Как связаны гены и хромосомы кратко

Обновлено: 02.07.2024

Раздел ОГЭ: 2.1. … Гены и хромосомы. Нарушения в строении и функционировании клеток — одна из причин заболеваний организмов. …

Ген — это участок молекулы ДНК, содержащий информацию о первичной структуре одной белковой молекулы. Существуют также гены, содержащие информацию о структуре всех видов РНК, и регуляторные гены. Ген считается единицей наследственности .

Передача информации осуществляется с помощью генетического кода — соответствия между триплетами (тройками) нуклеотидов и аминокислотами. Это соответствие расшифровано и публикуется в виде таблиц генетического кода, универсального для всех живых существ на Земле. Последовательность триплетов нуклеотидов в ДНК (и комплементарная ей последовательность триплетов в иРНК) определяет последовательность аминокислот в белке. Например:

В длинных молекулах ДНК гены идут последовательно, образуя группы сцепления. Каждая такая молекула является основой для формирования хромосомы.

Хромосома — комплекс из молекулы ДНК и белков, способствующих её компактной укладке. Наиболее длинной ДНК является в период удвоения (репликации), происходящий перед делением клетки в интерфазе, т. е. в период жизни клетки между делениями.

Сначала разрываются водородные связи между цепями ДНК, потом цепи расходятся и к нуклеотидам каждой цепи подходят из раствора комплементарные нуклеотиды, затем вновь выстроенные нуклеотиды сшиваются в цепи с помощью фермента ДНК-полимеразы и образовавшиеся две двухцепочечные молекулы скручиваются, образуя спирали. Эти две одинаковые молекулы — хроматиды остаются связанными в точке, называемой центромерой. Так формируется двухроматидная хромосома. В начале деления каждая такая хромосома спирализуется. При этом нити ДНК накручиваются на специальные белки, формируются более короткие и толстые структуры — хромосомы становятся видны в световой микроскоп.

Гены

Митоз — способ деления клеток, обеспечивающий бесполое размножение, а также рост многоклеточных организмов,— состоит из 4 фаз.

В профазе растворяется оболочка ядра, элементы клеточного центра расходятся к полюсам клетки, формируя нити веретена деления, удвоенные хромосомы спирализуются.

В метафазе хромосомы окончательно спирализуются и выстраиваются на экваторе клетки с помощью нитей веретена деления, прикрепляющихся к их центромерам.

В анафазе центромеры, соединявшие сестринские хроматиды, делятся, и хроматиды с помощью сокращающихся нитей веретена деления расходятся к полюсам. С этого момента хроматиды можно называть самостоятельными однохроматидными хромосомами.

В телофазе у полюсов собираются комплекты хромосом, вокруг них формируются оболочки ядер, затем происходит разделение цитоплазмы и получаются две клетки.

Дочерние клетки содержат одинаковый набор хромосом и являются генетическими копиями материнской клетки.

хромосомы

Мейоз — особый способ деления, характерный для организмов, размножающихся половым путём, и приводящий к формированию половых клеток — гамет (у растений — спор). Гаметы способны к слиянию с образованием зиготы — первой клетки дочернего организма. Чтобы в клетках потомства набор хромосом не увеличивался каждый раз вдвое, в ходе мейоза происходит редукция — уменьшение числа хромосом в два раза.

Клетки организмов, размножающихся половым путём, содержат диплоидный — двойной — набор хромосом (2n), в котором каждая хромосома имеет пару — гомологичную хромосому с похожим набором генов (одна из гомологичных хромосом досталась от матери, другая — от отца). Такие клетки делятся последовательно два раза, причём каждое деление состоят из четырёх фаз.

В профазе I (первого деления) происходит то же, что в профазе митоза, кроме того, гомологичные хромосомы находят друг друга и попарно скручиваются — происходит конъюгация. При этом они могут обмениваться участками — происходит кроссинговер.

В метафазе I хромосомы окончательно спирализуются и с помощью нитей веретена деления выстраиваются на экваторе клетки гомологичными парами — бивалентами.

В анафазе I нити веретена деления сокращаются и с их помощью к полюсам расходятся целые двухроматидные хромосомы, по одной от каждой гомологичной пары.

В телофазе I, как и в митозе, получаются две клетки, но дочерние клетки содержат одинарный т. е. гаплоидный набор хромосом. Эти хромосомы двойные — каждая состоит из двух хроматид.

Первое деление является редукционным. Затем, минуя интерфазу (период между делениями, сопровождающийся удвоением хромосом), обе клетки приступают ко второму делению. Второе деление протекает в четыре обычные фазы, события которых аналогичны фазам митоза.

Получаются четыре клетки — будущие гаметы, в каждой из которых одинарный набор одно-хроматидных хромосом, вдвое меньший, чем был в исходной клетке. Кроме того, все эти четыре клетки отличаются друг от друга в зависимости от того, чьи гены и хромосомы (материнские или отцовские) в них попали при независимом расхождении хромосом в I делении и в результате кроссинговера. Таким образом, мейоз приводит к комбинативной изменчивости гамет.

Нарушения в строении и функционировании клеток

Нарушения в строении и функционировании клеток — одна из причин заболеваний организмов.

На клеточном уровне происходят важнейшие процессы жизнедеятельности организмов. Это процессы обмена веществ, а также процессы деления и роста клеток, обеспечивающие рост и размножение организмов. Нормальное протекание любого процесса требует отсутствия нарушений в строении и функционировании отдельных органоидов и клеток в целом. Так, нормальное обеспечение животных клеток энергией в процессе дыхания требует правильной работы мембраны, с помощью которой поглощаются органические вещества и кислород, затем работы лизосом, ферментов цитоплазмы и митохондрий.

Особенно следует отметить работу ферментов, без помощи которых не может протекать практически ни одна химическая реакция в клетке. Для того чтобы форма активного центра фермента как ключ к замку подходила к форме вещества, подвергаемого реакции, строение белка фермента должно быть абсолютно правильным. При синтезе такого белка требуется в правильном порядке соединить аминокислоты. Информация об этом хранится в генах и реализуется в ходе биосинтеза белка. Затем информация копируется в ходе удвоения ДНК и передаётся при делении дочерним клеткам.

Нарушение, возникающее на любом из этапов функционирования клетки, может привести к заболеванию организма. Так, клетки здорового человека могут захватывать и перерабатывать содержащуюся в молоке аминокислоту фенилаланин. В клетках имеется фермент, способный катализировать химическую реакцию превращения фенилаланина в вещество, подвергающееся дальнейшей нормальной переработке, вплоть до выделения конечных продуктов обмена — СO2, Н2O, NH3 и мочевины.

При удвоении ДНК могут происходить ошибки (может быть поставлен не комплементарный нуклеотид) или произойти потеря или вставка одного или нескольких нуклеотидов. Если такое изменение (мутация) произойдёт в гене, содержащем информацию о данном ферменте, то фермент, хотя и будет синтезироваться, работать не будет. Изменение порядка нуклеотидов в гене вызовет изменение порядка аминокислот в белке-ферменте, у фермента сформируются неправильные I, II и III структуры, и он не сможет катализировать реакцию. Фенилаланин не будет нормально перерабатываться, что приведёт к развитию заболевания — фенилкетонурии, сопровождающейся нарушением работы нервной системы. Описанная мутация относится к генным, точковым

днк в хромосомах

Это три взаимосвязанных понятия: ДНК – молекула, в которой хранится наследственная информация у всех организмов (у вирусов может в такой роли выступать и РНК); ген является участком молекулы ДНК, несущим информацию о строение одной молекулы белка или одной молекулы РНК; а хромосомы представляют собой плотно упакованную ДНК. ДНК – это длинная молекула в форме двойной спирали, в одной клетке суммарная ее длина составляет 2 метра. Чтобы такую длину компактно разместить в клетке, ДНК упаковывается в хромосомы с помощью специальных белков в объём, меньший ее длины в 100 000 раз. Хромосомы можно увидеть в микроскоп во время деления клетки. Информация в ДНК закодирована в виде последовательности четырех нуклеотидов, или "букв" – А, Т, Г и Ц. Таких букв в 46 хромосомах человека, например, 3,2 миллиарда пар. А генов у человека 20-25 тысяч. Большая часть ДНК не содержит гены и называется некодирующей, она нужна, например, для регуляции работы генов.

Гены и хромосомы человека. Строение

Неудивительно, что при часто встречающихся аномалиях (трисомиях) хромосом 13, 18 и 21 плод доживает до родов, поскольку эти хромосомы имеют наименьшее количество генов.

Гены могут изменяться и становиться причиной заболеваний человека за счет нескольких механизмов. Точечные мутации, при которых происходит замена одного основания ДНК в последовательности, могут оказывать влияние на многие функции гена. Миссенс-мутация — замещение одного основания в последовательности ДНК, из-за которого в синтезируемом протеине одна исходная аминокислота заменяется на другую. Такие мутации могут практически не повлиять на функции протеина, если замещающая аминокислота близка к исходной.

гены человека

Эти изменения приводят к нисходящему сдвигу рамки считывания, что часто вызывает усечение белка. В целом такие мутации становятся причиной потери функций протеина и, соответственно, изменяют фенотип за счет снижения активности этого белка.

хромосомы человека

Со времен опытов Грегора Менделя с горохом, раскрывших механизмы наследования, генетика уделяет огромное внимание генным дефектам. Сегодня типы наследования определены для многих патологических состояний.

Как правило, акушер-гинеколог сталкивается с хромосомными аномалиями в двух клинических аспектах. Во-первых, это беременность в позднем репродуктивном возрасте матери, при которой риск хромосомных аномалий возрастает. Во-вторых, существует связь между невынашиванием беременности и хромосомными аномалиями: более половины спорадических выкидышей вызвано хромосомными аномалиями. Кроме того, акушеры-гинекологи занимаются лечением пациенток с привычными выкидышами и бесплодием в анамнезе, причиной которых тоже могут быть хромосомные аномалии.

В клетках человека содержится 23 пары хромосом, из них 22 пары — аутосомы, общие для мужчин и женщин, и 1 пара — половые хромосомы (XX и XY). Упорядоченное расположение хромосом называют ка-риотипом. Рутинный хромосомный анализ производят путем взятия крови и стимулирования ускоренного деления лимфоцитов в культуре. После этого деление клеток ингибируют в метафазе и фиксируют хромосомы на предметном стекле. Затем хромосомы окрашивают и фотографируют для анализа.





Введение

Когда в середине 19 века первый на свете генетик Грегор Мендель открывал свои законы, он ничего не знал о том, что такое хромосомы и гены, и поэтому был вынужден обходиться довольно абстрактным термином "наследственный признак".

В начале 20 века американский ученый Томас Морган доказал, что гены, определяющие наследственные признаки, находятся именно в хромосомах. В лаборатории Моргана было тщательно описано поведение хромосом, включая сцепленность многих генов, а также кроссинговер - обмен хромосом участками. Этот обмен является основой генетической рекомбинации (об этом важнейшем для генетики и селекции явлении у нас запланирована отдельная публикация).

Однако только к середине 20 века стало окончательно понятно, что гены располагаются в молекулах ДНК, являющихся основой хромосом. С этого момента началась эпоха молекулярной биологии и современной генетики, и конца этой эпохи не видно! Поэтому для понимания базовых генетических процессов важно понимать, как устроены гены в ДНК хромосом.

Что такое хромосомы?

Изначально хромосомы наблюдали под микроскопом в делящихся клетках. Хромосомы располагаются в ядре клетки, удваиваются перед делением и поровну распределяются между дочерними клетками. Основу каждой хромосомы образует одна длинная молекула ДНК, в которой записаны гены, как слова в книге. Каждая хромосома - это отдельная книга со своим набором слов (генов).

Молекула ДНК в хромосоме тщательно свернута и связана с огромным количеством белков, которые помогают копировать ДНК перед делением клетки, а также регулируют активность генов.

В клетках организма каждая хромосома представлена в двух экземплярах, один из которых достался от отца, а другой - от матери, так сказать, две резервные копии. У человека 23 пары хромосом, у кошки – 19 пар, а у собаки – 39 пар.

Что такое ДНК?

ДНК (ДезоксирибоНуклеиновая Кислота ) - это очень длинная линейная полимерная молекула. Например, общая длина ДНК всех 46 хромосом в каждой клетке человека составляет около двух метров!

Молекула ДНК в составе каждой хромосомы состоит из двух нитей, которые, переплетаясь между собой, формируют двойную спираль, структура которой была определена в 1953 году английскими учеными Джеймсом Уотсоном и Френсисом Криком на основе экспериментального материала другого английского ученого - Розалинд Франклин.

Как происходит взаимодействие нитей в молекуле ДНК и почему это важно? Формирование двойной спирали определяется взаимодействием специальных химических групп в составе каждой нити ДНК. Эти группы называются азотистыми основаниями и именно они формируют алфавит ДНК, который используется генетическим кодом (о том, что такое генетический код, будет подробно рассказано в одной из следующих статей).

К счастью, азотистые основания в ДНК любого организма на нашей планете бывают всего четырех типов: аденин (A), гуанин (G), тимин (T) и цитозин (C). Азотистые основания способны формировать взаимодействия: A-T и G-C, а другие комбинации невозможны. Этот закон называется принципом комплементарности.

Таким образом, если на одной нити ДНК находится A, то в нити напротив - всегда T, а если G, то на второй нити - C. Таким образом, последовательность букв ДНК-алфавита в одной цепи однозначно соответствует последовательности букв во второй цепи, а сама ДНК начинает напоминать застежку-молнию, например:

Взаимодействия между азотистыми основаниями играют ключевую роль в генетической наследственности. Перед делением клетки каждая хромосома удваивается. При этом двойная спираль ДНК расплетается и напротив каждой нити специальными ферментами достраивается новая нить, с соблюдением правила комплементарности. Таким образом получаются две копии ДНК, которые при делении передаются в две новые клетки. Этот процесс называется репликацией.

Что такое гены?

Проще всего сравнить гены со словами, записанными алфавитом ДНК из 4 букв: A, T, G и C. Как и в современной литературе, не любая последовательность букв ДНК имеет смысл, так что ген - это полноценное осмысленное слово, у которого есть начало, конец и, что самое главное - значение. Значение гена - это его биологическая функция. Как эта функция осуществляется, мы обсудим в статье про генетический код.

Что такое ДНК, и из чего она состоит? Кто и когда открыл эту молекулу в клетках человека и других живых организмов? Чем уникален открытый учеными механизм наследования, и какие последствия ждал весь мир после этого открытия? Всю необходимую информацию Вы можете узнать, прочитав эту статью.

ДНК и хромосомы

Иоганнес Фридрих Фишер – врач и биолог-исследователь родом из Швейцарии, стал первым в мире ученым, выделившим нуклеиновую кислоту. Открытие случилось в 1869 году, когда он занимался изучением животных клеток, а именно лейкоцитов, которых много содержалось в гное. Совершенно случайно молодой ученый заметил, что при отмывании лейкоцитов с гнойных повязок от них остается загадочное соединение. Под микроскопом Иоганн обнаружил, что оно содержится в ядрах клеток. Это соединение Мишер назвал нуклеином, а в процессе изучения его свойств переименовал в нуклеиновую кислоту, из-за наличия свойств, как у кислот.

Роль и функции только открытой нуклеиновой кислоты были неизвестны. Однако многие ученые того времени уже высказывали свои теории и предположения о существовании механизмов наследования.

Нынешние взгляды на состав молекулы ДНК ассоциируются у людей с именами английских ученых Джорджа Уотсона и Фрэнсиса Крика, которые открыли структуру данной молекулы в 1953 году. За несколько лет до этого, в тридцатые годы, ученые из советского союза А.Н. Белозерский и А.Р. Кезеля доказали наличие ДНК в клетках во всех живых организмах, тем самым они опровергли теорию о том, что молекула ДНК находится только в клетках животных, а в клетках растений присутствует только РНК. Лишь спустя несколько лет, в 1944 году, группой освальдских ученых было установлено, что молекула ДНК является механизмом сохранения наследственной информации клетки. Таким образом, благодаря совместным усилиям и трудам исследователей человечество познало тайну процесса эволюции и его основных принципов.

ДНК в медицине

Открытие состава молекулы дезоксирибонуклеиновой кислоты позволило перейти медицине на новый уровень развития. Появилось большое количество новых направлений практической медицины, стали доступны новые методы лечения, диагностики. Благодаря этому фундаментальному открытию для науки и современным технологиям, человечеству стали доступны:

  • Возможность поставить диагноз на ранней стадии заболевания, когда оно еще находится в скрытом периоде, и никаких симптомов не проявляется. у человека.
  • Тесты на наличие у человека аллергии или непереносимости некоторых пищевых продуктов. Индивидуальные исследования помогут выявить, какая пища хорошо усваивается организмом, а какая плохо или вообще не усваивается, и что может стать причиной аллергической реакции у исследуемого. Возможность узнать, какие этносы формируют Вашу внешность, и из каких народов были Ваши далекие предки
  • Тест на наличие врожденных заболеваний, передающиеся через поколения, оценка риска их возникновения у тестируемого человека.

И это еще не все доступные для людей услуги, которые может предложить медицина, изучающая генетику. Выше были представлены только самые популярные среди людей тесты. Перспективой для многих ученых-генетиков является создание таких лекарств, способных победить все болезни на Земле и даже смертность.

Строение молекулы ДНК

Молекула ДНК состоит из органических соединений - нуклеотидов, которые скручиваются в две спиралевидные цепи. Нуклеотиды в этих цепях – это базовые элементы, с помощью которых потом будут кодироваться и выстраиваться гены. В составе одного гена возможны несколько вариантов расположения некоторых нуклеотидов, поэтому вместе с тем, как меняется структура гена, меняется и его функциональность.

От цепочки к хромосоме

В каждом живом организме находится миллионы клеток, а внутри этих клеток находится ядро. Клетки, содержащие в себе ядро, называются эукариотами или ядерными. У древних одноклеточных нет оформленного ядра. К таким безъядерным одноклеточным, или прокариотам, относятся бактерии и археи, например, кишечная палочка или серая анаэробная бактерия. Также ядро отсутствует в клетках вирусов и вироидов, однако причисление вирусов к живым организмам – вопрос спорный, о котором по сей день дискуссируют ученые.

В ядре находятся хромосомы – структурный элемент, в котором содержится молекула ДНК в виде спирали, хранящая внутри себя всю генетическую информацию клетки.

Процесс упаковки ДНК спиралей

Количество нуклеотидов в ДНК велико, и нужны длинные цепочки, чтобы вместить все их число, поэтому нити ДНК закручиваются в две спирали, что позволяет укоротить цепочки в 5 раз, сделав их более компактными. Нити ДНК могут также закручиваться в форму суперспирали. Двойная спираль пересекает свою ось и накручивается на специальные гистоновые белки – гиразы, образуя при этом супервитки. Таким образом, двойная спираль закручивается в спираль более высокого порядка. Сокращение цепочек в этом случае произойдет в 30 раз.

Как гены связаны с ДНК

Ген – самый изученный на сегодняшний день участок ДНК. Гены являются структурной единицей наследственности всех живых организмов. Цепочки нуклеотидов в ДНК состоят из генов, которые определяют генотип особи, например, цвет и разрез глаз, тип кожи, рост, группу и резус фактор крови и другие физиологические качества и особенности внешности.

Еще много отраслей генетики до конца не изучены, и до конца не раскрыты все функции генома, но ученые до сих пор продолжают изучение генов, чтобы добиться новых открытий в области генетики.

Хромосома: определение и описание

Хромосомы

Хромосомы – структурный элемент клетки, находящийся внутри ядра. Они содержат в себе молекулы ДНК, в которых содержится вся наследственная информация.

Строение и виды хромосом:

Отсюда возникают различные типы хромосом:

  • Равноплечая – центромера перетягивает хроматиды точно посередине;
  • Неравноплечая – центромера неточно перетягивает хроматиды, из-за чего одно плечо хромосомы будет длиннее, а другое – короче. К этому типу относится Y-хромосома;
  • Палочковидная – центромера перетягивает хроматиды практически на их концах, из-за чего по форме хромосома напоминает палочку;
  • Точковые – очень мелкие хромосомы, форму которых трудно определить. В науке существуют 3 основные формы хромосом:
  • Х-хромосома, встречающаяся у особей женского и мужского пола;
  • Y-хромосома, встречающаяся только у мужских особей;
  • В-хромосома, которая очень редко встречается в клетках растений. Обычно их число доходит до 6, редко – до 12. Ее наличие обуславливает различные болезни и побочные эффекты в организме

Всего в клетке человека находится 46 хромосом: 22 пары аутосом, встречающиеся у обоих полов, и одна пара половых хромосом: XY – у мужчин, XX – у женщин. Забавно, что если прибавить к количеству хромосом хотя бы одну пару, то человек мог бы быть шимпанзе или тараканом, а если отнять, то – кроликом.

Еще интересно то, что человек и ясень имеют одинаковое количество хромосом, несмотря на принадлежность к разным видам и царствам.

Генетический код – система записи генетической информации в ДНК и РНК в виде определенной последовательности в цепочке нуклеотидов. Он должен сохранять наследственную информацию в первоначальном виде, восстанавливая повреждения цепочки в последующем поколении с помощью ДНК. Однако ген может каким-то образом быть поврежден, либо в нем может произойти мутация.

Генные мутации – изменение в последовательности нуклеотидов, например выпадение, замена, вставка другого нуклеотида в цепочку. Последствия этих мутаций могут быть полезные, вредные или нейтральные. Примером полезных мутаций является устойчивость к минусовым температурам, увеличенная плотность костей, меньшая потребность во сне, устойчивость к ВИЧ и другие. Примером вредных мутаций является аллергия на солнечный свет, глухота слепота и так далее. К нейтральным мутациям относятся те мутации, которые не влияют на жизнеспособность, например, гетерохромия.

Существуют также летальные и полулетальные мутации. Летальные мутации несовместимы с жизнью и приводят к гибели организма на ранних этапах его развития, например, при рождении у особи отсутствует головной мозг. Полулетальные мутации не приводят к смерти особи, но значительно уменьшают ее жизнеспособность. К таким мутациям относятся заболевания человека, передающиеся по наследству. Например, наличие 47-й хромосомы может вызвать у человека синдром Дауна, а, наоборот, отсутствие 46-й парной хромосомы – сидром Шерешевского-Тернера.

Расшифровка цепочки ДНК

Расшифровка цепочки ДНК в клетке – это исследование всех известных генов в клетках человека. Хоть цена за такую услугу значительно упала за последние десять лет, однако такое исследование по-прежнему остается дорогим удовольствием, и не каждый человек сможет позволить себе оплатить такую услугу. Чтобы уменьшить цену этого исследования, расшифровку ДНК стали делить по тематикам. Таким образом, появились различные тесты, которые исследуют интересующую человека группу генов и ее функции.

Как происходит расшифровка цепочки ДНК?

  • Взятые на пробу образцы ДНК нагревают, чтобы двойная спираль раскрутилась и распалась на две нити.
  • К интересующему участку цепочки генов прилепляется полимераза - фермент, синтезирующий полимеры нуклеиновых кислот. Процедура проходит при низких температурах.
  • С помощью полимеразы в интересующих участков происходит синтезов генов, необходимых для изучения.
  • Участки пропитывают светящейся краской, которая светится при лазерном воздействии.

Таким образом, ученые получают картину гена, которую можно изучить и расшифровать. Синтез РНК Нуклеотиды делятся на четыре базовых элемента, служащими основой для формирования генов: АТГЦ, или аденин, тимин, гуанин, цитозин. В их состав входят фосфорные остатки, азотистые основания и пептоза.

В ДНК эти нуклеотиды располагаются строго по парам параллельно друг другу строгими парами: аденин - с тимином, гуанин - с цитозином.

Важно, что молекула дезоксирибонуклеиновой кислоты не должна выходить за пределы мембраны ядра. С помощью РНК, которая играет роль копии участка цепи с генетическим кодом, генетическая цепочка может покинуть ядро, попасть вовнутрь клетки и воздействовать на ее внутренние процессы.

Как это происходит:

  • Один конец генной спирали раскручивается, формируя две развернутые нити с цепочкой генов.
  • К развернутому участку спирали подходит специальный фермент-строитель и поверх этого участка синтезирует его копию.
  • У копии в структуре нуклеотидов тимин во всех парах заменяется на урацил, что позволяет копии генетической цепи покинуть ядро клетки. Синтез белка при помощи генов Основное взаимодействие, происходящее между генами и клеткой, состоит в том, что различные гены могут заставлять клетку производить синтез разных белков с самыми непредсказуемыми свойствами.

Итак, группа генов, участвующих в процессе старения клеток может, как заставить процесс старения идти быстрее, так и вовсе его остановить и запустить процесс омолаживания. То есть, каждый из генов может спровоцировать синтез нескольких видов белка.

Генетик Сутягина Дарья

Сутягина Дарья Сергеевна

Эксперт-генетик

В нашей ДНК содержится очень много информации, но пока мы можем расшифровать лишь небольшой процент генов. Добавлю несколько интересных фактов о ДНК: возможность двойной ДНК у человека. Такое явление случается, когда при беременности в утробе развиваются близнецы, но в процессе развития плода они сливаются в одного человека. Длина одной молекулы ДНК человека равна 2 метрам, а общая длина цепочки ДНК всех клеток тела человека равна 16 млрд. километрам, что равно расстоянию от Земли до Плутона. ДНК человека и кенгуру всего лишь 150 млн. лет назад были одинаковыми. Все знания и информация во всем мире могла бы уместиться всего лишь в 2 граммах дезоксирибонуклеиновой кислоты.

Читайте также: