Какие достоинства и недостатки имеют аналоговые и цифровые носители информации кратко

Обновлено: 04.07.2024

Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возмож­ным повреждениям имеют молекулы ДНК, так как сущест­вует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых при­водит к потери информации только на поврежденном участ­ке. Поврежденная часть фотографии не лишает возможно­сти видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые носители гораздо более чувствительны к по­вреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуата­ции и хранения цифровых носителей информации.

Наиболее долговременным носителем информации явля­ется молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.

Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские гли­няные таблички), сотен лет (бумага) и десятков лет (магнит­ные ленты, фото- и кинопленки).

Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при пра­вильном хранении оптические носители способны хранить информацию сотни лет, а магнитные — десятки лет.

Вопросы для размышления

Какие достоинства и недостатки имеют аналоговые и цифровые носители информации?



2.34. Составить таблицу сравнения различных типов носителей ин­формации (аналоговых и цифровых) по их возможностям хра­нения информации.

Глава 3

Основы логики и логические основы компьютера

Формы мышления

Первые учения о формах и способах рассуждений возник­ли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегрече­скими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика — это наука о формах и способах мышле­ния.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика по­зволяет строить формальные модели окружающего мира, от­влекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, выска­зывание и умозаключение.


Понятие — это форма мышления, фиксирующая основные, существенные признаки объекта.

Понятие имеет две стороны: содержание и объем. Содер­жание понятия составляет совокупность существенных при­знаков объекта. Чтобы раскрыть содержание понятия, сле­дует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов.

Высказывание. Свое понимание окружающего мира чело­век формулирует в форме высказываний (суждений, утверж­дений). Высказывание строится на основе понятий и по фор­ме является повествовательным предложением.

Высказывание не может быть выражено повелительным или вопросительным предложением, так как оценка их ис­тинности или ложности невозможна.

Высказывание - это форма мышления, в которой что-либо утверждается или отрицается о свойст­вах реальных предметов и отношениях между ними. Высказывание может быть либо истинно, либо ложно.

Если истинность или ложность простых высказываний устанавливается в результате соглашения на основании здравого смысла, то истинность или ложность составных высказываний вычисляется с помощью использования ал­гебры высказываний.

Приведенное выше составное высказывание истинно, так как истинны входящие в него простые высказывания.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (выска­зываний), получать заключение, то есть новое знание. При­мером умозаключений могут быть геометрические доказа­тельства.

Умозаключение - это форма мышления, с помо­щью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Посылками умозаключения по правилам формальной ло­гики могут быть только истинные суждения. Тогда, если

умозаключение проводится в соответствии с правилами фор­мальной логики, то оно будет истинным. В противном слу­чае можно прийти к ложному умозаключению.

Вопросы дляразмышления

1. Какие существуют основные формы мышления?

2. В чем состоит разница между содержанием и объемом понятия?

3. Может ли быть высказывание выражено в форме вопросительно­го предложения?

4. Как определяется истинность или ложность простого высказыва­ния? Составного высказывания?

Алгебра высказываний

Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность состав­ных высказываний, не вникая в их содержание.

В аргебре высказываний суждениям (простым высказы­ваниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. Рассмотрим два простых высказывания:


В алгебре высказываний над высказываниями можно производить определенные логические операции, в резуль­тате которых получаются новые, составные высказывания.

Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возмож­ным повреждениям имеют молекулы ДНК, так как сущест­вует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых при­водит к потери информации только на поврежденном участ­ке. Поврежденная часть фотографии не лишает возможно­сти видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые носители гораздо более чувствительны к по­вреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуата­ции и хранения цифровых носителей информации.

Наиболее долговременным носителем информации явля­ется молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.

Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские гли­няные таблички), сотен лет (бумага) и десятков лет (магнит­ные ленты, фото- и кинопленки).

Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при пра­вильном хранении оптические носители способны хранить информацию сотни лет, а магнитные — десятки лет.

Вопросы для размышления

Какие достоинства и недостатки имеют аналоговые и цифровые носители информации?



2.34. Составить таблицу сравнения различных типов носителей ин­формации (аналоговых и цифровых) по их возможностям хра­нения информации.

Глава 3

Основы логики и логические основы компьютера

Формы мышления

Первые учения о формах и способах рассуждений возник­ли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегрече­скими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика — это наука о формах и способах мышле­ния.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика по­зволяет строить формальные модели окружающего мира, от­влекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, выска­зывание и умозаключение.


Понятие — это форма мышления, фиксирующая основные, существенные признаки объекта.

Понятие имеет две стороны: содержание и объем. Содер­жание понятия составляет совокупность существенных при­знаков объекта. Чтобы раскрыть содержание понятия, сле­дует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов.

Высказывание. Свое понимание окружающего мира чело­век формулирует в форме высказываний (суждений, утверж­дений). Высказывание строится на основе понятий и по фор­ме является повествовательным предложением.

Высказывание не может быть выражено повелительным или вопросительным предложением, так как оценка их ис­тинности или ложности невозможна.

Высказывание - это форма мышления, в которой что-либо утверждается или отрицается о свойст­вах реальных предметов и отношениях между ними. Высказывание может быть либо истинно, либо ложно.

Если истинность или ложность простых высказываний устанавливается в результате соглашения на основании здравого смысла, то истинность или ложность составных высказываний вычисляется с помощью использования ал­гебры высказываний.

Приведенное выше составное высказывание истинно, так как истинны входящие в него простые высказывания.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (выска­зываний), получать заключение, то есть новое знание. При­мером умозаключений могут быть геометрические доказа­тельства.

Умозаключение - это форма мышления, с помо­щью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Посылками умозаключения по правилам формальной ло­гики могут быть только истинные суждения. Тогда, если

умозаключение проводится в соответствии с правилами фор­мальной логики, то оно будет истинным. В противном слу­чае можно прийти к ложному умозаключению.

Вопросы дляразмышления

1. Какие существуют основные формы мышления?

2. В чем состоит разница между содержанием и объемом понятия?

3. Может ли быть высказывание выражено в форме вопросительно­го предложения?

4. Как определяется истинность или ложность простого высказыва­ния? Составного высказывания?

Алгебра высказываний

Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность состав­ных высказываний, не вникая в их содержание.

В аргебре высказываний суждениям (простым высказы­ваниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. Рассмотрим два простых высказывания:


В алгебре высказываний над высказываниями можно производить определенные логические операции, в резуль­тате которых получаются новые, составные высказывания.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.




Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Носители информации

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи - CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

достоинства: себестоимость хранения и обработки цифровых данных намного ниже чем аналоговых. , цифровая копия 100% идентична копии оригинала, аналоговая - нет. Недостаток: цифровые данные дискретны т. е. имеют сильные гармонические искажения, но их можно у меньшить путем увеличения частоты выбрки и разрядности и с помощью различных программных и аппаратных фильтров.

там куча всего нужно искать литературу так не опишешь

Если коротко, то цифровая запись "съедает" высокие и низкие частоты. Остаются в основном средние. Поэтому аналоговая запись гораздо богаче звуками. Достоинство цифровой записи - в компактных носителях.

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

виды носителей информации

Что такое носитель информации

Носитель информации – это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые - с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

цифровые носители информации

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации – туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки - стилуса - наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

компьютерные носители информации

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, – папский декрет 1057 года.

современные носители информации

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты – первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

электронные носители информации

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием "телеграфон".

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

примеры носителей информации

HDD-диски

Винчестер, HDD или жесткий диск – это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

гибкий магнитный диск носитель информации

Размеры и возможности современных HDD

Жесткий диск – компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Дискета

Floppy, или гибкий магнитный диск, – носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

  • Blu-ray диски;
  • CD-ROM диски;
  • CD-R и CD-RW диски;
  • DVD-R, DVD+R, DVD-RW и DVD+RW.

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

носитель информации используется для

Flash-память

Флеш-память – это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков – высокая цена.

Облачные хранилища

Облачные онлайн-хранилища – это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

объемы носителей информации

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.


Мы старались сделать для вас лучшую статью в интернете.
Поделитесь ею с друзьями, так вы поддержите развитие проекта.

Когда вы делитесь записью, вы помогаете ресурсу расти, что стимулирует нас продолжать развивать проект и радовать вас новым профессиональным контентом.
P.S. Если вы не хотите нас поддержать, нажмите на крестик в правом нижнем углу.




Какие достоинства и недостатки имеют аналоговые и цифровые носители информации?

Преимущество аналоговой техники заключается в том,, что вычислительная техника выдает мгновенный результат(скорость электрона мгновенна), а минусы- это то, что область ограничена, точность10^-4, необходимость обучения персонала.
Цифровые построены на принципе фон неймана.

Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: информатика.
На сегодняшний день (08.03.2022) наш сайт содержит 109566 вопросов, по теме: информатика. Возможно среди них вы найдете подходящий ответ на свой вопрос.

Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных

Последние опубликованные вопросы



При использовании любых материалов
с данного сайта обязательно активная
гиперссылка на страницу-источник информации.

Все ответы на вопросы школьной программы по различным дисциплинам, а также разбор домашних заданий и многое другое получено из открытых источников или добавлены на сайт пользователями, все материалы доступны бесплатно и как есть.

Читайте также: