Как связаны между собой основные характеристики волны от чего они зависят кратко

Обновлено: 04.07.2024

Все тела состоят из частиц, которые взаимодействуют друг с другом. Причём неважно в каком состоянии находится объект: в жидком, твердом или газообразном. Если одна частица начнёт совершать колебательные движения, то в результате межчастичного взаимодействия, это движение распространится и на другие частицы. Причем скорость этого распространения будет одинаковой для всех близлежащих к источнику колебаний частиц.

Такой процесс распространения колебаний в пространстве за определенный временной промежуток называется волновым процессом. А последовательное возникновение колебаний в близлежащих к источнику возбуждения точках называется волной.

Наглядный пример распространения колебаний – волны на поверхности воды. Если кинуть камень в водоём, то в месте его падения образуются последовательные овальные волны небольшой амплитуды. Расстояния между гребнями при этом будут примерно одинаковыми. Но, если же рядом с местом падения камня будет находится лист кувшинки, то волны не изменят его положения, а лишь заставят колебаться вверх и вниз.

Важно понимать, что возбуждение волны не провоцирует переноса вещества. Волна способствует лишь распространению колебаний.

Скорость волны

Любой физический процесс характеризуется временем. Так и волна распространяется не мгновенно, а с конечной скоростью. Поэтому важной характеристикой распространения колебаний является скорость волны.

Поперечные волны

Возьмём какой-нибудь эластичный шнур и закрепим один его конец. Второй конец возьмём в руку и зададим колебательные движения (то есть раскачаем его). Зафиксируем, что по длине всего шнура побежит волна, которая постепенно достигнет закрепленного конца. Чем объясняется это наблюдение? А тем, что каждый небольшой объем шнура обладает собственной массой и упругостью. При вынужденной деформации, которая задаётся колебательной волной, на каждом участке появляются силы упругости, стремящиеся вернуть шнур в первоначальное положение. Почему колебание не блокируются сразу? Потому что каждый участок обладает инертностью, которая постепенно преодолевается силами упругости (эффект затухания). Колебания останавливаются, когда деформация достигает максимального отклонения от положения равновесия. Чем сильнее натяжение шнура, тем больше скорость распространения волны.

Поперечными называются волны, частицы которых колеблются в плоскости, перпендикулярной направлению распространения возбуждения.

Особенность поперечного колебания

Распространение поперечной волны можно наглядно продемонстрировать с помощью цепочки одинаковых металлических шариков, соединенных между собой пружинами и подвешенных на нитях к некоторому основанию. В такой системе присутствует чёткое разделение сил упругости и свойств инертности: масса сосредоточена в шарах, а упругость – в пружинах. Однако в рассмотрении волнового движения этим допущением можно пренебречь.

Теперь отклоним левый крайний шар вдоль некоторой оси Y, которая распространяется перпендикулярно металлическим шарикам. Заметим, что при этом соединительная пружинка начнёт деформироваться и провоцировать движение второго шарика. Причём это движение будет ориентировано по той же траектории, но не будет синхронно с первым.

Мы выяснили, что если привести в движение первый шар, то второй начнёт колебаться вслед за первым с той же частотой, но с отставанием по фазе. Соответственно, пружина второго шара спровоцирует движение третьего за счет сил упругости и т.д. В итоге, все подвешенные шары начнут двигаться с одной и той же частотой, но с разными фазами. Если первый шар начнёт колебаться с периодом T, то все последующие шарики будут отставать от него на четверть периода. Это наглядный пример распространения поперечной волны. Она может наблюдаться только в твёрдых телах, так как колебательные движения в жидкостях или газах не провоцируют появления сил упругости.

Колебания цепочки из шаров

Продольные волны

Если колебания происходят за счет частиц, колеблющихся вдоль распространения волны, то говорят о продольных волнах.

Продольная волна

Рассмотрим пример продольного распространения колебаний. Возьмём мягкую длинную пружину большого диаметра. Зафиксируем один конец, а по второму ударим рукой. Мы заметим, как последовательное сжатие будет двигаться по пружине. Если ударить по краю несколько раз, то у нас получится возбудить волну, которая будет представлять собой совокупность сжатий и растяжений, двигающихся друг за другом. Таким образом, отличительная черта продольных колебаний – деформация сжатия и растяжения. Продольные волны могут наблюдаться как в твёрдых телах, так и в газах и жидкостях.

деформация пружины при ударе

А теперь вернёмся к предыдущему опыту с металлическими шариками. Можно ли наблюдать там продольную волну? Да, можно. Зафиксируем шары таким образом, чтобы они могли двигаться только в одном направлении – вдоль цепочки. Спровоцируем колебательные движения первого шара с периодом Т. Увидим, что вдоль всей цепочки побежит продольная волна, представляющая собой чередующиеся уплотнения и разрежения компонентов системы.

продольное колебание в цепочке шаров

Энергия волны

Длина волны

Опять же обратимся к эксперименту с шарами. Обратим внимание на движение первого и тринадцатого шаров при распространении поперечной волны. Их колебания будут идентичными. В таком случае говорят, что движения шаров происходят в одинаковых фазах.

Отсюда получаем формулировку новой характеристики. Длина волны – это кратчайшее расстояние между двумя точками, которые колеблются в одинаковых фазах. Рассчитывается длина волны следующим соотношением: λ=υT. Таким образом, длина волны – это расстояние, на которое распространяется волна за время, соответствующее одному периоду.

Отсюда делаем вывод, что частицы будут колебаться в одинаковых фазах тогда, когда расстояние между ними будет равно nλ, где n – целое число.

Вспомним, что период и частота связаны формулой: T=1/ν. Поэтому выражение для длины волны можно переписать как: λ=υ/ν.

§ Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

§ Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом.

Луч указывает направление распространения волны.


В зависимости от формы фронта волны различают волны плоские, сферические и др.

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны. Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня

Основными характеристиками волны:

§ амплитуда (A) — модуль максимального смещения точек среды из положений равновесия при колебаниях;

§ период (T) — время полного колебания (период колебаний точек среды равен периоду колебаний источника волны)



где t — промежуток времени, в течение которого совершаются N колебаний;


§ частота (ν) — число полных колебаний, совершаемых в данной точке в единицу времени


Частота волны определяется частотой колебаний источника;

§ скорость (υ) — скорость перемещения гребня волны (это не скорость частиц!)

§ длина волны (λ) — наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника



Для характеристики энергии, переносимой волнами, используется понятие интенсивности волны (I), определяемой как энергия (W), переносимая волной в единицу времени (t = 1 c) через поверхность площадью S = 1 м 2 , расположенную перпендикулярно к направлению распространения волны:



Другими словами, интенсивность представляет собой мощность, переносимую волнами через поверхность единичной площади, перпендикулярно к направлению распространения волны. Единицей интенсивности в СИ является ватт на метр в квадрате (1 Вт/м 2 ).


3. Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой λ. По аналогии с возникающими волнами в воде от брошенного в неё камня — расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.). Величина , обратная длине волны, называется волновым числом и имеет смысл пространственной частоты.

Получить соотношение, связывающее длину волны с фазовой скоростью (v) и частотой(f) можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний T, поэтому


Фа́зовая ско́рость — скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления.

Основная формула, определяющая фазовую скорость (монохроматической) волны в одномерном пространстве или фазовую скорость вдоль волнового вектора для волны в пространстве большей размерности:


которая является прямым следствием того факта, что фаза плоской волны в однородном пространстве есть


для одномерного случая


или для размерности, большей единицы.

1. ЗВУКОВЫЕ ВОЛНЫ - механические колебания, частоты которых лежат в пределах звуковых частот. Могут распространяться в любой среде. Они излучаются телом, находящимся в этой среде и совершающим звуковые колебания.
Для гармонической звуковой волны длина волны λ определяется соотношением
λ = νT,
где ν - скорость звуковых волн в среде, а Т - период волны.

Рассмотрим основные характеристики волны.

§ Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

§ Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом.

Луч указывает направление распространения волны.


В зависимости от формы фронта волны различают волны плоские, сферические и др.

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны. Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня

Основными характеристиками волны:

§ амплитуда (A) — модуль максимального смещения точек среды из положений равновесия при колебаниях;

§ период (T) — время полного колебания (период колебаний точек среды равен периоду колебаний источника волны)



где t — промежуток времени, в течение которого совершаются N колебаний;


§ частота (ν) — число полных колебаний, совершаемых в данной точке в единицу времени


Частота волны определяется частотой колебаний источника;

§ скорость (υ) — скорость перемещения гребня волны (это не скорость частиц!)

§ длина волны (λ) — наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника



Для характеристики энергии, переносимой волнами, используется понятие интенсивности волны (I), определяемой как энергия (W), переносимая волной в единицу времени (t = 1 c) через поверхность площадью S = 1 м 2 , расположенную перпендикулярно к направлению распространения волны:



Другими словами, интенсивность представляет собой мощность, переносимую волнами через поверхность единичной площади, перпендикулярно к направлению распространения волны. Единицей интенсивности в СИ является ватт на метр в квадрате (1 Вт/м 2 ).


3. Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой λ. По аналогии с возникающими волнами в воде от брошенного в неё камня — расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.). Величина , обратная длине волны, называется волновым числом и имеет смысл пространственной частоты.

Получить соотношение, связывающее длину волны с фазовой скоростью (v) и частотой(f) можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний T, поэтому


Фа́зовая ско́рость — скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления.

Основная формула, определяющая фазовую скорость (монохроматической) волны в одномерном пространстве или фазовую скорость вдоль волнового вектора для волны в пространстве большей размерности:


которая является прямым следствием того факта, что фаза плоской волны в однородном пространстве есть


для одномерного случая


или для размерности, большей единицы.

1. ЗВУКОВЫЕ ВОЛНЫ - механические колебания, частоты которых лежат в пределах звуковых частот. Могут распространяться в любой среде. Они излучаются телом, находящимся в этой среде и совершающим звуковые колебания.
Для гармонической звуковой волны длина волны λ определяется соотношением
λ = νT,
где ν - скорость звуковых волн в среде, а Т - период волны.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Радио, Wi-Fi и вышки 5G — все это электромагнитные волны. Разбираемся, что это такое и рушим мифы про это странное явление.

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Волны: что это и какими бывают

Давайте сначала разберемся, что такое волна.

Волна — это распространение колебаний в пространстве.

Волны бывают механическими и электромагнитными.

Главные герои этой статьи — электромагнитные волны. Немного удовлетворим ваше любопытство и скажем, что это те волны, которые мы потрогать не можем. Но все остальное чуть позже. Главное — терпение.

Механические волны — это те волны, колебания которых можно почувствовать физически, потому что они распространяются в упругой среде.

Представьте, что вы стоите на железнодорожных путях. Нет, вы не Анна Каренина, вы — экспериментатор.

Если к вам приближается поезд, вы рано или поздно его услышите. Вернее, услышите, как только звуковая волна со скоростью 𝑣 = 330 м/с достигнет ваших ушей.

Если приложить ухо к рельсу, то это произойдет значительно быстрее, потому что скорость звука в твердом теле больше, чем в воздухе. Кстати, под водой скорость звука больше, чем в воздухе, но меньше, чем в твердых телах.

Если вы когда-нибудь трогали музыкальную колонку, то знаете, что звук чувствуется и на ощупь.

Волны также принято делить на продольные и поперечные:


продольные и поперечные волны

Продольные — это те волны, у которых колебание происходит вдоль направления распространения волны.

  • Дрожание окон во время грома или сейсмические волны (землетрясения) — это пример продольных волн.

Поперечные — волны, у которых колебание происходит поперек направления распространения волны.

  • Представьте, что вы запустили волну из людей на стадионе — она будет поперечной.
  • Видимый свет и дрожание гитарной струны — тоже поперечные волны.

Морская волна — продольная или поперечная?

На самом деле в ней есть и продольная, и поперечная составляющие, поэтому ее нельзя отнести к конкретному типу.

Электромагнитные волны

Увы, мы не можем потрогать руками электромагнитные волны. Осталось разобраться, как это так: волна есть, а возможности пощупать ее — нет.

Электромагнитная волна появляется благодаря электромагнитному полю.

Вот есть электрическое поле — его создает любой электрический заряд. Есть магнитное поле — оно возникает из-за движущегося заряда. А их взаимодействие — это электромагнитное поле.

Если совсем честно, то электрическое и магнитное поле не могут существовать в отдельности, потому что частицы всегда есть электрическое поле и она всегда худо-бедно да движется. Рассмотрение в отдельности электрических и магнитных полей может быть только в теоретической физике. В реальных инженерных задачах рассматривается обязательно электромагнитное поле.

Электромагнитная волна — это распространение электромагнитного поля. А если конкретнее, то электрическое поле колеблется (меняет свое значение и направление вектор напряженности электрического поля), магнитное поле колеблется (меняет значение и направление вектор магнитной индукции), эти колебания распространяются, и получается электромагнитная волна.


что такое электромагнитная волна

К электромагнитным волнам относятся радио, Wi-Fi и даже свет.

Разве свет не из частиц состоит?

Ничего от вас не скроешь. Дело в том, что свет — это как Гермиона с маховиком времени в двух местах сразу — одновременно и частица и волна.

Можете перечитать фразу выше, чтобы с ней смириться. Это не шутка. Экспериментально давно обнаружено, что свет в одних экспериментах ведет себя, как частица, а в других, как волна.

Все это безумство называется корпускулярно-волновым дуализмом. И это работает не только со светом, но и с другими волнами. В общем, у физики тоже бывает раздвоение личности.

Характеристики электромагнитной волны

Чтобы изучать любое явление, его нужно как-то охарактеризовать.

Длина волны

Обозначается эта величина буквой λ и измеряется в метрах.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [-]

Для электромагнитных волн есть целая шкала длин волн. Она показывает длину волны и частоту для разных типов электромагнитных волн.


шкала длины волн

Частота

Частота — это величина, обратно пропорциональная периоду. Она определяет, сколько колебаний в единицу времени совершила волна.

Формула частоты колебания волны

υ = N/t = 1/T

N — количество колебаний [-]

Скорость

Также важной характеристикой распространения волны является ее скорость.

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия.

Формула скорости

𝑣 = S/t

Переходя к волнам, можно провести следующие аналогии:

А для скорости даже аналогия не нужна — скорость и Африке скорость.

Формула скорости волны

𝑣 = λ/T

λ — длина волны [м]

Для электромагнитной волны скорость равна скорости света — 𝑣 = 3*10^8 м/с. Поэтому формулу скорости чаще всего используют для нахождения из нее длины волны или периода.

Задачка

Определить цвет освещения, проходящий расстояние, в 1000 раз больше его длины волны за 2 пс.

Решение:

Для начала переведем 2 пикасекунды в секунды — это 2*10^-12 с.

Теперь возьмем формулу скорости

По условию S = 1000λ

Выражаем длину волны

Подставляем значения скорости света и известного нам времени:

λ = 3*108* 2*10-121000 =600 нм

И соотносим со шкалой видимого света


шкала видимого света

Из шкалы видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!

А теперь давайте немного о распространенных заблуждениях. Присаживайтесь поудобнее — этот разговор, к сожалению, не на пару минут.

Миф 1. Вышки 5G вредны для нашего здоровья

Одна из теорий против 5G гласит, что новый тип связи может стать причиной раковых заболеваний. Справедливости ради — такие же обвинения не раз поступали в адрес 2G, 3G, 4G и более ранних поколений беспроводных сетей.

Стандарт 5G может использовать разные частотные диапазоны. Как правило, это низкий диапазон 600 МГц, а также средние частоты 2,5 ГГц, 3,5 ГГц и 3,7–4,2 ГГц.

Диапазон от 30 ГГц (миллиметровые волны) относится к так называемому спектру крайне высоких частот — и именно он вызывает большинство опасений по поводу вреда 5G для здоровья человека. Все еще недостаточно исследований, которые изучают влияние высоких частот на организм.


электромагнитный спектр волн

Тем не менее, известно, что даже в верхнем диапазоне излучение 5G не обладает достаточной энергией для разрушения человеческой ДНК или влияния на клетки. А значит, не может вызвать рак и не представляет опасность для нашего организма. По этой же причине нельзя верить в теорию, что 5G убивает птиц — этому излучению просто не хватит сил, чтобы кого-то убить.

К опасному излучению относятся волны, распространяемые на частотах от 30 ПГц (петагерц) — утрафиолетовые, рентгеновские и гамма-лучи. Они могут влиять на атомную структуру клеток и разрывать химические связи в ДНК. Именно поэтому, например, врачи советуют избегать долгого пребывания на солнце.

Миф 2. Шапочки из фольги защищают от вредного излучения

Кстати, они наоборот любую электромагнитную волну усиливают. Это доказали студенты из MIT (Массачусетский технологический институт), которые исследовали это опытным путем.

Ребята установили антенну в четырех частях от головы добровольцев: на лбу, затылке, висках и в районе мозга. И сравнивали показатели радиосигнала в шапочке для фольги и без нее. Оказалось, что сигнал не ослабляется, а усиливается. Так что шапочка вас не спасет от вредного излучения, а наоборот — только усилит сигнал.

Миф 3. Микроволновки убивают еду, и она становится неживой

Электромагнитный фон возле СВЧ-печей выше больше, чем природный более, чем в миллион раз, но вреда человеку не наносит. Санитарные требования к этим приборам очень жёсткие, поэтому опасности микроволновка не представляет. Например, благодаря системе блокировки дверцы генерация микроволнового излучения прекращается, когда дверца открыта. Также в микроволновке обязательно должна быть система защиты от утечки излучения. Гораздо опаснее электромагнитные излучения от солнца или солярия, потому что там есть ультрафиолет, который легко повреждает клетки кожи человека.

Продукты становятся теплее за счёт нагревания в них воды. И когда мы их греем, могут образовываться радикалы — но это происходит при любом способе теплового воздействия. Например, при жарке могут образовываться ещё и канцерогены.

Более правильное определение: Волна — это явление распространения в пространстве с течением времени возмущения физической величины.

Большинство волн по своей природе являются не новыми физическими явлениями, а лишь условным названием для определённого вида коллективного движения. Так, если в объёме газа возникла звуковая волна, то это не значит, что в этом объёме появились какие-то новые физические объекты. Звук — это лишь название для особого скоординированного типа движения тех же самых молекул. То есть большинство волн — это колебания некоторой среды. Вне этой среды волны данного типа не существуют (например, звук в вакууме).

Некоторые явления также называют волнами, однако каждая из них обладают собственной спецификой. Так, с определёнными оговорками, говорят про: температурные волны, волны вероятности электрона и других частиц, волны горения, волны химической реакции, волны плотности реагентов, волны плотности транспортных потоков.

Отметим, что явления, выглядящие как волны, но не способные сами распространяться (как, например, песчаные дюны), волнами не являются.

Содержание

Характеристики волны

Временна́я и пространственная периодичности

В отличие от стационарного колебания волны имеют две основные характеристики:

  • временну́ю периодичность — скорость изменения фазы с течением времени в какой-то заданной точке, называемую частотой волны f ;
  • пространственную периодичность — скорость изменения фазы в определённый момент времени с изменением координаты — длина волны λ .

Временная и пространственная периодичности взаимосвязаны, что отражено в законе дисперсии, который определяет, как именно волны будут выглядеть и распространяться. В упрощённом виде для линейных волн эта зависимость имеет следующий вид [2] :

f = c/\lambda\,

где c — скорость распространения волны в данной среде.

Интенсивность волны

О силе волны судят по её амплитуде. В отличие от колебания амплитуда волны — скалярная величина.

Но для количественной характеристики переносимой волной энергии используется вектор плотности потока энергии I . Его направление совпадает с направлением переноса энергии, а абсолютная величина равна количеству энергии, переносимой волной за единицу времени через единичную площадку, перпендикулярную направлению вектора. При небольших амплитудах:

I = k A^2\,

где A — амплитуда; k — коэффициент пропорциональности, зависящий от природы волны и свойств среды, где эта волна распространяется.

Классификации волн

Имеется множество классификаций волн, различающиеся по своей физической природе, по конкретному механизму распространения, по среде распространения и т. п.

В зависимости от физической среды, в которой распространяются волны, их свойства различны и поэтому различают:

    (радиоволны, свет, рентгеновские лучи); (звук, сейсмические волны); ; ;
  • объёмные волны (распространяющиеся в толще среды); .
  • продольные волны (волны сжатия, P-волны) — волна распространяется параллельно колебаниям частиц среды (звук);
  • поперечные волны (волны сдвига, S-волны) — частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);
  • волны смешанного типа.

По виду фронта волны (поверхности равных фаз):

  • плоская волна — плоскости фаз перпендикулярны направлению распространения волны;
  • сферическая волна — поверхностью фаз является сфера;
  • цилиндрическая волна — поверхность фаз напоминает цилиндр.

По демонстрируемым волнами физическим проявлениям:

  • линейные волны — волны с небольшой амплитудой, свойства которых описываются простыми линейными зависимостями; — волны с большими амплитудами, что приводит к возникновению совершенно новых эффектов и существенно изменяет характер уже известных явлений; (уединённые волны); или нормальные разрывы.

По постоянству во времени различают:

  • одиночная волна — короткое одиночное возмущение (солитоны);
  • волновой пакет — это ряд возмущений, ограниченных во времени с перерывами между ними. Одно беспрерывное возмущение такого ряда называется цуг волн. В теории волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени;
  • Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью.
  • Если же фазовая скорость волны зависит от её частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счет дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счет сложения волн возникают все новые максимумы, которые передвигаются вперед и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стекла и жидкости.
  • В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причем возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте.

Волновые уравнения

Математическое описание волн основывается на представлении о них, как о пространственно распространяющихся колебаниях, и в общем виде записывается:

~\mathbf u = \mathbf u\left(\mathbf r,t\right)

где u — отклонение от некоего среднего положения в точке r во время t .

Более определённый вид уравнения зависит от типа волны.

Гармоническая волна

Изменение колеблющейся величины u для гармонически распространяющейся волны в любой точке описывается формулой:

" width="" height="" />
или " width="" height="" />

где A — амплитуда, t — время, а T — период волны.

В любой другой точке, расположенной на расстоянии r от первой в направлении распространения волны, изменение u происходит с опозданием на время t1 :

u \left( r,t \right) = A \sin </p>
<p> \left( t - t_1 \right) = A \sin \left( t - \right)
где c — скорость распространения волны в данной среде.

Лучи волны

Расчёт формы лучей при небольшой длине волны — по сравнению с препятствиями, поперечными размерами фронта волны, расстояниями до схождения волн и т. п. — позволяет упростить сложный расчёт распространения волны. Это применяется в геометрической акустике и геометрической оптике.

Происхождение волн

Волны могут генерироваться различными способами.

  • Генерация локализованным источником колебаний (излучателем, антенной).
  • Спонтанная генерация волн в объёме при возникновении гидродинамических неустойчивостей. Такую природу могут иметь, например, волны на воде при достаточно большой скорости ветра, дующего над водной гладью.
  • Переход волн одного типа в волны другого типа. Например, при распространении электромагнитных волн в кристаллическом твёрдом теле могут генерироваться звуковые волны.

Общие свойства волн

Распространение в однородных средах

При распространении волн изменения их амплитуды и скорости в пространстве и времени зависят от свойств анизотропности среды, сквозь которую проходят волны.

Чаще волны в некоторой среде затухают, что связано с диссипативными процессами внутри среды. Но в случае некоторых специальным образом подготовленных метастабильных сред амплитуда волны может, наоборот, усиливаться (пример: генерация лазерного излучения).

Групповая и фазовая скорости совпадают только для линейных волн. Для нелинейных волн групповая скорость может быть как больше, так и меньше фазовой скорости. Однако когда речь идёт о скоростях, близких к скорости света, проявляется заведомое неравноправие между групповой и фазовой скоростями. Фазовая скорость не является ни скоростью движения материального объекта, ни скоростью передачи данных, поэтому она может превышать скорость света, не приводя при этом ни к каким нарушениям теории относительности. Групповая же скорость характеризует скорость движения сгустка энергии, переносимой волновым пакетом, и потому не должна превышать скорость света. Однако при распространении волны в метастабильной среде удаётся в определённых случаях добиться групповой скорости, превышающей скорость света.

Поскольку волна переносит энергию и импульс, то её можно использовать для передачи информации. При этом возникает вопрос о максимально возможной скорости передачи информации с помощью волн данного типа (чаще всего речь идёт об электромагнитных волнах). При этом скорость передачи информации никогда не может превышать скорости света, что было подтверждено экспериментально даже для волн, в которых групповая скорость превышает скорость света.

Пространственные размеры волны

Когда говорят о пространственном размере волны, то имеют в виду размер той области пространства, где амплитуду колебания нельзя считать (в рамках рассматриваемой задачи) пренебрежимо малой. Большинство волн могут, теоретически, обладать сколь угодно большим размером, как в направлении движения, так и поперёк него. В реальности же все волны обладают конечными размерами. Продольный размер волны, как правило, определяется длительностью процесса излучения волны. Поперечный же размер определяется рядом параметров: размером излучателя, характером распространения волны (например, плоская, сферически расходящаяся волна и т. д.).

Некоторые виды волн, в частности, солитоны, являются ограниченными волнами по построению.

Поляризация волн

Если в поперечной волне нарушается симметрия распределения возмущений (например, напряжённость электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения, то мы имеем дело с поляризованной волной. В продольной волне поляризация возникнуть не может, т. к. распространение возмущения всегда совпадает с направлением распространения волны.

Взаимодействие с телами и границами раздела сред

Если на пути волны встречается какой-либо дефект среды, тело или граница раздела двух сред, то это приводит к искажению нормального распространения волны. В результате этого часто наблюдаются следующие явления:

Конкретные эффекты, возникающие при этих процессах, зависит от свойств волны и характера препятствия.

Наложение волн

Излучения с разной длиной волны, но одинаковые по физической природе, могут взаимодействовать друг с другом, интерферировать. При этом могут возникнуть следующие частные эффекты:

    ; ; — периодическое уменьшение и увеличение амплитуды суммарного излучения;
  • волновой пакет — образующиеся максимумы амплитуды имеют прерывистое распределение (волновой пакет Гаусса); — изменение длины и амплитуды волн при движении приёмника или источника излучения.

Конечный результат проявления от встречи волн зависит от их свойств: физической природы, когерентности, поляризации и т. д.

Направления исследований волн

  • Получение точных решений для различных нелинейных волн.
  • Распространение волн в случайных средах.

Примечания

  1. Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. — М.: Гос. издат. ф.— м. лит-ры, 1959, с. 144.
  2. ↑ Строго говоря, это равенство справедливо только для гармоничных волн.

Литература

  • Крауфорд Ф. Берклеевский курс физики, том 3, Волны.
  • Ландау Л. Д., Лифшиц Е. М. Курс теоретической физики, том 6, Гидродинамика. издание?
  • Уизем, Дж. Линейные и нелинейные волны — М.: Мир, 1977.
  • Физика. Большой энциклопедический словарь/Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1999. — С. 85—88. ISBN 5-85270-306-0 (БРЭ)

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Волны" в других словарях:

Волны — Волны: а одиночная волна; б цуг волн; в бесконечная синусоидальная волна; l длина волны. ВОЛНЫ, изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Основное свойство всех волн, независимо от их… … Иллюстрированный энциклопедический словарь

ВОЛНЫ — изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Наиболее важные и часто встречающиеся виды В. упругие волны, волны на поверхности жидкости и электромагнитные волны. Частными случаями упругих В.… … Физическая энциклопедия

ВОЛНЫ — ВОЛНЫ, по определению основателя волновой теории света Юнга (Joung, 1802), представляют такое колебательное движение, к рое распространяется через все точки среды, при чем после совершения колебания частицы среды прекращают свое движение.… … Большая медицинская энциклопедия

ВОЛНЫ — возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, напр., звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Большой Энциклопедический словарь

ВОЛНЫ — направленные возмущения в какой либо среде, движущиеся с конечной скоростью и переносящие энергию. Характерной их особенностью является то, что перенос энергии происходит без переноса вещества (хотя последний и может иметь место как побочное… … Геологическая энциклопедия

волны — см. волнение 2 Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011. волны сущ. • волнение • зыбь … Словарь синонимов

Волны — возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны (морские, звуковые и т. п.). Электромагнитные волны возбуждаются атомами, молекулами,… … Морской словарь

волны — алые (Городецкий); аметистовые (В.Иванов); быстрые (Лермонтов, Вербицкая); гибкие (Горький); грозные (Козлов); дремотные (Надсон, Рылеев); душистые (Надсон); застывшие (Бальмонт); злые (Андреев); золотые (Мережковский); изумрудно пенные (Белый);… … Словарь эпитетов

ВОЛНЫ — (1) (см.), распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества; (2) В. де Бройля проявляются при движении любой микрочастицей и отражают одновременное сочетание волновых и корпускулярных свойств… … Большая политехническая энциклопедия

Волны — Здесь описаны В.: а) водяные, б) воздушные звуковые, в) световые, г) электрические волны и д) математическая теория В. А) Волны в воде обыкновенно являются следствием косвенного удара ветра о воду. Поверхность воды от этого делается вогнутой, но… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Читайте также: