Как животные получают необходимый для их роста азот кратко

Обновлено: 02.07.2024

Роль в жизни бактерий, грибов и растений

Азотфиксирующие бактерии способны усваивать азот непосредственно из воздуха, превращая его в аммиак. Они живут самостоятельно, например азотобактер, цианобактерии, азоспириллы, или поселяются в корнях бобовых растений (клевер, горох, люпин, вика и др.) – бактерии рода ризобиум. Над 1 га почвы в атмосфере содержится более 70 тыс. т свободного азота, и только в результате азотфиксации часть этого азота становится доступной для питания высших растений (содержание доступного для растения азота в почве очень невелико). При связывании N2 клубеньковыми бактериями в симбиозе с растениями семейства бобовых почва ежегодно обогащается азотом на 200–300 кг/га, а свободноживущие бактерии вносят в почву азота 1–3 кг/га в год. На рисовых полях свободноживущие цианобактерии фиксируют 30–50 кг молекулярного азота на 1 га в год. Известно довольно много азотфиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибы, синезеленые водоросли.

Почвенные нитрифицирующие бактерии (нитрозомонас, нитробактер) окисляют аммиак (NH3), образующийся при гниении органических остатков, до азотной кислоты и нитратов. Процесс окисления идет в два этапа (образование нитритов NO 2– , а затем нитратов NO 3– ):

Некоторые бактерии (родов псевдомонас, алкалигенес, бациллус и др.) восстанавливают окисленные соединения азота (нитраты, нитриты) до газообразных продуктов (обычно до N2, иногда до оксида азота (I) N2O, редко – оксида азота (II) NO). Денитрификация препятствует накоплению оксидов азота, которые в высоких концентрациях токсичны.

Растения поглощают азот из почвы в виде растворимых нитратов и солей аммония (NH4 + ). Соли транспортируются в стебли и листья, где в процессе биосинтеза очень быстро превращаются в аминокислоты и белки – неотъемлемую часть любого живого организма.

Азот составляет 0,3–4,5% от массы растения. Он усиливает рост стеблей и листьев. При недостатке азота замедляется рост растения, образование хлорофилла, листья приобретают бледно-зеленую окраску и преждевременно желтеют, стебли становятся тонкими и слабо ветвятся, вновь образующиеся листья мельчают, цветки, не раскрываясь, засыхают и опадают. При длительном азотном голодании бледно-зеленые листья приобретают желтый, оранжевый или красный оттенки.

Существуют растения-индикаторы, которые великолепно растут при повышенном содержании азота в почве. Это хорошо знакомые нам крапива, малина, чистотел, пырей ползучий.

Роль в жизни животных и человека

Животные и человек получают азот в виде белков и других азотсодержащих продуктов из растений и животных. В животном организме содержится 1–10% азота (по массе), в шерсти и рогах – около 15%.

Азот необходим для процессов обмена веществ. Все важнейшие части клеток (цитоплазма, ядро, оболочка и др.) построены из белковых молекул.

Физиологическая роль азота в организме связана прежде всего с белками и аминокислотами, их метаболизмом, участием в жизненно важных процессах. Аминокислоты являются исходными соединениями при биосинтезе гормонов, витаминов, пигментов и других веществ.

Из организма азот выводится вместе с мочой, калом, выдыхаемым воздухом, а также с потом, слюной и волосами.

Отсутствие или недостаток соединений азота в пище вызывает серьезные заболевания. Избыток их токсичен для живого организма.

Основные источники поступления в организм

Продукты животного происхождения: мясо, рыба, птица, молоко и молочные продукты. Продукты растительного происхождения: горох, соя, чечевица, орехи, грибы.

Наиболее распространенные соединения

N2 – азот.
NH4Сl – хлорид аммония.
NH4ОН – гидроксид аммония, нашатырный спирт.
NaNO2 – нитрит натрия.

Знаете ли вы, что…

Азот открыт Д.Резерфордом в 1772 г.

NaNO3 – натриевая (чилийская),
KNO3 – калиевая (индийская),
Ca(NO3)2 – кальциевая (норвежская),
NH4NO3 – аммиачная.

Число атомов азота во всем теле человека 9,1х 10 25 , а в одной клетке – 9,1 х 10 11 .

В организме человека массой 70 кг содержится примерно 1,8 кг азота.

Содержание азота в крови составляет 3077 мг/л, в волосах – 140 000–157 000 мг/кг, а в ногтях – 146 000–148 000 мг/кг.

Суточное потребление азота с продуктами питания составляет 13–16 г.

Нашатырный спирт – 3–10% водный раствор аммиака – используется для возбуждения сердечной деятельности и центра дыхания. NH4Сl, хлорид аммония, – отхаркивающее средство. NH2Сl, моно-хлорамин, – дезинфицирующее средство. N2О оксид азота (I) в смеси c O2 кислородом применяется для газового наркоза. NaNO2, нитрит натрия, – спазмолитическое средство.

В состав белков всех живых организмов входят только 20 аминокислот, хотя в природе их известно около 180, причем 10 из них являются незаменимыми для человека и должны обязательно поступать в организм с животной и растительной пищей.

Химическая формула аминокислоты:

где

–R – радикал, по которому различаются все аминокислоты,
–N2H – основная аминогруппа,
–COOH – кислотная карбоксильная группа.

Углерод

Углерод – биоэлемент, структурная единица всех органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности, – белков, углеводов, липидов, нуклеиновых кислот, витаминов, гормонов. Все живое, составляющее биосферу, построено из соединений углерода.

Роль в жизни растений

Углерод составляет в среднем 45% от массы растения: у водных растений его содержание доходит до 40%, у наземных – до 46%. В ряске, затягивающей стоячий пруд, 2,5% углерода (по массе), а в более высокоорганизованном колокольчике – 10,2% (по массе).
Углерод входит в состав углекислого газа атмосферы. В процессе фотосинтеза из углекислого газа, который растения поглощают из воздуха, и воды, под действием света образуются органические вещества – глюкоза, крахмал и др. По пищевым цепям готовые органические вещества передаются от растений животным. При окислении углеводов выделяется необходимая энергия.

Роль в жизни животных и человека

В организме животных и человека на углерод приходится около 21% по массе. В составе карбоната кальция (СаСО3) углерод образует наружный скелет многих беспозвоночных, содержится в кораллах, яичной скорлупе. Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани.
Углеродсодержащие соединения – носители жизни: белки, жиры, углеводы, нуклеиновые кислоты, витамины и др. Углерод необходим для процессов обмена веществ. В процессе жизнедеятельности организмов происходит окислительный распад органических соединений с выделением во внешнюю среду углекислого газа СО2. Этот газ, растворенный в биологических жидкостях и природных водах, участвует в поддержании оптимальной для жизнедеятельности кислотности среды.

Наиболее распространенные соединения

СО2 – оксид углерода (IV), углекислый газ.
H2CO3 – угольная кислота.
СаСО3 – карбонат кальция.
С6Н12О6 – глюкоза.

Знаете ли вы, что…

История знакомства человечества с углеродом уходит далеко в глубь веков. Неизвестно, кто открыл углерод, неизвестно, какая из форм чистого углерода – графит или алмаз – была открыта раньше. Углерод – основная часть каменного угля (99%), бурого (72%), торфа (57%). Русское название происходит от слов – рождающий уголь, от лат. – карбонис (род. падеж карбо – древесный уголь).

В организме человека массой 70 кг содержится 15 кг углерода.

В 1 л крови человека содержится 25 000 мг углерода, а в 1 кг костной ткани – 280 000 мг.

В сутки в организм человека поступает вместе с воздухом около 3,7 г углерода, а с продуктами питания – около 300 г.

В медицине используются производные угольной кислоты H2CO3 и карбоновых кислот; карболен (активированный уголь) – для абсорбции газов и выведения из организма различных токсинов, графит (в виде мазей) – для лечения кожных заболеваний и др.

Древние деревья, папоротники, мхи превратились в топливо, содержащее углерод, – каменный уголь, торф.

Фосфор

Роль в жизни растений

Фосфор входит в состав важнейших веществ клеток: ДНК и РНК, фосфолипидов (сложных эфиров глицерина, жирных кислот и фосфорной кислоты), сахарофосфатов (фосфорных эфиров сахаров), участвующих в фотосинтезе; АТФ – универсального энергетического вещества клетки.

Фосфор составляет 0,1–0,7% от массы растения. Из почвы, где фосфора содержится 800 мг/кг, растения получают его в виде солей в процессе корневого питания. Мировой урожай ежегодно уносит с полей более 3 млн т фосфора.

Фосфор ускоряет созревание плодов и повышает хладостойкость растений. При его недостатке замедляется обмен веществ в клетках, образуются слабые корни, пурпурные листья, задерживается созревание, снижается урожайность, происходит накопление пигмента антоцианина. На фоне зеленой окраски хлорофилла красная и лиловая окраски придают листьям голубоватый оттенок, а при сильном преобладании пигмента они становятся лиловыми. Кроме того, все части растения, содержащие мало хлорофилла – стебли, черешки, жилки, нижняя поверхность листьев, – окрашиваются в красноватые и лиловые цвета.

Роль в жизни животных и человека

В организме животных фосфор составляет в среднем 0,95% по массе. В организме человека содержится около 4,5 кг фосфора, чаще всего в соединении с кальцием. Из этого количества около 4,4 кг приходится на кости, около 130 г на мышцы и 12 г – на нервы и мозг, много фосфора содержится в крови и молоке.

Фосфор входит в состав липидов, ДНК, РНК, АТФ. Почти все важнейшие физиологические процессы человека и животных связаны с превращением фосфорсодержащих веществ: построение клеточных мембран, образование костей, поглощение и перенос глюкозы, глицерола и жирных кислот, энергетический метаболизм, кислотно-щелочное равновесие.

Основные источники поступления в организм

Овощи: зеленый горошек, шпинат, бобы, чечевица, огурцы, цветная капуста, соя, редис, сельдерей, оливки. Злаки: овес, рожь, ячмень, пророщенная пшеница, цельные зерна пшеницы. Фрукты: яблоки, груши. Орехи: арахис, грецкие, кешью. Продукты животного происхождения: мясо, яйца, сыр, рыба (сардины, лосось), креветки, печень трески. Грибы.

Наиболее распространенные соединения

Знаете ли вы, что…

Открыт фосфор в 1669 г. немецким алхимиком из Гамбурга Х.Брандом. При перегонке сухого остатка от выпаривания мочи Бранд заметил зеленоватое свечение, отсюда название элемента фосфорос – светящийся в темноте: от греч. фос – свет и форос – несущий.

В теле человека 1,4 х 10 25 атомов фосфора, а в одной человеческой клетке – 1,4 х 10 11 .

В сутки с продуктами питания в организм человека поступает 1000–3000 мг фосфора.

Различные соединения фосфора входят в состав лекарственных препаратов для лечения заболеваний сердца, печени, желудка; фосфаты цинка используются как пломбировочный материал в стоматологии.

При изготовлении спичек массу, наносимую на спичечную головку, готовят из смеси красного фосфора Рn (состоит из полимерных молекул), горючих веществ, бертолетовой соли KClO3 и катализаторов (МnО2, Fе2О3).

Белый фосфор окисляется на воздухе, давая зеленое свечение в темноте. Он применяется в производстве фосфорной кислоты и красного фосфора, как реагент в органических синтезах, раскислитель сплавов, зажигательное средство. Белый фосфор чрезвычайно ядовит, опасная для жизни доза – более 50 мг.

Калий

Роль калия в жизни растений

Калия в растениях содержится в среднем 0,3 % по массе, причем, почти весь в ионной форме. Часть находится в клеточном соке, часть – в структурных элементах клетки (главным образом в протоплазме). В ядре ионы калия не обнаружены, значит, в процессах размножения и в передаче наследственных признаков калий не участвует. Роль калия в жизни растений велика и многообразна. Калий содержится в плодах, корнях, стеблях, листьях, причем в вегетативных органах его, как правило, больше, чем в плодах. В молодых растениях калия больше, чем в старых. Он активизирует синтез органических веществ в растительных клетках. Регулирует транспорт углерода в растении, в результате в ягодах и плодах при созревании увеличивается количество сахара. Хорошая обеспеченность растений калием усиливает рост корней, луковиц и клубней, повышает их зимостойкость. Он способствует поддержанию водного баланса растений, влияет на азотный обмен.

При недостатке калия в клетках накапливается избыток аммиака, что может привести к гибели растения, замедляется процесс фотосинтеза, дыхания и растяжения клеток, что вызывает гибель ростового кончика, нарушается окраска листьев (краевой ожог-запал) и даже их опадение. При недостатке калия плоды растений (фрукты) становятся менее сладкими, зерно у злаков – щуплое и невсхожее. Отсутствие калия приводит растение к гибели.

Роль в жизни животных и человека

натрия и закачивающего в нее ионы калия. Калий влияет на солевой и кислотный баланс крови, функционирование нервов и мышц (особенно сердечной), образование гликогена, синтез белков, способствуют выделению из организма воды.

В организме человека масой 70 кг содержится 140 г калия. Взрослый человек должен в сутки потреблять с пищей 2–3 мг на 1 кг веса, а ребенок 12–13 мг на 1 кг веса. Организм ребенка, как и молодое растение, требует больше калия, чем организм взрослого. Калий способствует выделению натрия и тем самым устраняет отеки, помогает при ревматизме, улучшает работу кишечника. Недостаток калия ведет к заболеваниям глаз, плохой памяти, пародонтозу. Выводится калий из организма с мочой, калом и потом.

Основные источники поступления в организм

Овощи: шпинат, огурцы, картофель, горох, соя, фасоль, морковь, лук, салат-латук, петрушка, спаржа, хрен, одуванчик, чеснок. Фрукты: черная смородина, чернослив, изюм и др. Мясо.

Наиболее распространенные соединения

КОН – гидроксид калия, едкий калий.
КСl – хлорид калия.
К24 – сульфат калия.

Знаете ли вы, что…

Число атомов калия в организме человека 2,2 х 10 24 , а в одной клетке – 2,2 х 10 10 .

Соли калия применяются в качестве мочегонных и слабительных средств.

Сердечникам, в первую очередь людям, перенесшим инфаркт миокарда, для восполнения потерь калия в организме настоятельно рекомендуют есть курагу, т.к. в 100 г кураги до 2 г калия.

Недостаток калия в почве восполняется калийными удобрениями: хлоридом калия (КСl), сульфатом калия (К24) и золой растений.

Соли калия окрашивают пламя в фиолетовый цвет, и их используют в пиротехнических составах для фейерверков.

Для производства белков и ДНК всем растениям и животным нужен азот. Большинство организмов не могут получить азот из воздуха в чистом виде и поэтому полагаются на цикл обмена азота, который обеспечивает живые организмы пригодной для потребления формой.

Азот важен для всего живого, и от него зависит пищевая цепочка. Проблема в том, что хотя этот элемент присутствует в природе в изобилии, его газообразная форма очень инертна, поэтому он не может быть использован напрямую. Животные получают необходимое, когда едят растения, поглощающие азот в виде нитратов (NO3) и других соединений из почвы. Но как эти вещества вообще попадают туда? Большой прорыв в понимании названных процессов сделал голландский микробиолог Мартин Бейеринк в 1885 г., выделив азотфиксирующие бактерии. Эти прокариоты, живущие в почве, берут газообразный азот из воздуха и преобразуют так, чтобы им могли пользоваться растения.

Круговорот азота

Азот постоянно циркулирует в биосфере, так как живые существа производят с его помощью важные соединения

Растения впитывают азот через корни и с его помощью производят аминокислоты, строительный материал для белков, и сырье для многих других важных соединений, таких как хлорофилл. Животные, которые едят растения, получают из пищи соединения азота вместе с другими питательными веществами. Кроме того, нитраты получаются при ударе молнии. Сильный разряд запускает в воздухе реакцию азота с кислородом, и возникают оксиды азота. Они растворяются в дождевой воде и формируют нитраты, которые попадают в почву.

Система переработки

Испражнения и моча животных содержат азотистые питательные вещества. Их расщепляют деструкторы, в частности грибы и бактерии, и азот возвращается в почву в виде аммиака (NH3). Кроме того, деструкторы, в число которых входит множество беспозвоночных животных, перерабатывают умершие растения и животных, опять же возвращая азотистые соединения в почву. Там уже другие бактерии превращают их в полезные нитраты. Уровень азота в воздухе не меняется, так как денитрифицирующие бактерии преобразуют нитраты обратно в газообразный азот, который возвращается в атмосферу.

БОБОВЫЕ

На корнях бобовых (это многочисленное семейство, включающее почти 25 тыс. видов, также называют мотыльковыми) расположены узелки, заполненные азотфиксирующими клубеньковыми бактериями. В обмен на место для жизни эти полезные микробы обеспечивают растение постоянным запасом азотистых соединений. Фермеры сажают бобовые, такие как клевер, чтобы снабдить почву поля дополнительным запасом азота перед следующим урожаем.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровн.

Описание презентации по отдельным слайдам:

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровн.

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровна Презентация по биологии для 9 класса на тему:

Ознакомиться с азотсодержащими продуктами питания Узнать значение азота в жив.

Ознакомиться с азотсодержащими продуктами питания Узнать значение азота в живых организмах Рассмотреть виды и функции белков Выявить последствия дефицита и избытка азота

Продукты животного происхождения: мясо, рыба, птица, молоко и молочные продук.

Продукты животного происхождения: мясо, рыба, птица, молоко и молочные продукты. Продукты растительного происхождения: горох, соя, чечевица, орехи, грибы. Основные источники поступления в животный организм азота

В животном организме содержится 10 –17% азота (по массе), в шерсти и рогах –.

Белки – необходимая составная часть питания человека и животных. В желудочно-.

Строительные белки Виды белков Цитоплазматическаямембрана Волосы - 99% белка.

Строительные белки Виды белков Цитоплазматическаямембрана Волосы - 99% белка Соединительная и мышечная ткань – 70% белка

Транспортные белки Сократительные белки Белки гормоны и ферменты Защитные бел.

Транспортные белки Сократительные белки Белки гормоны и ферменты Защитные белки - антитела Виды белков

Белки – рецепторы Все нуклеиновые кислоты – это азотосодержащие вещества ДНК.

Белки – рецепторы Все нуклеиновые кислоты – это азотосодержащие вещества ДНК, все виды РНК и АТФ Белки способные узнавать чужеродные антигены (белок гликопротеин)

В организмах плотоядных животных свой белок образуется за счёт потребляемых.

В организмах плотоядных животных свой белок образуется за счёт потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Анорексия - психосоматическое заболевание, самый распространенный недуг манекенщиц. Болезнь может приводить к белково-энергетической недостаточности. Около 80 % больных анорексией — девушки в возрасте 12—24 лет. Ограничение белков До лечения После лечения

Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза.

Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза: СО (NH2)2 + Н2О = 2NН3 + СО2. . Из организма азот выводится вместе с мочой, калом, выдыхаемым воздухом, а также с потом, слюной и волосами. В животных организмов вывода излишков азота происходит путем отщепления аминов (NH2) от органических соединений и выделения их в окружающую среду в виде аммиака NH3, В организме аммиак соединяется с углекислым газом и получается мочевина и вода, хотя частично остается и аммиак. Выведение излишков азота

ЭКСКРЕЦИЯ (выделение), выведение из организма веществ, которые образовались.

ЭКСКРЕЦИЯ (выделение), выведение из организма веществ, которые образовались в процессе МЕТАБОЛИЗМА. В организме человека массой 70 кг содержится примерно 1,8 кг азота. Содержание азота в крови составляет 3077 мг/л, в волосах – 140 000–157 000 мг/кг, а в ногтях – 146 000–148 000 мг/кг. Суточное потребление азота с продуктами питания составляет 13–16 г. В белке животных и человека содержится 16 — 17% азота. В состав белков человеческого организма входят только 20 аминокислот, хотя в природе их известно около 180, причем 10 из них являются незаменимыми для человека и должны обязательно поступать в организм с животной и растительной пищей. Это интересно Это интересно

http://dic.academic.ru/dic.nsf/bse/61972/%D0%90%D0%B7%D0%BE%D1%82 Власова З.А.

Краткое описание документа:

Азот является одним из главных элементов жизни, он находится в человеческом организме и необходим нам для роста и питания, также имеет важное значение для жизни растений и животных, поскольку он входит в состав белковых веществ. Данная презентация поможет учащимся узнать, что такое белки, рассмотреть их функции и виды, ограничения белков и их последствия. Несмотря на необходимость азота для всего живого, он может оказать пагубное влияние. Мы рассматриваем этот процесс как экскреция (выделение), выведение из организма веществ, которые образовались в процессе метаболизма. Для избегания такого процесса, мы рассмотрим суточную потребность азота и продукты питания, включающие в себя этот химический элемент.

Азот – основа жизни

26.11.2020

Азот – один из самых распространенных элементов на земле. Поскольку воздух на 78% состоит из этого газа, его часто называют главным элементом жизни.

Значение азота в природе

Азот встречается не только в газообразной форме. Это строительный материал, из которого состоят клетки растений. Он входит в состав протеинов, хлорофилла, ДНК, аминокислот. Без азота невозможен процесс фотосинтеза и обмена веществ. Поэтому он является ключевым элементом для нормального развития растений.

Азот в растении не находится статично в каком-то одном месте. Он перемещается в те его части, где необходим больше всего. При отмирании старых листьев, азот переходит в более молодые.

Недостаток этого элемента приводит к пожелтению и опаданию листвы. Сильное азотное голодание может привести к гибели растения. Хотя диагностировать эту проблему не сложно, важно сделать это как можно быстрее. Ведь нехватка азота способна значительно замедлить вегетативное развитие растения, нарушить формирование соцветий или плодов, а впоследствии заметно снизить урожай. По оценкам специалистов, азотное голодание может сократить урожайность примерно на 30%.

Недостаток азота у растений.


Как растения могут испытывать нехватку азота, если он находится в воздухе вокруг них? Дело в том, что растения не могут усваивать азот непосредственно из атмосферы (кроме бобовых культур). Поэтому, чтобы восполнить его нехватку, приходится вносить специальные удобрения. При этом необходимо рассчитать, сколько азота понадобится растению во время каждой фазы роста, учесть тип и кислотность грунта, оптимальный способ и период внесения питательных веществ. Если ошибиться в этих расчетах, можно потратить азотные удобрения впустую, так как растение не сможет их усвоить должным образом.


Самые распространенные формы азота

Главную роль в процессе усвоения азота играет корневая система растения. Самые доступные для нее формы – аммоний (NH4), нитраты (NO3) и нитриты (NO2).

Круговорот азота в природе.

Наличие разных форм азота удобно для управления азотным питанием растений. Так, для внесения срочной подкормки используется нитратный азот, а для подкормки, которая подействует позже, – аммонийный азот. Он начинает превращаться в нитраты примерно через месяц-полтора после внесения.


К примеру, озимую пшеницу подкармливают ранней весной с помощью нитратных форм азота. А вот под кукурузу предварительно вносят аммиачную форму азота. Ей важно получить азот во время фазы 3-4 листа. Чтобы азот не вымылся из почвы раньше времени, удобрения вносят вместе с ингибиторами уреазы, которые дополнительно замедляют процесс усвоения аммония.


Потери азота в почве


Кроме удобрений, азот попадает в почву с навозом и отмирающими растениями. Это медленно разлагающийся азот, который частично улетучивается, превращаясь в газообразную форму (аммиак).


Еще один источник аммония (NH4) – это карбамид, также называемый мочевиной. Он быстро вступает в реакцию с водой, превращаясь в NH4. При внесении карбамида важно, чтобы аммоний удержался частичками почвы. Для этого после его внесения производится обработка грунта. Если этого не сделать, аммоний в скором времени преобразуется в аммиак и улетучится в атмосферу.


Внесение удобрений возможно не только весной, но и осенью. При снижении температуры до +5°C, микроорганизмы останавливают активную деятельность, в результате чего аммоний остается в неизменной форме до весны, избегая потерь.

селитра


Другой процесс, приводящий к потерям азота, называется выщелачиванием. Во время выщелачивания нитраты растворяются в воде и уходят вместе с ней в более глубокие слои почвы. Чем лучше почва поглощает воду, тем быстрее происходит выщелачивание. Поэтому на песчаных почвах потери нитратов больше, чем на глинистых.


Чтобы решить эту проблему, на почвах, которые легко пропускают воду, внесение азотных удобрений необходимо осуществлять перед самым посевом или в период активного роста растений, отдавая предпочтение внекорневой подкормке. Иначе выпадение обильных осадков на таких почвах может свести на нет все усилия по внесению своевременной подкормки, вымывая внесенные удобрения.


Кроме того, азот потребляется бактериями и микроорганизмами. Так, аэробные бактерии в процессе своей жизнедеятельности утилизируют кислород из нитрата NO3, преобразовывая азот в газообразную форму, которая быстро улетучивается в атмосферу. Этот процесс называется денитрификацией.


Особенности потребления азота растениями


Азот поглощается растением не только через корни, но и через листья. При этом основная часть питательных элементов все же усваивается через корневую систему, а внекорневая подкормка является скорее вспомогательным способом внесения азота.


Корни растений поглощают азот в виде аммония (NH4) и нитрата (NO3). То, в какой форме азот дойдет до растения, зависит от почвы: ее кислотности, способности пропускать воду, живущих в ней микроорганизмов. К примеру, при большом количестве аэробных бактерий, растения будут поглощать больше аммония. А деятельность нитрифицирующих бактерий, наоборот, приводит к большему содержанию нитратов. При низкой температуре азот может быть поглощен растениями даже в виде мочевины.


Разные культуры отдают предпочтение разным формам азота. К примеру, рис больше потребляет аммоний (NH4). Рапс и соя более требовательны к наличию серы, которая является синергистом азота. Поэтому, чтобы азот лучше усваивался этими культурами, необходимо больше внимания уделять содержанию в почве серы и при необходимости вносить ее дополнительно (например, в виде листовых подкормок сульфатом магния). А вот зерновые с одинаковым удовольствием поглощают все формы азота.


Зависимость растения от азота проявляется не сразу, а в период активного роста. К примеру, первичная корневая система пшеницы развивается за счет питательных веществ самого зерна. А вот через месяц, когда появляется вторичная корневая система, значение азота возрастает.

Если этот период сопровождается низкими температурами или засухой, растение испытывает сильный стресс, скорость его роста замедляется. Даже при достаточном количестве азота в почве, он не усваивается должным образом через корневую систему. Например, это явление заметно в период ночных похолоданий. В таком случае может понадобиться применение внекорневой (листовой) подкормки.


Азот, внесенный этим способом, впитывается листьями намного быстрее, чем при корневой подкормке. Но количество питательных элементов, которые растение может усвоить таким образом, ограниченно.


Чаще всего листовая подкормка проводится с помощью раствора карбамида. Мочевина не вызывает у растений стресса. При умеренном внесении она не вредит листьям, но при повышенных дозах могут быть ожоги, поэтому с карбамидом в таких случаях необходимо вносить сульфат магния. Также азот повышает качество семян, увеличивая в них содержание белков и клейковины.


Внесение карбамида часто сочетают с обработкой пестицидами, с подкормкой другими полезными элементами, например, серой и магнием. По сути, любая обработка растений может сочетаться с подкормкой мочевиной – достаточно добавить карбамид в рабочий раствор. Это снизит стресс, получаемый растением от химикатов, и увеличит пропускные свойства листьев, усиливая эффективность вносимых компонентов баковой смеси.


Именно дробное внесение азота является приоритетным и окажет наиболее ощутимый положительный эффект. Небольшие дозы азота, внесенные в ключевые фазы роста растения, обеспечат высокий урожай и минимизируют потери азота. На следующей схеме показано правильное распределение внесение азота для озимой пшеницы:

Потребность растений в азоте в разные периоды развития.



Для получения оптимального количества урожая важно правильно подобрать форму внесения удобрения. К примеру, вместо разбрасывания карбамида ранней весной, для озимой пшеницы более эффективной является внекорневая подкормка с помощью селитры или КАС.


Кроме формы внесения, важную роль играет правильно подобранный период времени. Основная цель – уловить время, когда растение возобновит весеннюю вегетацию и еще не начнет испытывать азотное голодание. Следование этому совету сведет к минимуму потери питательных веществ.


Если говорить о пшенице, внесение азота обязательно должно проводиться в фазе кущения.


Альтернативные источники азота


Внесение азотных удобрений – важная, но не дешевая процедура. Поэтому многие фермеры ищут альтернативные источники азота. Самый известный из таких способов – использование в севообороте бобовых культур.


В клубеньках, образующихся на корнях бобовых растений, обитают симбиотические азотфиксирующие бактерии. Эти микроорганизмы обладают уникальной способностью связывать молекулы азота из воздуха, используя их для образования аммиака и нитритов. Таким образом, они на 70-80% обеспечивают бобовые культуры необходимым азотом. После сбора урожая весь азот, который содержался в клубеньках, остается в почве, обогащая ее. Например, горох и соя оставляют после себя 50-90 кг азота на один гектар, и таким образом можно получить азотные удобрения буквально из воздуха.

Клубеньки на корнях бобового растения


В качестве удобрений можно и нужно использовать растительные остатки выращиваемых культур и отходы животного происхождения, если такие имеются в хозяйстве. Чем больше разнообразие используемых органических удобрений, тем лучше. Минерализуясь, они высвобождают питательные элементы, а также увеличивают содержание полезной микрофлоры в почве.


Азотистый обмен почвы – это круговорот в почве азота, который присутствует там не только в виде простого вещества (газа – N2), но и в виде ионов: нитритов (), нитратов () и аммония (). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние атмосферы, вымывание из почвы различных веществ (рис. 1.1).

Очень большую роль в круговороте азота играют почвенные микроорганизмы. Они способны снижать концентрации азотсодержащих веществ, губительные для других живых организмов. Они могут переводить токсичный для живых существ аммиак в менее токсичные нитраты и в биологически инертный атмосферный азот. Таким образом, микрофлора почвы способствует поддержанию стабильности её химических показателей.

Роль почвенных микроорганизмов в круговороте азота

Запасы азота в природе очень велики. Общее содержание этого элемента в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. В воздухе азот присутствует в виде газа N2. Однако газ азот (N2), содержание которого в атмосфере достигает 78 % по объёму, эукариоты сами по себе ассимилировать не могут. А уникальной способностью превращать N2 в азотсодержащие соединения обладают некоторые бактерии, которые называют азотфиксирующими, или азотфиксаторами. Фиксация азота возможна многими бактериями и цианобактериями. Они живут или в почве, или в симбиозе с растениями, или с несколькими разновидностями животных. Например, семья бобовых растений (Fabaceae) содержит такие бактерии на своих корнях. Типичным представителем свободноживущих азотфиксирующих микроорганизмов является Azotobacter – грамотрицательная бактерия, связывающая азот воздуха. Продукты фиксации азота – аммиак (NH3), нитриты.

рис_1_1.tif

Рис. 1.1. Общий цикл азота в биосистемах

рис_1_2.tif

Рис. 1.2. Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов. Этот процесс носит название нитрификации, он осуществляется нитрифицирующими бактериями. Однако нет такой бактерии, которая бы прямо превращала аммиак в нитрат. В его окислении всегда участвуют две группы бактерий: одни окисляют аммиак, образуя нитрит, а другие окисляют нитрит в нитрат. Наиболее известные виды нитрифицирующих бактерий –
это Nitrosomonas и Nitrobacter. Nitrosomonas окисляет аммиак:

37.wmf

Nitrobacter окисляют нитрит:

38.wmf

Бактерии, окисляющие аммиак, поставляют субстрат для бактерий, окисляющих нитрит. Поскольку высокие концентрации аммиака оказывают на Nitrobacter токсическое действие, Nitrosomonas, используя аммиак и образуя кислоту, тем самым улучшает и условия существования для Nitrobacter.

Нитрификаторы – грамотрицательные бактерии, принадлежащие к семейству Nitrobacteracea. Им не нужны восстановленные соединения углерода для нормального роста и размножения, они способны восстанавливать CO2 до органических соединений, используя для этого энергию окисления минеральных соединений азота – аммиака и нитритов. Таким образом, нитрификато-
ры – бактерии, которые способны питаться исключительно неорганическими соединениями и осуществляют процесс хемосинтеза, синтеза органических соединений из минеральных. Хемосинтез – путь усвоения живыми существами неорганического углерода, альтернативный фотосинтезу. Растения используют нитраты для образования разных органических веществ. Животные потребляют с пищей растительные белки, аминокислоты и др. азотсодержащие вещества. Таким образом, растения делают органический азот доступным для других организмов-консументов.

Все живые организмы поставляют азот в окружающую среду. С одной стороны, все они выделяют в ходе жизнедеятельности продукты азотистого обмена: аммиак, мочевину и мочевую кислоту. Последние два соединения разлагаются в почве с образованием аммиака (который при растворении в воде дает ионы
аммония).

36.wmf

Мочевая кислота, выделяемая птицами и рептилиями, также быстро минерализуется особыми группами микроорганизмов с образованием NH3 и СО2. С другой стороны, азот, включённый в состав живых существ, после их гибели подвергается аммонификации (разложение содержащих азот сложных соединений с выделением аммиака и ионов аммония()) и нитрификации.

Продукты нитрификации – и в дальнейшем подвергаются денитрификации. Этот процесс целиком происходят благодаря деятельности денитрифицирующих бактерий, которые обладают способностью восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2). Эти газы свободно переходят в атмосферу.

39.wmf

В отсутствии кислорода нитрат служит конечным акцептором водорода. Способность получать энергию путем использования нитрата как конечного акцептора водорода с образованием молекулы азота широко распространена у бактерий. Временные потери азота на ограниченных участках почвы, несомненно, связаны с деятельностью денитрифицирующих бактерий. Таким образом, круговорот азота невозможен без участия почвенной микрофлоры.

Усваиваемые соединения азота могут накапливаться в почве в неорганической форме (нитрат) или могут быть включены в живой организм как органический азот. Ассимиляция и минерализация определяет поглощение соединений азота из почвы, объединение их в биомолекулы растений и конверсию в неорганический азот после отмирания растений, соответственно. Ассимиляция – переход неорганического азота (типа нитрата) в органическую форму азота как, например, аминокислоты. Нитрат переходит с помощью ферментов сначала в нитрит (редуктаза нитрата), затем в аммиак (редуктаза нитрита). Аммиак входит в состав аминокислот.

Факторы, влияющие на круговорот азота в антропогенных биоценозах

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияют многочисленные антропогенные факторы. Во-первых, это кислотные дожди – явление, при котором наблюдается понижение pH дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 – из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:

Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:

Далее оксид азота реагирует с атмосферной водой с образованием азотной и азотистой кислот:

2NO2 + H2O = HNO3 + HNO2

В каплях атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву. Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, – это технологические выбросы. Оксиды азота – одни из самых распространенных загрязнителей воздуха. Неуклонный рост производства аммиака, серной и азотной кислоты напрямую связан с увеличением объёма отходящих газов, а, следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов – переудобрение почв нитритами, нитратами (селитрой) и органическими удобрениями. И, наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактерииями в нитраты.

Актуальность изучения круговорота азота в антропогенных биоценозах

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние.

Очень важно изучать и контролировать круговорот азота, особенно в антропогенных биоценозах, потому что небольшой сбой в какой-либо части цикла может привести к серьёзным последствиям: сильным химическим загрязнениям почв, зарастанию водоемов и загрязнению их продуктами разложения отмершей органики (аммиак, амины и др.), высокому содержанию растворимых соединений азота в питьевой воде.

Для изучения особенностей круговорота азота можно использовать комплексную методику по изучению содержания ионов нитритов (), нитратов () и аммония () в почве и её микробиологических показателях.

Читайте также: