Какие два рода электрических зарядов существует в природе кратко

Обновлено: 01.07.2024

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды оттал­киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло­жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря­дов с помощью электрометров.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы, в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов, положительно заряженных протонов и нейтральных частиц - нейтронов. Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

Элементарный электрический заряд (е) — это наименьший электрический заряд, положи­тельный или отрицательный, равный величине заряда электрона:

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e, однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се­кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб­ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря­дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра­витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием, а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина, являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

Две эбонитовые палочки, наэлектризованные трением о мех, будут отталкиваться.

2. Как показать, что стеклянная палочка, наэлектризованная трением о шелк, имеет заряд другого рода, чем заряд эбонитовой палочки, наэлектризованной трением о шерсть?

Поднесем к наэлектризованной эбонитовой палочке стеклянную, потертую о шелк. Эбонитовая и стеклянные палочки притягиваются друг к другу.

Это вызвано тем, что электрический заряд, появившийся при электризации, у эбонитовой палочки иного рода, чем у стеклянной.

3. Какие два рода электрических зарядов существуют в природе?

Существует два рода электрических зарядов: положительный и отрицательный.

4. Как взаимодействуют тела, имеющие заряды одного знака? Разного знака?

Тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.


Мы переходим к изучению следующего раздела физики, который посвящён электрическим явлениям. Посмотрев этот видеоурок, вы узнаете, что подразумевают под способностью тел к электрическому взаимодействию и какие два рода электрических зарядов существуют в природе. Узнаете, как взаимодействуют друг с другом заряженные тела и может ли электрический заряд перемещаться внутри тела или от одного тела к другому. А также познакомитесь с устройством и принципом действия прибора, с помощью которого можно узнать, наэлектризовано тело или нет.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Электризация тел. Два рода зарядов. Проводники и диэлектрики"

Об особых явлениях природы, называемых электрическими, люди знают уже несколько тысяч лет. Однако объяснить большинство из них оказалось совсем не просто. Только к середине XIX в. появилась теория, которая смогла не только объяснить, но и предсказать множество новых явлений и фактов.

Сегодня трудно и даже невозможно представить нашу жизнь без электричества. Мы почти автоматически нажимаем кнопки выключателей и включаем самые разнообразные приборы и технические устройства, делающие нашу жизнь комфортной. Электролампы освещают наши квартиры и улицы. Компьютеры, радиоприёмники, телевизоры, проводной и мобильный телефоны — все эти устройства используют электричество.

Но с электричеством связана не только работа современных приборов и технических устройств. Оно играет гораздо более важную роль. Электрические силы взаимодействия атомов и молекул ответственны за обмен веществ в человеческом организме. Так что же представляют собой электрические явления?

Рассмотрим сначала наиболее простые из них. Для этого проделаем такой опыт. Возьмём стеклянную палочку и потрём её шёлк.


Поднесём палочку к кусочкам бумаги — палочка приобрела свойство притягивать к себе лёгкие бумажки.

А если мы поднесём эту палочку к тонкой струйке воды, то заметим, как последняя начинает искривляться.


Тела, которые в результате трения приобретают свойство притягивать к себе другие тела, называются наэлектризованными или заряженными. В этом случае говорят, что телам сообщён электрический заряд.

В XVIII в. были установлены два важных свойства электризации:

1) при трении электризуются, или приобретают электрический заряд, оба тела (янтарь и ткань, стеклянная палочка и бумага). Но само трение малосущественно, оно лишь увеличивает площадь соприкосновения тел.

Сказанное мы можем проверить на опыте. Потрём друг о друга чистые и сухие кусок резинового шланга и стеклянную палочку.


Оба тела после этого притягивают к себе лёгкую гильзу. Значит, электрические заряды при трении появились у обоих тел.

2) появляющиеся на телах заряды принципиально отличаются друг от друга. Они разноимённые.

Докажем это на опыте. Из металлической фольги сделаем лёгкий небольшой шарик и подвесим его на шёлковой нити. Теперь дотронемся стеклянной палочкой, потёртой о бумагу, до этого шарика. Шарик оттолкнётся от палочки, отклонится на некоторый угол и останется в этом положении. То же самое произойдёт, если повторить опыт, но вместо стеклянной взять эбонИтовую или пластмассовую палочку, потереть её шерстью или кусочком меха и дотронуться до другого такого же шарика.

Если поднести теперь друг к другу эти наэлектризованные шарики, то они сразу же притянутся.


Попробуйте предсказать, изменится ли характер взаимодействия наэлектризованных шариков, если их зарядить одной и той же палочкой (всё равно какой).

Правы будут те, кто предположил, что они оттолкнутся друг от друга.

Таким образом, наэлектризованные или заряженные тела взаимодействуют между собой. Причём характер их взаимодействия может быть разным: они либо притягиваются, либо отталкиваются друг от друга, взаимодействуя при этом сильнее или слабее.

Причина разного характера взаимодействия наэлектризованных тел заключается в том, что в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный (+) и отрицательный (−).

Все наэлектризованные тела обладают определённым положительным или отрицательным зарядом. И значение заряда может быть разным. Значит, электрический заряд — это физическая величина, которая может иметь положительное или отрицательное значение.

Приписывание заряду положительного и отрицательного значения условно. Просто договорились считать, что заряд, приобретённый стеклянной палочкой, потёртой о бумагу (или шёлк), — положительным, а заряд, полученный на эбонитовой палочке (или янтаре), потёртой о мех, — отрицательным.

На явлении отталкивания заряженных тел основан принцип действия простейшего прибора, при помощи которого выясняют, наэлектризовано ли тело. Этот прибор называют электроскопом. Он состоит из металлического стержня, к концу которого прикреплены две тонкие бумажные полоски. Стержень с бумажными листочками вставляется в металлическую оправу, застеклённую с обеих сторон. Чтобы стержень не касался оправы, его пропускают через пластмассовую пробку.


Если заряженным телом или палочкой дотронуться до стержня электроскопа, то бумажные листочки оттолкнутся друг от друга. При этом чем более наэлектризовано тело, тем на больший угол они разойдутся. Значит, по изменению угла, на который расходятся листочки электроскопа, можно судить о степени наэлектризованности тела.

Более совершенным прибором является электрометр.


Сообщённый шарику, а через него стержню и стрелке заряд (любого знака) вызывает отталкивание стрелки от заряженного стержня. Нижний конец стрелки перемещается при этом по шкале. А металлический корпус позволяет использовать прибор и для более сложных измерений.

А теперь зададимся вопросом: можно ли полученный на наэлектризованном теле заряд передать другому телу? Перейдёт ли, например, заряд от заряженного электроскопа к другому незаряженному электроскопу, если их соединить перемычкой?

Чтобы ответить на этот вопрос, проведём серию опытов, используя для соединения заряженного и незаряженного электроскопов перемычки из различных веществ.

Опыт показывает, что через перемычку из таких веществ, как стекло, резина, различные пластмассы, заряд с одного электроскопа на другой не переходит. Такие вещества являются диэлектриками (в быту их часто называют изоляторами).


Именно из таких веществ изготовлены оболочки проводов, штепсельные вилки, ручки отвёрток и так далее. Диэлектриком является и воздух.

Если же соединить электроскопы перемычкой из любого металла, часть электрического заряда переходит ко второму прибору.


Металлы (и в твёрдом, и в жидком состоянии) — типичные представители проводников. К проводникам также относятся большинство жидкостей: растворы кислот, солей, включая обычную питьевую воду. Проводником является и тело человека, состоящее более чем на две трети из жидкости.

Очень важно понять, что идеальных диэлектриков в природе нет. У любого диэлектрика можно обнаружить хотя бы малую проводимость.

Так, если оставить на несколько часов заряженный электроскоп, то его заряд со временем уменьшится. Это говорит о наличии некоторой проводимости у воздуха.

Все вы неоднократно наблюдали молнию и электрическую дугу при сварке металлов. Эти явления свидетельствуют о том, что воздух при определённых условиях становится очень хорошим проводником.

Даже такие отличные диэлектрики, как фарфор и стекло, могут превратиться в проводники. Именно поэтому в линиях электропередач применяются не одиночные, а целые гирлянды изоляторов.

В XX в. была открыта третья группа веществ — полупроводники. У этих веществ (например, германия или кремния) способность проводить заряд (то есть проводимость) во много раз хуже, чем у проводников. Но очень важно, что у полупроводников проводимость можно значительно увеличить различными воздействиями, например, нагреванием, освещением или радиационным облучением. Это связано с особенностью строения веществ этой группы.


Именно полупроводники позволили создать сложнейшие устройства: компьютер, солнечные батареи для спутников, калькулятор, мобильный телефон и многое другое.


1. Если стеклянную палочку потереть о шёлк или бумагу, то она приобретёт способность притягивать лёгкие тела, например бумажки, волосы и пр. Тот же эффект можно наблюдать, если поднести к лёгким предметам эбонитовую палочку, потертую о мех. Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными, а явление приобретения телами электрического заряда называют электризацией.

Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся друг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёртой о шёлк, а другого эбонитовой палочкой, потёртой о мех, то шарики притянутся друг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков, т.е. в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд, а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд.

Из описанного опыта также следует, что заряженные тела взаимодействуют друге другом. Такое взаимодействие называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа — прибора, позволяющего определить, заряжено ли данное тело (рис. 77), и электрометра, прибора, позволяющего оценить значение электрического заряда (рис. 78).


Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

2. Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой ​ \( q \) ​, за единицу заряда принят кулон: ​ \( [q] \) ​ = 1 Кл.

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости. Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона. Заряд электрона отрицателен и равен 1,6·10 -19 Кл. Любой другой заряд кратен заряду электрона.

3. Электрон — частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации, была предложена Э. Резерфордом. На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.

Знания о строении атома позволяют объяснить явление электризации трением. Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов, а на другом — их избыток. В этом случае первое тело становится заряженным положительно, а второе — отрицательно.

4. Если потереть незаряженные стеклянную и эбонитовую пластинки друг о друга и затем внести их по очереди в полый шар, надетый на стержень электрометра, то электрометр зафиксирует наличие заряда и у стеклянной, и у эбонитовой пластинки. При этом можно показать, что пластинки будут иметь заряд противоположных знаков. Если в шар внести обе пластины стрелка электрометра останется на нуле. Подобное можно обнаружить, если потереть эбонитовую палочку о мех: мех, так же как и палочка, будет заряжен, но зарядом противоположного знака.

В результате трения электроны перешли со стеклянной пластины на эбонитовую, и стеклянная пластина оказалась заряженной положительно (недостаток электронов), а эбонитовая отрицательно (избыток электронов). Таким образом, при электризации происходит перераспределение заряда, электризуются оба тела, приобретая равные по модулю заряды противоположных знаков.

При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной: ​ \( q_1+q_2+…+q_n=const \) ​.

В описанном опыте ​ \( q_n \) ​ алгебраическая сумма зарядов пластин до и после электризации равна нулю.

Записанное равенство выражает фундаментальный закон природы — закон сохранения электрического заряда. Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел, т.е. для совокупности тел, изолированных от других объектов.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Если массивную гирю поставить на пластину из изолятора и соединить с электрометром, а затем несколько раз ударить по ней куском меха, то гиря приобретёт отрицательный заряд и стрелка электрометра отклонится. При этом кусок меха приобретёт заряд

1) равный нулю
2) положительный, равный по модулю заряду гири
3) отрицательный, равный заряду гири
4) положительный, больший по модулю заряда гири

2. Два точечных заряда будут притягиваться друг к другу, если заряды

1) одинаковы по знаку и любые по модулю
2) одинаковы по знаку и обязательно одинаковы по модулю
3) различны по знаку, но обязательно одинаковы по модулю
4) различны по знаку и любые по модулю

3. На рисунках изображены три пары одинаковых лёгких заряженных шариков, подвешенных на шёлковых нитях. Заряд одного из шариков указан на рисунках. В каком(-их) случае(-ях) заряд второго шарика может быть отрицателен?


1) только А
2) А и Б
3) только В
4) А и В

4. Ученик во время опыта по изучению взаимодействия металлического шарика, подвешенного на шёлковой нити, с положительно заряженным пластмассовым шариком, расположенным на изолирующей стойке, зарисовал в тетради наблюдаемое явление: нить с шариком отклонилась от вертикали на угол ​ \( \alpha \) ​. На основании рисунка можно утверждать,что металлический шарик


1) имеет положительный заряд
2) имеет отрицательный заряд
3) не заряжен
4) либо не заряжен, либо имеет отрицательный заряд

5. Отрицательно заряженное тело отталкивает подвешенный на нити лёгкий шарик из алюминиевой фольги. Заряд шарика:

A. положителен
Б. отрицателен
B. равен нулю

Верными являются утверждения:

1) только Б
2) Б и В
3) А и В
4) только В

6. Металлический шарик 1, укреплённый на длинной изолирующей ручке и имеющий заряд ​ \( +q \) ​, приводят поочерёдно в соприкосновение с двумя такими же изолированными незаряженными шариками 2 и 3, расположенными на изолирующих подставках.


Какой заряд в результате приобретёт шарик 2?

7. От капли, имеющей электрический заряд ​ \( -2e \) ​, отделилась капля с зарядом ​ \( +e \) ​. Каков электрический заряд оставшейся части капли?

8. Металлическая пластина, имевшая отрицательный заряд \( -10e \) , при освещении потеряла четыре электрона. Каким стал заряд пластины?

9. К водяной капле, имевшей электрический заряд \( +5e \) присоединилась кайля с зарядом \( -6e \) . Каким станет заряд объединенной капли?

10. На рисунке изображены точечные заряженные тела. Тела А и Б имеют одинаковый отрицательный заряд, а тело В равный им по модулю положительный заряд. Каковы модуль и направление равнодействующей силы, действующей на заряд Б со стороны зарядов А и В?


1) ​ \( F=F_А+А_В \) ​; направление 2
2) \( F=F_А-А_В \) ; направление 2
3) \( F=F_А+А_В \) ; направление 1
4) \( F=F_А-А_В \) ; направление 1

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Сила взаимодействия между электрическими зарядами тем больше, чем больше расстояние между ними.
2) При электризации трением двух тел их суммарный заряд равен нулю.
3) Сила взаимодействия между электрическими зарядами тем больше, чем больше заряды.
4) При соединении двух заряженных тел их общий заряд будет меньше, чем алгебраическая сумма их зарядов до соединения.
5) При трении эбонитовой палочки о мех заряд приобретает только эбонитовая палочка.

12. В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен атомами при трении не происходил? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество протонов на шёлке
Б) количество протонов на стеклянной линейке
B) количество электронов на шёлке

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

Читайте также: