Какие геометрические величины можно вычислить с помощью пределов последовательности кратко

Обновлено: 03.07.2024

То же самое соотношение можно записать следующим образом:

ЗАМЕЧАНИЕ . Если для последовательности

найдется такое число a , что ana при , то эта последовательность ограничена.

ОПРЕДЕЛЕНИЕ 2 . Говорят, что последовательность

стремится к бесконечности, если для любого положительного числа C найдется такое натуральное число N , что при всех n > N выполняется неравенство

Условие того, что числовая последовательность

стремится к бесконечности, записывают с помощью обозначения

или с помощью обозначения

ПРИМЕР 1 . Для любого числа k > 0 справедливо равенство

ПРИМЕР 2 . Для любого числа k > 0 справедливо равенство

ПРИМЕР 3 . Для любого числа a такого, что | a | справедливо равенство

ПРИМЕР 4 . Для любого числа a такого, что | a | > 1, справедливо равенство

ПРИМЕР 5 . Последовательность

предела не имеет.

Свойства пределов числовых последовательностей

Рассмотрим две последовательности

Если при существуют такие числа a и b , что

то при существуют также и пределы суммы, разности и произведения этих последовательностей, причем

Если, кроме того, выполнено условие

то при существует предел дроби

Для любой непрерывной функции f (x) справедливо равенство

Вывод формулы для суммы членов бесконечно убывающей геометрической прогрессии

знаменатель которой равен q .

Для суммы первых n членов геометрической прогрессии

Если для суммы всех членов бесконечно убывающей геометрической прогрессии ввести обозначение

то будет справедлива формула

В случае бесконечно убывающей геометрической прогрессии знаменатель q удовлетворяет неравенству

| q | ОПРЕДЕЛЕНИЕ 3 . Если при нахождении предела дроби выясняется, что и числитель дроби, и знаменатель дроби стремятся к , то вычисление такого предела называют раскрытием неопределенности типа .

ПРИМЕР 6 . Найти предел последовательности

РЕШЕНИЕ . Сначала преобразуем выражение, стоящее под знаком предела, воспользовавшись свойствами степеней:

ПРИМЕР 7 . Найти предел последовательности

В следующих двух примерах показано, как можно раскрыть неопределенности типа.

ПРИМЕР 8 . Найти предел последовательности

РЕШЕНИЕ . Сначала преобразуем выражение, стоящее под знаком предела, приводя дроби к общему знаменателю:

ПРИМЕР 9 . Найти предел последовательности

Из-за большого размера формул подробные вычисления видны только на устройствах с разрешением экрана по ширине не менее 768 пикселей (например, на стационарных компьютерах, ноутбуках и некоторых планшетах). На Вашем мобильном устройстве отображается только результат описанных операций.

ПРИМЕР 10 . Найти предел последовательности

РЕШЕНИЕ . Замечая, что для всех k = 2, 3, 4, … выполнено равенство

Число e. Второй замечательный предел

Таким образом, справедливо равенство

причем расчеты показывают, что число

Число e играет исключительно важную роль в естествознании и, в частности, служит основанием натуральных логарифмов и основанием показательной функции

что позволяет вычислять число e с любой точностью. Конечно же, доказательство формулы (3) выходит за рамки школьного курса математики.

Чему равна сумма бесконечной убывающей геометрической прогрессии?
Какие геометрические величины можно вычислить с помощью пределов последовательности?


11.25 КМ и 2 целые 15/60 часа
11,25 Км / 2,25 часа
(умножим на 100 числитель и знаменатель для удобства)
= 1125 /225 = 5 км/ч

1. x будет 164 2. 2т 9кг равно 20ц 9кг 5600м равно 56 км 3ч 15мин меньше 315 мин

Яблонь - 12
Грушевых деревьев - ? в 3 р > яблонь.

Решение :
12 × 3 = 36 ( грушевых деревьев ).

Ответ : В саду 36 грушевых деревьев.

Одна сторона прямоугольника больше другой на 2см, то есть периметр равен 4 части неизвестных и плюс 4. получаем 24-4=20 20/4=5 одна сторона 5см, другая 5+2=7 см

На научную конференцию приехали ученые из нескольких университетов. На церемонии открытия конференции оказалось, что у каждого у

В саду дети собирали яблоки персики и груши и урюк массы всех из собранных фруктов равна 38 кг масса собранных яблок и груш равн

Периметр треугольника равен 63 см.Одна сторона равна 18 см ,что на 7 см меньше второй стороны.Найдите третью сторону треугольник

1)Разлошить выражение x^2-12x на множители 2)реши уравнения 2-x/x+3 3)пощитайте √7+3√7= 4)сравните выражение 2√7 и 3√5 5)первый

Площадь первого поля 56 га, второго-60 га. На первом поле высеяли семян ржи на 432 кг меньше, чем на втором. Сколько килограммов

На некоторую сумму денег можно купить 20 тетрадей. Сколько можно купить на эту сумму денег ручек, которые в 5 раз дороже тетраде

Вопрос по математике:

Чему равна сумма бесконечной убывающей геометрической прогрессии?
Какие геометрические величины можно вычислить с помощью пределов последовательности?

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!

  • 08.09.2018 03:03
  • Математика
  • remove_red_eye 7954
  • thumb_up 24
Ответы и объяснения 1

S = b1/(1-q) , где S - сумма, в1 - первый член, q - знаменатель прогрессии

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Предел последовательности

Приводятся формулировки основных теорем и свойств числовых последовательностей, имеющих предел. Содержится определение последовательности и ее предела. Рассмотрены арифметические действия с последовательностями, свойства, связанные с неравенствами, критерии сходимости, свойства бесконечно малых и бесконечно больших последовательностей.

Определение последовательности

Числовая последовательность < xn > – это закон (правило), согласно которому, каждому натуральному числу ставится в соответствие число .
Число называют n-м членом или элементом последовательности.

Более подробно см. страницу Определение числовой последовательности >>>.
Далее мы будем считать, что элементами последовательности являются действительные числа.

Последовательность называется ограниченной, если существует такое число M , что для всех действительных n .
Верхней гранью последовательности называют наименьшее из чисел, ограничивающее последовательность сверху. То есть это такое число s , для которого для всех n и для любого , найдется такой элемент последовательности , превосходящий s′ : .
Нижней гранью последовательности называют наибольшее из чисел, ограничивающее последовательность снизу. То есть это такое число i , для которого для всех n и для любого , найдется такой элемент последовательности , меньший i′ : .

Верхнюю грань также называют точной верхней границей, а нижнюю грань – точной нижней границей. Понятия верхней и нижней граней справедливы не только к последовательностям, но и к любым множествам действительных чисел.

Определение предела последовательности

Число a называется пределом последовательности , если для любого положительного числа существует такое натуральное число N , зависящее от , что для всех натуральных выполняется неравенство
.
Предел последовательности обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела можно записать следующим образом:
.

ε - окрестность точки a – это открытый интервал ( a – ε, a + ε ) . Сходящаяся последовательность – это последовательность, у которой существует предел .
Также говорят, что последовательность сходится к a . Расходящаяся последовательность – это последовательность, не имеющая предела.

Точка a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n , что
.
.
Это означает, что можно выбрать такую ε - окрестностью точки a , за пределами которой будет находиться бесконечное число элементов последовательности.

Свойства конечных пределов последовательностей

Основные свойства

Точка a является пределом последовательности тогда и только тогда, когда за пределами любой окрестности этой точки находится конечное число элементов последовательности или пустое множество.

Если число a не является пределом последовательности , то существует такая окрестность точки a , за пределами которой находится бесконечное число элементов последовательности.

Теорема единственности предела числовой последовательности. Если последовательность имеет предел, то он единственный.

Если последовательность имеет конечный предел, то она ограничена.

Если каждый элемент последовательности равен одному и тому же числу C : , то эта последовательность имеет предел, равный числу C .

Если у последовательности добавить, отбросить или изменить первые m элементов, то это не повлияет на ее сходимость.

Арифметические действия с пределами

Пусть существуют конечные пределы и последовательностей и . И пусть C – постоянная, то есть заданное число. Тогда
;
;
;
, если .
В случае частного предполагается, что для всех n .

Свойства, связанные с неравенствами

Если и элементы последовательности, начиная с некоторого номера, удовлетворяют неравенству , то и предел a этой последовательности удовлетворяет неравенству .

Если и элементы последовательности, начиная с некоторого номера, принадлежат замкнутому интервалу (сегменту) , то и предел a также принадлежит этому интервалу: .

Если и и элементы последовательностей, начиная с некоторого номера, удовлетворяют неравенству , то .

Если и, начиная с некоторого номера, , то .
В частности, если, начиная с некоторого номера, , то
если , то ;
если , то .

Пусть и . Если a b , то найдется такое натуральное число N , что для всех n > N выполняется неравенство .

Доказательства свойств, связанных с неравенствами приведены на странице
Свойства пределов последовательностей, связанные с неравенствами >>>.

Бесконечно большая и бесконечно малая последовательности

Бесконечно малая последовательность

Сумма и разность конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Для того, чтобы последовательность имела предел a , необходимо и достаточно, чтобы , где – бесконечно малая последовательность.

Доказательства свойств бесконечно малых последовательностей приведены на странице
Бесконечно малые последовательности – определение и свойства >>>.

Бесконечно большая последовательность

Бесконечно большая последовательность – это последовательность, имеющая бесконечно большой предел. То есть если для любого положительного числа существует такое натуральное число N , зависящее от , что для всех натуральных выполняется неравенство
.
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности.

Если , начиная с некоторого номера N , то
.
Если же , то
.

Если последовательность являются бесконечно большой, то, начиная с некоторого номера N , определена последовательность , которая является бесконечно малой. Если являются бесконечно малой последовательностью с отличными от нуля элементами, то последовательность является бесконечно большой.

Если последовательность бесконечно большая, а последовательность ограничена, то
.

Если абсолютные значения элементов последовательности ограничены снизу положительным числом ( ), а – бесконечно малая с неравными нулю элементами, то
.

Более подробно определение бесконечно большой последовательности с примерами приводится на странице
Определение бесконечно большой последовательности >>>.
Доказательства свойств бесконечно больших последовательностей приведены на странице
Свойства бесконечно больших последовательностей >>>.

Критерии сходимости последовательностей

Монотонные последовательности

Строго возрастающая последовательность – это последовательность, для всех элементов которой выполняются неравенства:
.

Аналогичными неравенствами определяются другие монотонные последовательности.

Строго убывающая последовательность:
.
Неубывающая последовательность:
.
Невозрастающая последовательность:
.

Отсюда следует, что строго возрастающая последовательность также является неубывающей. Строго убывающая последовательность также является невозрастающей.

Монотонная последовательность – это неубывающая или невозрастающая последовательность.

Монотонная последовательность ограничена, по крайней мере, с одной стороны значением . Неубывающая последовательность ограничена снизу: . Невозрастающая последовательность ограничена сверху: .

Теорема Вейерштрасса. Для того чтобы неубывающая (невозрастающая) последовательность имела конечный предел, необходимо и достаточно, чтобы она была ограниченной сверху (снизу ). Здесь M – некоторое число.

Поскольку любая неубывающая (невозрастающая) последовательность ограничена снизу (сверху), то теорему Вейерштрасса можно перефразировать следующим образом:

Для того чтобы монотонная последовательность имела конечный предел, необходимо и достаточно, чтобы она была ограниченной: .

Монотонная неограниченная последовательность имеет бесконечный предел, равный для неубывающей и для невозрастающей последовательности.

Критерий Коши сходимости последовательности

Условие Коши
Последовательность удовлетворяет условию Коши, если для любого существует такое натуральное число , что для всех натуральных чисел n и m , удовлетворяющих условию , выполняется неравенство
.

Фундаментальная последовательность – это последовательность, удовлетворяющая условию Коши.

Критерий Коши сходимости последовательности. Для того, чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Доказательство критерия сходимости Коши приведено на странице
Критерий Коши сходимости последовательности >>>.

Подпоследовательности

Теорема Больцано – Вейерштрасса. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность. А из любой неограниченной последовательности – бесконечно большую подпоследовательность, сходящуюся к или к .

Доказательство теоремы Больцано – Вейерштрасса приведено на странице
Теорема Больцано – Вейерштрасса >>>.

Определения, теоремы и свойства подпоследовательностей и частичных пределов рассмотрены на странице
Подпоследовательности и частичные пределы после­довательностей>>>.

Использованная литература:
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
В.А. Зорич. Математический анализ. Часть 1. Москва, 1997.
В.А. Ильин, Э.Г. Позняк. Основы математического анализа. Часть 1. Москва, 2005.

Читайте также: