником (рис. 3.3) линейные токи равны разностям соответствующих фазных токов:

На рис. 3.4 и 3.5 представлены топографические векторные диаграммы (ТВД) для случаев соединения фаз приемника звездой и треугольником соответственно.


Рис. 3.4. ТВД для соединения Рис. 3.5. ТВД для соединения

фаз приемника звездой фаз приемника треугольником

Расчет несимметричных трехфазных цепей при соединении в звезду и звезду с нулевым проводом следует начинать с определения напряжения смещения нейтрали:

где – фазные напряжения источника; – проводимости фаз нагрузки и нулевого провода.

Токи в фазах нагрузки и нейтральном проводе:

причем фазные напряжения в несимметричной нагрузке равны

Если нагрузка соединена в звезду без нулевого провода, то и в (3.1) следует принять .

Если известны (в случае ) линейные напряжения и проводимости фаз нагрузки, то фазные напряжения нагрузки можно найти по формулам:

Порядок расчета несимметричной нагрузки с соединением фаз в треугольник зависит от учета либо неучета сопротивлений в линейных проводах (рис. 3.6).

Рис. 3.6. Несимметричная нагрузка с соединением фаз в треугольник

Если известны линейные напряжения между зажимами , , , к которым присоединены сопротивления приемника, то задача определения токов в нагрузке решается по закону Ома, а затем находятся токи в линейных проводах. Однако обычно бывают известны напряжения на зажимах A, B, C источника питания, поэтому расчет несколько усложняется. Проще всего его провести, заменяя треугольник сопротивлений эквивалентной звездой. Определив токи в линейных проводах, нетрудно определить фазные напряжения приемника в эквивалентной звезде и получить линейные напряжения на фазах приемника как разность фазных напряжений эквивалентной звезды, а затем вычислить токи в ветвях треугольника нагрузки. Формулы преобразования звезды сопротивлений ( ) в эквивалентный треугольник сопротивлений ( ) и обратно имеют вид:




Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Трёхфазная система электроснабжения

Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.

Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями.

Трёхфазная система электроснабжения

Обозначение фаз в трехфазной системе электроснабжения

Такая система очень экономична, когда речь идет о передаче электрической энергии по проводам на большие расстояния. Трехфазные трансформаторы менее материалоемки.

Силовые кабели требуют меньше проводящего металла (как правило используется медь), поскольку токи в фазных проводниках, по сравнению с однофазными, имеют меньшие действующие величины, если сравнивать с однофазными цепями аналогичной передаваемой мощности.

Трехфазная система очень уравновешена, и оказывает равномерную механическую нагрузку на энергогенерирующую установку (генератор электростанции), чем продлевает срок ее службы.

Трехфазная синусоидальная система электроснабжения

При помощи трехфазных токов, пропускаемых через обмотки электрических потребителей — различных установок и двигателей, легко получить вращающееся вихревое магнитное поле, необходимое для работы двигателей и других электроприборов.

Синхронные и асинхронные трехфазные двигатели переменного тока имеют простое устройство, и гораздо экономичнее однофазных и двухфазных, а тем более — классических двигателей постоянного тока.

Что касается питания систем освещения, то присоединив три группы ламп - к различным фазам сети каждую, - можно значительно снизить мерцание и избавиться от вредного стробоскопического эффекта.

Перечисленные преимущества как раз и обуславливают широкое применение именно трехфазной системы электроснабжения в большой мировой электроэнергетике сегодняшнего дня.

Звезда

Соединение по схеме звезда

При наличии нейтрали, трехфазная сеть получается четырехпроводной, а если нейтраль отсутствует — трехпроводной. В условиях, когда сопротивления в трех фазах потребителя равны друг другу, то есть при условии что Za = Zb = Zc, нагрузка будет симметричной. Это идеальный режим работы для трехфазной сети.

При наличии нейтрали, фазными называются напряжения между любым фазным проводом и нейтральным проводом. А напряжения между любыми двумя фазными проводами именуются линейными напряжениями.

Линейные напряжения и токи

Видно, что линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов (пи/6 радиан):

Линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов

Мощность при соединении звезда

Хотя при абсолютно симметричной нагрузке питание потребителей возможно по трем проводам линейными напряжениями даже в отсутствие нейтрали, тем не менее если нагрузки на фазах не строго симметричны, нейтраль всегда обязательна.

А ведь нагрузки номинально рассчитаны строго на фазные напряжения, значит что-то может выйти из строя. Особенно перекос фаз опасен для бытовой техники и электроники, поскольку из-за этого может не просто перегореть какой-нибудь прибор, но и случиться пожар.

Проблема гармоник кратных третьей

Наиболее часто бытовая и другая техника оснащается сегодня импульсными блоками питания, причем без встроенной схемы коррекции коэффициента мощности. Это значит, что моменты потребления ограничиваются тонкими импульсными пиками тока вблизи вершины сетевой синусоиды, когда конденсатор выходного фильтра, установленный после выпрямителя, резко и быстро подзаряжается.

Когда таких потребителей к сети подключено много, возникает высокий ток третьей гармоники основной частоты питающего напряжения. Данные токи гармоник (кратных третьей) суммируются в нейтральном проводнике и способны перегрузить его, несмотря на то, что на каждой из фаз потребляемая мощность не превышает допустимой.

Проблема особенно актуальна в офисных зданиях, где размещено на небольшом пространстве много разной оргтехники. Если бы во всех встроенных импульсных блоках питания имелись схемы коррекции коэффициента мощности, это бы решило проблему.

Треугольник

Соединение треугольником

Линейные и фазные напряжения и токи

Мощность в трехфазной цепи при соединении треугольником, в условиях симметричной нагрузки, определяется следующим образом:

Мощность в трехфазной цепи при соединении треугольником

В нижеприведенной таблице отражены стандарты фазных и линейных напряжений для разных стран:

Стандарты фазных и линейных напряжений для разных стран

Проводники разных фаз трехфазной сети, а также нейтральные и защитные проводники традиционно маркируют собственными цветами.

Так поступают для того, чтобы предотвратить поражение электрическим током и обеспечить удобство обслуживания сетей, облегчить их монтаж и ремонт, а также сделать стандартизированной маркировку фазировки оборудования: порядок чередования фаз порой очень важен, например для задания направления вращения асинхронного двигателя, режима работы управляемого трехфазного выпрямителя и т. д. В разных странах цветовая маркировка различна, в некоторых совпадает.

Читайте также: