Какие существуют классификации микропроцессоров кратко

Обновлено: 07.07.2024

Цель лекции: знакомство с архитектурой микропроцессоров, отличительными чертами микропроцессоров.

Основные понятия и характеристики архитектуры микропроцессоров .

Микропроцессор (МП) - это программно управляемое устройство, которое предназначено для обработки цифровой информации и управления процессом этой обработки и выполнено в виде одной или нескольких больших интегральных схем (БИС).

Понятие большая интегральная схема в настоящее время четко не определено. Ранее считалось, что к этому классу следует относить микросхемы, содержащие более 1000 элементов на кристалле. И действительно, в эти параметры укладывались первые микропроцессоры. Например, четырехразрядная процессорная секция микропроцессорного комплекта К584, выпускавшегося в конце 1970-х годов, содержала около 1500 элементов. Сейчас, когда микропроцессоры содержат десятки миллионов транзисторов и их количество непрерывно увеличивается, под БИС будем понимать функционально сложную интегральную схему.

Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, основу которой составляет микропроцессор.

Микропроцессор характеризуется большим количеством параметров и свойств, так как он является, с одной стороны, функционально сложным вычислительным устройством, а с другой - электронным прибором, изделием электронной промышленности. Как средство вычислительной техники он характеризуется прежде всего своей архитектурой, то есть совокупностью программно-аппаратных свойств, предоставляемых пользователю. Сюда относятся система команд, типы и форматы обрабатываемых данных, режимы адресации, количество и распределение регистров, принципы взаимодействия с оперативной памятью и внешними устройствами (характеристики системы прерываний, прямой доступ к памяти и т. д.). По своей архитектуре микропроцессоры разделяются на несколько типов, изображенных на рисунке 1.1.

Универсальные микропроцессоры предназначены для решения задач цифровой обработки различного типа информации от инженерных расчетов до работы с базами данных, не связанных жесткими ограничениями на время выполнения задания. Этот класс микропроцессоров наиболее широко известен. К нему относятся такие известные микропроцессоры, как МП ряда Pentium фирмы Intel и МП семейства Athlon фирмы AMD.

Рисунок 1.1 – Классификация микропроцессоров

Основные характеристики микропроцессоров:

- разрядность: определяется максимальной разрядностью целочисленных данных, обрабатываемых за один такт, то есть фактически разрядностью арифметико-логического устройства (АЛУ).

Разрядность МП обозначается m/n/k/ и включает:

m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;

n - разрядность шины данных, определяет скорость передачи информации;

k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20;

- тактовая частота, определяющая максимальное время переключения элементов в ЭВМ;

- виды и форматы обрабатываемых данных;

- система команд, режимы адресации операндов;

- емкость прямоадресуемой оперативной памяти: определяется разрядностью шины адреса;

- частота внешней синхронизации. Для частоты синхронизации обычно указывается ее максимально возможное значение, при котором гарантируется работоспособность схемы. Для функционально сложных схем, к которым относятся и микропроцессоры, иногда указывают также минимально возможную частоту синхронизации. Уменьшение частоты ниже этого предела может привести к отказу схемы. В то же время в тех применениях МП, где не требуется высокое быстродействие, снижение частоты синхронизации - одно из направлений энергосбережения. В ряде современных микропроцессоров при уменьшении частоты он переходит в , при котором сохраняет свое состояние. Частота синхронизации в рамках одной архитектуры позволяет сравнить производительность микропроцессоров. Но разные архитектурные решения влияют на производительность гораздо больше, чем частота;

- производительность: определяется с помощью специальных тестов, при этом совокупность тестов подбирается таким образом, чтобы они по возможности покрывали различные характеристики микроархитектуры процессоров, влияющие на производительность.

Назначение микропроцессоров

Микропроцессор выполняет следующие функции:

- выборку команд программы из основной памяти;

- выполнение арифметических, логических и других операций, закодированных в командах;

- управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;

- отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;

- управление и координацию работы основных узлов МП.

Обобщенная структура микропроцессора изображена на рисунке 1.2.

Рисунок 1.2 – Обобщенная структура микропроцессора

Устройство управления (УУ) предназначено для реализации выборки команд, их дешифрации, и на основе этого – для управления обменом и обработкой информации путем генерации последовательности управляющих сигналов.

Операционное устройство (ОУ) служит для обработки цифровой информации (арифметические и логические операции, сдвиги, анализ чисел и т.п.).

Основным элементом для хранения информации внутри процессора являются регистры, которые выполняют функцию сверхоперативного ОЗУ с минимальным временем записи и считывания.

Регистр команд РгК (англ. IR - insructionregister) используется для фиксации кода команды после считывания ее из памяти. Как правило, в этом регистре фиксируется лишь код операции (КОП) - часть кода команды, определяющая выполняемое действие и способ адресации операндов (см. ниже).

Регистры операндов служат для хранения данных в процессе их обработки, позволяют избегать постоянных обращений к памяти. В современных процессорах количество регистров операндов может достигать 10-15 штук. По сути, они образуют внутреннюю память процессора.

В однокристальных микроконтроллерах количество регистров операндов доведено до нескольких десятков, и применительно к ним вводится понятие регистрового файла. Некоторые из регистров операндов могут использоваться также для хранения или формирования адресов других операндов, т.е. на их основе реализуется механизм косвенной адресации данных в памяти (см. ниже). Данные, размещенные в регистрах операндов, поступают на обработку в арифметико-логическое устройство (АЛУ). В некоторых типах процессоров один из регистров операндов всегда является и приемником результата операции в АЛУ – такой регистр принято называть регистром-аккумулятором. Процессоры, в которых принята схема выполнения операций в виде:

(операция) Þ , называются процессорами с аккумуляторно-ориентированной структурой

Счетчик команд (англ. PC - programmingcounter) – регистр, в котором при выборке или выполнении текущей команды формируется адрес следующей команды. Модификация содержимого регистра PC – это средство управления последовательностью выборки команд из памяти и, следовательно, управления ходом вычислительного процесса (т.е. реализация ветвлений в алгоритмах).

Указатель стека (англ. SP - stackpointer ) – регистр, в котором при выполнении программы хранится адрес границы той области памяти, для которой программист использует принцип последовательного доступа к данным (так называемый протокол работы со стеком).

Регистр адреса – регистр, в котором формируется адрес любого устройства, внешнего по отношению к процессору (ячейки памяти или порта ввода-вывода), перед обращением к этому устройству. Данный регистр необходим, поскольку источником адресной информации могут являться различные регистры процессора. При этом регистр адреса играет роль накапливающего буфера, из которого адресная информация выдается на внешнюю шину адреса.

Регистр признаков (англ. F - flags) – это элемент внутренней памяти, в котором в виде отдельных битов фиксируются признаки, характеризующие результат операции, выполненной в АЛУ (нулевой результат, переполнение разрядной сетки и т.п.).

Арифметико-логическое устройство (АЛУ) – функциональный блок процессора, предназначенный для реализации действий по обработке данных.

Результат операции, выполненной в АЛУ, заносится в один из регистров или пересылается в память (в зависимости от команды). В регистре признаков автоматически формируются признаки, характеризующие этот результат.

Функционирование процессора всегда синхронизируется от внешнего генератора тактовых импульсов (ГТИ). Именно под влиянием импульсов от ГТИ устройство управления процессора автоматически реализует действия, связанные с выборкой команд из памяти и их дешифрацией.

Выполнение команды всегда занимает некоторое количество периодов тактовой частоты и состоит из последовательности элементарных действий процессора (выборка команды, чтение операнда, вычисление в АЛУ). Эти элементарные действия называют машинными циклами (МЦ). В течение каждого МЦ происходит генерация строго определенной комбинации управляющих сигналов для соответствующих узлов процессора и всей вычислительной системы.

Контрольные вопросы:

1. Какие основные характеристики микропроцессора?

2. Какие основные узлы микропроцессора?

3. Назовите назначение составных частей микропроцессора.

4. Назовите функции, выполняемые микропроцессором.

Лекция 2 Классификация микропроцессоров

Цель лекции: знакомство с отличительными чертами микропроцессоров различных типов архитектуры, классификацией микропроцессоров.

Функциональная классификация микропроцессоров изображена на рисунке 2.1.

Микропроцессоры с аппаратным принципом управления характеризуются фиксированной разрядностью шин адреса и данных и неизменяемой системой команд. Последняя характеристика подразумевает, что набор возможных элементарных действий процессора образует конечное фиксированное множество, причем каждому действию соответствует конкретный управляющий код – код команды. Указанное свойство определяется тем, что в состав процессора входит блок дешифрации команд, функционирующий по жесткой аппаратной логике.

Микропроцессорный комплект (МПК) - набор СБИС и БИС с общими конструктивно-технологическими принципами и электрическими характеристиками (уровни сигналов, быстродействие), предназначенных для построения функционально полнофункциональной микропроцессорной системы (МПС) для задач вычислений или управления.

В состав МПК входят: центральный процессор (ЦП), или микропроцессор, арифметический сопроцессор - средство эффективной реализации вычислительных действий под управлением ЦП, а также контроллеры периферийных функций с программной настройкой режимов: порты параллельной и последовательной связи, таймеры - средства реализации временных интервалов, контроллеры прерываний и прямого доступа к памяти. Микросхемы ПЗУ и ОЗУ не входят в состав МПК и образуют самостоятельные функциональные группы.

Универсальные микропроцессоры ориентированы на использование в различных вычислительных, информационных и управляющих системах, в которых требуется обработка больших объемов информации (например, для цифровой обработки изображений, управления базами данных, визуализации данных оператору или экипажу), но нет специальных требований к архитектуре вычислителя, большому количеству средств УСО (устройства связи с объектом), габаритным размерам и энергопотреблению. Схема универсального микропроцессора приведена на рисунке 2.2. Универсальность микропроцессора подразумевает как широкую сферу использования, так и типовую структуру вычислительной системы.

Универсальные микропроцессоры принято разделять на CISC - и RISC- микропроцессоры.

CISC-микропроцессоры (Completed Instruction Set Computing - вычисления с полной системой команд) имеют в своем составе весь классический набор команд с широко развитыми режимами адресации операндов. Именно к этому классу относятся, например, микро процессоры типа Pentium. В то же время RISC-микропроцессоры (reduced instruction set computing - вычисления с сокращенной системой команд) используют, как следует из определения, уменьшенное количество команд и режимов адресации. Здесь прежде всего следует выделить такие микропроцессоры, как Alpha 21x64, Power PC. Количество команд в системе команд - наиболее очевидное, но на сегодняшний день не самое главное различие в этих направлениях развития универсальных микропроцессоров. Другие различия мы будем рассматривать по мере изучения особенностей их архитектуры.

Однокристальный микроконтроллер (МК)представляет собой микропроцессорную систему, реализованную на одном кристалле СБИС. Типичная архитектура МК включает в себя собственно процессор, генератор тактовых импульсов (ГТИ), блоки памяти (ОЗУ и ПЗУ), порты ввода-вывода, таймеры, контроллер прерываний. Функциональные возможности этих блоков ниже, чем у соответствующих специализированных БИС из МПК. Основными достоинствами МК являются конструктивное и схемотехническое единство всех блоков, общий электрический интерфейс, удобство программной настройки режимов работы всех подсистем. Благодаря этому микроконтроллеры являются популярным средством для построения встраиваемых цифровых управляющих систем.

Однокристальные микроконтроллеры (ОМК или просто МК) предназначены для использования в системах промышленной и бытовой автоматики. Они представляют собой большие интегральные схемы, которые включают в себя все устройства, необходимые для реализации цифровой системы управления минимальной конфигурации: процессор (как правило, целочисленный), ЗУ команд, ЗУ данных, генератор тактовых сигналов, программируемые устройства для связи с внешней средой (контроллер прерывания, таймеры- счетчики, разнообразные порты ввода/вывода), иногда аналого- цифровые и цифро-аналоговые преобразователи и т. д. В некоторых источниках этот класс микропроцессоров называется однокристальными микро-ЭВМ (ОМЭВМ).

В настоящее время две трети всех производимых микропроцессорных БИС в мире составляют МП этого класса, причем почти две трети из них имеет разрядность, не превышающую 16 бит.

Отличительные особенности архитектуры однокристальных микроконтроллеров:

- физическое и логическое разделение памяти команд и памяти данных (гарвардская архитектура), в то время как в классической неймановской архитектуре программы и данные находятся в общем запоминающем устройстве и имеют одинаковый механизм доступа;

- упрощенная и ориентированная на задачи управления система команд: в МК, как правило, отсутствуют средства обработки данных с плавающей точкой, но в то же время в систему команд входят команды, ориентированные на эффективную работу с датчиками и исполнительными устройствами, например, команды обработки битовой информации;

- простейшие режимы адресации операндов.

МК для задач логического управления, схема которого изображена на рисунке 2.3, - логические процессоры- имеют специальные аппаратные расширения (память с битовой адресацией, порты с индивидуальной настройкой каждой линии) и расширенный набор команд логической обработки данных. В современных разработках широкое применение нашли МК серии К1816 (аналог Intel MCS-51), а также AVR - и PIC-контроллеры. Существуют также многочисленные расширения стандартного MCS-51 – с повышенным быстродействием, увеличенными объемами памяти и набором функций.

Аналоговые процессоры для обработки сигналов –включают в себя, кроме типовых блоков МК, включают в себя многоканальные АЦП и ЦАП, блоки формирования управляющих импульсов (например, ШИМ-импульсов). Такой процессор представляет собой интегрированную систему обработки аналоговой информации в цифровом виде.

Еще одна разновидность МК – конвейерные сигнальные процессоры, содержащие конвейеры для реализации алгоритмов цифровой фильтрации данных и обработки изображений. Такие алгоритмы состоят из последовательности операций умножения и суммирования. Конвейер представляет собой набор однотипных блоков для выполнения операций умножения-суммирования, включенных последовательно друг за другом. Таким образом, результат выполнения операции в одном блоке автоматически является входными данными для следующего блока. Применение конвейерной обработки позволяет выдавать на каждом такте работы системы очередной результат вычислений. Пример простейшей структуры сигнального процессора приведен на рисунке 2.4.

Особенность микропроцессора данного типа состоит в том, что в его состав входит блок аппаратного умножения (MUL), который совместно с арифметико-логическим устройством (ALU) и сдвигающими регистрами (SHIFTER) образует блок для эффективной реализации вычислений по алгоритмам цифровой фильтрации данных.

МП с микропрограммным принципом управления конструктивно выполняют в виде секций БИС малой разрядности, имеющих средства для наращивания разрядности обрабатываемых данных. Для подобных МП в принципе отсутствует понятие системы команд. Действия процессора на тот или иной управляющий код (считанный из памяти код команды) определяются программистом путем настройки специального блока или БИС - блока микропрограммного управления. Таким образом, разработчики системы могут сформировать систему команд, ориентированную на эффективное решение определенного круга задач. Существенным недостатком подобных систем является громоздкость аппаратных модулей на их основе, а также необходимость написания программного обеспечения буквально в машинных кодах, что затрудняет разработку.

Контрольные вопросы:

1. Какие типы микропроцессоров ориентированы на использование в различных вычислительных, информационных и управляющих системах, в которых требуется обработка больших объемов информации ?

2. Какие из типов микропроцессоров характеризуются фиксированной разрядностью шин адреса и данных и неизменяемой системой команд?

3. Какой функциональный тип микропроцессора предназначен для построения полнофункциональной микропроцессорной системы?

4. Какой микропроцессор имеет специальные аппаратные расширения (память с битовой адресацией, порты с индивидуальной настройкой каждой линии) и расширенный набор команд логической обработки данных?

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.


Рис.13 Классификация микропроцессоров

1. По числу БИС:

- Однокристальные. Весь микропроцессор размещен на одном кристалле в одной микросхеме (chip).

- Многокристальные (multi-chip). В этом случае различные блоки МП размещены на разных кристаллах. Тем самым можно повысить выход годных изделий, повышается тестируемость и ремонтопригодность МП.

2. По назначению:

- Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

- Среди, специализированных микропроцессоров, можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных.

Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

3. По виду обрабатываемых сигналов:

- Цифровые – т.е. работающие с числовыми данными.

- Аналоговые – предназначены для обработки аналоговых сигналов и имеющие в качестве входных и выходных данных аналоговые сигналы. По сути, все современные аналоговые МП являются цифровыми сигнальными МП, имеющими на входе встроенные аналого-цифровые преобразователи (АЦП), а на выходе – встроенные цифро-аналоговые преобразователи (ЦАП).

4. По количеству выполняемых программ:

- Однопрограммные (однозадачные) – предназначены для выполнения только одной задачи. Таковыми являются все микроконтроллеры и часть специализированных МП. Их можно разделить еще на две группы:

- Не загружаемые МП, единственная программа которых записана в постоянном запоминающем устройстве (ПЗУ) МП. Так делается, например в микроконтроллерах.

- Загружаемые МП, у которых основная программа может загружаться из внешних устройств через интерфейсы . Таким внешним устройством может быть и дисковод, и другой МП , и специальное ПЗУ .

- Много- или мультипрограммные микропроцессоры одновременно выполняют несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации. Здесь тоже есть две разновидности МП:

По типу параллелизма операндов:

- Скалярные МП, где операнды инструкций являются скалярами, т.е. один операнд – это одно число.

- Векторные МП, где операндом является вектор, т.е. набор чисел. Это, как правило, математические МП предназначенные для векторных или матричных операций.

- МП с набором инструкций типа SIMD (Single Instruction Multiple Data: одна инструкция – много данных). Конечно, можно было бы считать их векторными МП, но в инструкциях типа SIMD операнды представляют собой наборы чисел жестко фиксированного размера, которые размещаются в специальных регистрах, а в векторных МП, размер векторных операндов может быть различным.

Примечание. В настоящее время, практически все фирмы-изготовители универсальных МП, имеют в своих изделиях SIMD технологии, это: MMX (Intel), AltiVec (PowerPC), MDMX (MIPS), Max-2 (HP), VIS (SPARC), MVI (Alpha) и др. Причем, часто такие технологии называют SWAR (SIMD Within A Register – SIMD внутри регистра).




Их присутствие обусловлено реализацией таких приложений, как:

- Упаковка/распаковка звука, видео и изображений

- Протоколы передачи данных

- Построение реалистических изображений в реальном времени

- Распознавание речи и образов

По типу параллелизма работы МП:

- Суперскалярные МП – рассматривают последовательный код программы, ищут инструкции, которые можно выполнить параллельно и выполняют их в параллельно работающих функциональных устройствах.

- Мультискаляные МП – получают от компилятора программу уже разбитую на множество связанных друг с другом задач, которые МП исполняет на параллельных процессорных устройствах, соблюдая зависимости между задачами.

- VLIW МП – являются неким промежуточным звеном между суперскаляными и мультискалярными МП (но ближе к первым). Командное слово типа VLIW формируется компилятором и содержит не одну, а несколько инструкций, которые могут (и должны) выполняться одновременно.

5. По характеру временной организации работы:

- Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

- Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

6. По объему набора инструкций:

- CISC – Complete Instruction Set Computer – процессоры с полным набором инструкций . С одной стороны широкие возможности программирования, но с другой стороны, система команд не простая, что усложняет обработку инструкций и препятствует увеличению частоты МП.

- RISC - Reduced Instruction Set Computer – процессоры с сокращенным набором инструкций . Простая система коротких инструкций позволяет быстро декодировать и выполнять их за минимальное время (в пределе за 1 такт).

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.


Рис.13 Классификация микропроцессоров

1. По числу БИС:

- Однокристальные. Весь микропроцессор размещен на одном кристалле в одной микросхеме (chip).

- Многокристальные (multi-chip). В этом случае различные блоки МП размещены на разных кристаллах. Тем самым можно повысить выход годных изделий, повышается тестируемость и ремонтопригодность МП.

2. По назначению:

- Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

- Среди, специализированных микропроцессоров, можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных.

Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

3. По виду обрабатываемых сигналов:

- Цифровые – т.е. работающие с числовыми данными.

- Аналоговые – предназначены для обработки аналоговых сигналов и имеющие в качестве входных и выходных данных аналоговые сигналы. По сути, все современные аналоговые МП являются цифровыми сигнальными МП, имеющими на входе встроенные аналого-цифровые преобразователи (АЦП), а на выходе – встроенные цифро-аналоговые преобразователи (ЦАП).

4. По количеству выполняемых программ:

- Однопрограммные (однозадачные) – предназначены для выполнения только одной задачи. Таковыми являются все микроконтроллеры и часть специализированных МП. Их можно разделить еще на две группы:

- Не загружаемые МП, единственная программа которых записана в постоянном запоминающем устройстве (ПЗУ) МП. Так делается, например в микроконтроллерах.

- Загружаемые МП, у которых основная программа может загружаться из внешних устройств через интерфейсы . Таким внешним устройством может быть и дисковод, и другой МП , и специальное ПЗУ .

- Много- или мультипрограммные микропроцессоры одновременно выполняют несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации. Здесь тоже есть две разновидности МП:

По типу параллелизма операндов:

- Скалярные МП, где операнды инструкций являются скалярами, т.е. один операнд – это одно число.

- Векторные МП, где операндом является вектор, т.е. набор чисел. Это, как правило, математические МП предназначенные для векторных или матричных операций.

- МП с набором инструкций типа SIMD (Single Instruction Multiple Data: одна инструкция – много данных). Конечно, можно было бы считать их векторными МП, но в инструкциях типа SIMD операнды представляют собой наборы чисел жестко фиксированного размера, которые размещаются в специальных регистрах, а в векторных МП, размер векторных операндов может быть различным.

Примечание. В настоящее время, практически все фирмы-изготовители универсальных МП, имеют в своих изделиях SIMD технологии, это: MMX (Intel), AltiVec (PowerPC), MDMX (MIPS), Max-2 (HP), VIS (SPARC), MVI (Alpha) и др. Причем, часто такие технологии называют SWAR (SIMD Within A Register – SIMD внутри регистра).

Их присутствие обусловлено реализацией таких приложений, как:

- Упаковка/распаковка звука, видео и изображений

- Протоколы передачи данных

- Построение реалистических изображений в реальном времени

- Распознавание речи и образов

По типу параллелизма работы МП:

- Суперскалярные МП – рассматривают последовательный код программы, ищут инструкции, которые можно выполнить параллельно и выполняют их в параллельно работающих функциональных устройствах.

- Мультискаляные МП – получают от компилятора программу уже разбитую на множество связанных друг с другом задач, которые МП исполняет на параллельных процессорных устройствах, соблюдая зависимости между задачами.

- VLIW МП – являются неким промежуточным звеном между суперскаляными и мультискалярными МП (но ближе к первым). Командное слово типа VLIW формируется компилятором и содержит не одну, а несколько инструкций, которые могут (и должны) выполняться одновременно.

5. По характеру временной организации работы:

- Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

- Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

6. По объему набора инструкций:

- CISC – Complete Instruction Set Computer – процессоры с полным набором инструкций . С одной стороны широкие возможности программирования, но с другой стороны, система команд не простая, что усложняет обработку инструкций и препятствует увеличению частоты МП.

- RISC - Reduced Instruction Set Computer – процессоры с сокращенным набором инструкций . Простая система коротких инструкций позволяет быстро декодировать и выполнять их за минимальное время (в пределе за 1 такт).

Классификация микропроцессоров (Лекция)

ПЛАН ЛЕКЦИИ

1. Классификация микропроцессоров по числу больших интегральных схем

2. Классификация микропроцессоров по назначению

3. Классификация микропроцессоров по виду обрабатываемых сигналов

4. Классификация микропроцессоров по характеру временной организации

5. Классификация микропроцессоров по организации структуры

6. Классификация микропроцессоров по количеству выполняемых программ

Существует множество различных классификаций микропроцессоров.

1. Классификация микропроцессоров по числу больших интегральных схем

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Процессоры даже самых простых ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество разветвленных связей. Изменять структуру процессора необходимо так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную архитектуру, т. е. в них к единой внутренней информационной магистрали подключаются все основные функциональные блоки (арифметико-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и др.).

Для обоснования классификации микропроцессоров по числу БИС надо распределить все аппаратные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний; сложность интерфейсной части разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов и др.). Интерфейс процессора содержит несколько десятков информационных шин данных (ШД), адресов (ША) и управления (ШУ).

Однокристальные микропроцессоры получаются при реализации всех аппаратных сре дств пр оцессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

На показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного (ОП), БИС управляющего (УП) и БИС интерфейсного (ИП) процессоров.


Рис. Функциональная структура процессора (а) и ее разбиение для реализации процессора в виде комплекта секционных БИС (б)

Операционный процессор служит для обработки данных, управляющий процессор выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнения БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор позволяет подключить память и периферийные средства к микропроцессору; он, по существу, является сложным контроллером для устрой ств вв ода/вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти.

Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора автономно и поэтому может быть обеспечен режим одновременной работы всех БИС МП, т.е. конвейерный поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 3,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства "стыковки".

Для создания высокопроизводительных многоразрядных микропроцессоров требуется столь много аппаратных средств, не реализуемых в доступных БИС, что может возникнуть необходимость еще и в функциональном разбиении структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП.

Таким образом, микропроцессорная секция это БИС, предназначенная для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность "наращивания" разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при "параллельном" включении большего числа БИС.

Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов. Использование многокристальных микропроцессорных высокоскоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.

2. Классификация микропроцессоров по назначению

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

Разработанные однокристальные конвольверы используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные.

3. Классификация микропроцессоров по виду обрабатываемых сигналов

По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной "настройки" цифровой части микропроцессора на различные алгоритмы обработки сигналов.

Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций.

Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. При этом согласно теореме Котельникова частота квантования аналогового сигнала должна вдвое превышать верхнюю частоту сигнала.

Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре.

Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратных блоков прерывания программ и программных переходов.

4. Классификация микропроцессоров по характеру временной организации

По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устрой ств вв одят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

5. Классификация микропроцессоров по организации структуры

По организации структуры микропроцессорных систем различают микроЭВМ одн о- и многомагистральные .

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.

В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность.

6. Классификация микропроцессоров по количеству выполняемых программ

По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры.

В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.

В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Процессоры даже самых простых ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество разветвленных связей. Изменять структуру процессора необходимо так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную архитектуру, т. е. в них к единой внутренней информационной магистрали подключаются все основные функциональные блоки (арифметико-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и др.).

Для обоснования классификации микропроцессоров по числу БИС надо распределить все аппаратные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний; сложность интерфейсной части разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов и др.). Интерфейс процессора содержит несколько десятков информационных шин данных (ШД), адресов (ША) и управления (ШУ).

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

На рис. 1.1,а показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного (ОП), БИС управляющего (УП) и БИС интерфейсного (ИП) процессоров.

Рис. 1.1 Функциональная структура процессора (а) и ее разбиение для реализации процессора в виде комплекта секционных БИС.

Операционный процессор служит для обработки данных, управляющий процессор выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнения БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор позволяет подключить память и периферийные средства к микропроцессору; он, по существу, является сложным контроллером для устройств ввода/вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти.

Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора автономно и поэтому может быть обеспечен режим одновременной работы всех БИС МП, т.е. конвейерный поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 1,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства "стыковки".

Для создания высокопроизводительных многоразрядных микропроцессоров требуется столь много аппаратных средств, не реализуемых в доступных БИС, что может возникнуть необходимость еще и в функциональном разбиении структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП.

Таким образом, микропроцессорная секция это БИС, предназначенная для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность "наращивания" разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при "параллельном" включении большего числа БИС.

Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов. Использование многокристальных микропроцессорных высокоскоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

Разработанные однокристальные конвольверы используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные.

По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной "настройки" цифровой части микропроцессора на различные алгоритмы обработки сигналов.

Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций.

Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. При этом согласно теореме Котельникова частота квантования аналогового сигнала должна вдвое превышать верхнюю частоту сигнала.

Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре.

Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратных блоков прерывания программ и программных переходов.

По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

По организации структуры микропроцессорных систем различают микроЭВМ одно- и многомагистральные.

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.

В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность.

По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры.

В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.

В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.

Читайте также: