Как строится векторная диаграмма для токов и напряжений при соединении звездой кратко

Обновлено: 07.07.2024

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

- экономичность передачи электроэнергии на большие расстояния;

- самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

- возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

- уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Рис.3 Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии - линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; - фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

; (1)
; (2)
. (3)

Отметим, что всегда - как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).

Для симметричной системы ЭДС имеем

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

Если трехфазная система симметричная (все сопротивления и мощности фазных потребителей одинаковы), то по всем трем фазам протекают одинаковые по величине токи, сдвинутые по фазе относительно друг друга на 120°. Ток в нейтральном проводе при этом равен нулю. Напряжения на всех фазах потребителя также отличаются друг от друга только по начальной фазе на 120° (рисунок 2).




При включении в разных фазах различных по мощности потребителей (несимметричная нагрузка), токи каждой фазы (в каждом линейном проводе) отличаются друг от друга не только начальной фазой, но и величиной. По нейтральному проводу при этом протекает ток, вектор которого на основании первого закона Кирхгофа равен геометрической сумме векторов фазных токов (рисунок 3). I0=IA+IB +IC . Обрыв нейтрального провода (трехпроводная система) при несимметричной нагрузке приводит к изменению напряжений на всех фазах потребителей и появлению напряжения смещения нейтрали.

Как построить векторную диаграмму токов и напряжений

Расчеты в цепях с синусоидальными напряжениями и токами упрощаются, если вместо синусоид оперировать с их изображениями — вращающимися векторами (рис. 1).

Векторная диаграмма токов и напряжений

Проекция конца вектора на ось координат совершает синусоидальные колебания : каждое мгновенное значение тока, соответствующее моменту времени и фазовому углу , можно рассматривать как проекцию на ось ординат вектора, повернувшегося на фазовый угол относительно оси абсцисс.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Таким образом, синусоидальная функция условно представляется вектором, длина которого определяется максимальным или действующим ее значением, а направление — ее начальной фазой; положительная начальная фаза откладывается от горизонтальной оси в сторону вращения векторов (против часовой стрелки). Векторы токов и напряжений, вращаясь с одной и той же

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

угловой скоростью ,. неподвижны относительно друг друга. Условное изображение синусоидально изменяющихся во времени токов и напряжении при помощи векторов позволило записать в векторной форме первый и второй законы Кирхгофа.

Алгебраическому суммированию синусоид, т.е. суммированию их мгновенных значений, соответствуют геометрические действия над изображающими их векторами. Применение в этой форме законов Кирхгофа даст возможность путем построения векторных диаграмм достаточно просто и наглядно рассчитывать электрические цепи. Приступая к графическому расчету пеней переменного тока, следует помнить, что физические процессы на участках цепи с сопротивлением, индуктивностью, емкостью весьма различны.

Векторная диаграмма токов и напряжений

Соответственно вектор тока и вектор напряжения имеют одно направление.

Векторная диаграмма токов и напряжений

В индуктивном элементе ток отстает от напряжения на и соответственно располагаются векторы (рис.3). Закон Ома для участка цепи только с индуктивными сопротивлением записывается .

Векторная диаграмма токов и напряжений

В емкостном элементе в активном сопротивлении ток и напряжение совпадают по фазе (рис.2), ток опережает напряжение на ( расположение вектора напряжения и тока показано на рис.4); закон Ома для участка цепи только с емкостным сопротивлением записывается или .

Рассмотрим расчет разветвленных электрических цепей с помощью векторных диаграмм.

Графоаналитический метод расчета

Графоаналитический метод расчета — это совокупность графического метода и метода пропорционального пересчета. Метод основан на том, что в линейной цепи токи пропорциональны напряжениям, векторная диаграмма напряжений и токов, рассчитанная и построенная для одного значения питающего цепь напряжения, сохранит свой вид при изменении величины этого напряжения, на диаграмме при этом изменятся лишь масштабы напряжений и токов.

Пример №1.

Для цепи (рис.5) известны параметры

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Требуется определить действующее значение токов ветвей, напряжений на участках цепи, начальные фазы токов и напряжений.

Падение напряжения на емкостном сопротивлении равно по величине и отстает по фазе от тока на 90° (вектор на диаграмме).

Падение напряжения на по величине равно и совпадает по фазе с током . Вектор напряжения ориентируем на диаграмме относительно тока . Сумма векторов и определяет напряжение на участке . Из диаграммы но масштабу определяем величину напряжения . Далее используем закон Ома для участка цепи с сопротивлением , находим ток , так как то .

Для узла уравнение по первому закону Кирхгофа запишется .

Определив величину тока , построим вектор , приняв за начало построения коней вектора тока . Вектор тока строится под углом к вектору напряжения — в сторону отставания, так как ток — ток через индуктивный элемент, он оттает от напряжения на . Сумма векторов токов и дает вектор — ток в общей ветви цепи, он равен (взят в масштабе с диаграммы).

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Запишем и графически решим уравнение по второму закону Кирхгофа для контура .

Перейдем к построению этого уравнения. Примем конец вектора за начало построения вектора напряжения — падение напряжения на индуктивном сопротивлении. Вектор этого напряжения опережает по фазе ток на , строим его.

Принимаем конец вектора за начало построения вектора напряжения на активном сопротивлении. Величина напряжения , вектор напряжения совпадает по фазе с током , строим его параллельно вектору тока . Принимаем конец вектора за начало построения вектора — напряжения на емкостном сопротивлении , вектор отстает на от вектора тока .

Пользуясь векторной диаграммой, можно записать мгновенные значения всех рассчитанных величин. Например, ток во второй ветви:

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Напряжение участка и т.д.

Построенная в такой последовательности векторная диаграмма напряжений носит название топографической.

Топографическая диаграмма

Топографические диаграммы представляют собой диаграммы комплексных потенциалов, причем каждой точке схемы соответствует определенная точка на топографической диаграмме.

Топографическая диаграмма позволяет измерить величину и начальную фазу напряжения любого участка цепи, не участвующею в расчете. Например,

Векторная диаграмма токов и напряжений

В действующее значение напряжения между точками и схемы и начальная фаза . тогда

Рассмотрим пример построения топографической диаграммы на комплексной плоскости.

Пример №2.

Дана цепь (рис.7), её параметры:

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Комплексным методом рассчитаем токи цепи:

Векторная диаграмма токов и напряжений

Строим на векторной плоскости диаграмму токов в масштабе (рис.8). Для построения топографической диаграммы напряжений принимаем потенциал узла равным нулю, .

Тогда точка будет находиться в начале координат комплексной плоскости. Вычислим комплексы напряжении на каждом из элементов цепи, обходя из точки цепь против направления тока . При таком направлении обхода напряжение на сопротивлении

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Строим вектор на комплексной плоскости (рис.8).

Векторная диаграмма токов и напряжений

По полученному выражению из точки строим вектор Вершиной вектора является точка .

Контроль построения: вектор должен совпадать по фазе с вектором тока .Теперь находим напряжение на индуктивности :

Векторная диаграмма токов и напряжений

Из точки строим вектор . Вершиной построенного вектора является точка .

Контроль построения: вектор должен опережать по фазе вектор тока на . Переходя по контуру в выбранном направлении, находим последовательно положение точек на комплексной плоскости. Вектор, соединяющий начало координат и точку . представляет собой ЭДС источника .

Пользуясь топографической диаграммой, легко определить напряжения между любыми точками цепи. Например, комплекс напряжения определяется вектором, соединяющим точки и и направленным к точке (показан на рис.8 пунктиром). Измеряя на диаграмме модуль и начальную фазу вектора находим .

ПримсрЗ. Рассмотрим расчет цепи на рис.7 графоаналитическим методом

В масштабе строим вектор напряжения , совпадающий по фазе с вектором тока ( рис.9).

Вычислив напряжение , строим вектор напряжения , опережающий по фазе вектор тока на 90′. Соединив точки и , получаем вектор . Измеряя линейкой его длину с учетом масштаба напряжений, находим . По закону Ома находим ток

Из конца вектора тока строим вектор тока , опережающий по фазе вектор напряжения на . Векторно суммируя токи и находим ток . Измеряя линейкой длину вектора тока находим . Зная токи вычисляем напряжения .

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Из точки строим вектор напряжения , отстающего но фазе от тока на и вектор напряжения совпадающего по фазе с током . Чтобы определить токи и для участка цепи, построим дополнительную векторную диаграмму . Пусть

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

С учетом фазовых соотношений между током и напряжениями строим диаграмму (рис. 10). Измеряя длину вектора , с учетом масштаба напряжений находим его величину . Тогда величина тока определяется следующим образом .

Построив вектор и суммируя векторы токов и , из диаграммы на рис. 10 находим .

Векторная диаграмма токов и напряжений

Чтобы привести диаграмму на рис.10 в соответствие с найденными ранее значениями тока , находим коэффициент пересчета

Векторная диаграмма токов и напряжений

Умножая длины всех векторов на рис.10 на коэффициент и сохраняя неизменными фазовые углы, получим векторную диаграмму участка , соответствующую току .

Векторная диаграмма токов и напряжений

Измеряем угол на диаграмме рис.10:

Под углом по отношению к вектору на рис.9 из точки строим вектор . Найдем теперь напряжение :

Векторная диаграмма токов и напряжений

Поскольку напряжение , опережает по фазе ток на 90°. то вектор строится так, как показано на Рис.9. Соединяя точки и получаем вектор . Измеряя его длину находим

Векторная диаграмма токов и напряжений

Векторная диаграмма на рис.9 является также и топографической диаграммой. ЭДС превышает ЭДС в раз:

Векторная диаграмма токов и напряжений

Поскольку рассчитываемая цепь линейна, то напряжения и токи, вызываемые ЭДС , превышают условные напряжения и токи также в = 3.4 раза.

Векторная диаграмма токов и напряжений

Чтобы измерить начальные фазы токов и напряжений, следует на рис.9 выбрать такую систему координат, в которой ЭДС имеет соответствующую заданию начальную фазу. Так как , то поместив начало координат в точку , действительную полуось совмещаем с направлением ЭДС , а полуось строим ортогонально оси 4 1, как показано на рис.9.

Рассмотрим пример построения векторной диаграммы по известным токам и напряжениям (действующие значения напряжений и токов получены экспериментально). В этом случае при помощи векторной диаграммы можно решить обратную задачу расчета цепи: но токам и напряжениям цепи определить эквивалентные параметры двухполюсников, составляющих цепь.

Пример №3.

Дана цепь (рис.11), известны показания измерительных приборов. Найдем параметры двухполюсника, эквивалентного данной схеме.

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Для данной схемы можно составить три уравнения по законам Кирхгофа:

Векторная диаграмма токов и напряжений

Решим эти уравнения графически. Построение диаграммы следует начать с построения вектора , для этой ветви известно взаимное расположение вектора тока и напряжения, участок с активным сопротивлением. В масштабе токов в произвольном направлении строится вектор . Так как — падение напряжения па активном элементе, оно совпадает но направлению с вектором тока , в масштабе напряжений , строим этот вектор. Ток в ветви с индуктивной катушкой отстает от напряжений , на некоторый угол , который неизвестен.

Векторная диаграмма токов и напряжений

Используя показания амперметров и , решаем графически первый закон Кирхгофа (1) методом засечек: из конца вектора тока делаем засечку радиусом, равным величине тока в сторону отставания от напряжения , а из начала построения т.О вектора делаем засечку радиусом, равным току . Получаем векторную диаграмму токов заданной схемы. Из построения теперь можно определить — угол сдвига по фазе между током и напряжением на катушке.

Далее достраивается диаграмма напряжений: напряжения и известны. падение напряжения на емкости отстает от вектора тока ветви на 90°, строим его из конца вектора , — падение напряжения на активном элементе совпадает с током ветви, строим из конца в направлении, параллельном току .

Замыкающий вектор на диаграмме напряжений соединяет начало построения и конец вектора , определяет в масштабе напряжение на входе схемы, он равен .

Теперь с помощью треугольников напряжений (сопротивлений), токов (проводимостсй), построенных для какого-либо участка цепи или для всей цепи можно найти сопротивления, проводимости и параметры двухполюсника.

Определим эквивалентные параметры всей цени заданной схемы (см. рис.11) . Сначала строится треугольник напряжений : из конца вектора опускается перпендикуляр па направление вектора тока и определяется активная и реактивная составляющие напряжения — . С учетом масштаба .

Векторная диаграмма сложной электрической цепи

Векторная диаграмма токов и напряжений

Векторная диаграмма для сложной электрической цепи может быть построена только после расчета этой цепи; строится она на комплексной плоскости по известным комплексам токов всех ветвей и комплексам напряжений на каждом элементе цепи. Пример 5. Заданы источники энергии, сопротивления схемы

б) если сопротивлением нулевого провода нельзя пренебречь или он отсутствует, то между нейтральной точкой источника и нейтральной точкой потребителя возникает напряжение смещения нейтрали , которое рассчитывается по методу двух узлов:

В этом случае комплексы фазных напряжений потребителя рассчитываются по формулам:

3. Рассчитываются комплексы действующих значений фазных токов и тока нулевого провода (при его наличии):

4. Рассчитываются мощности каждой фазы в отдельности и всей цепи:

1. Записываются комплексы действующих значений фазных напряжений:

2. Рассчитываются комплексы действующих значений фазных токов:

3. Рассчитываются комплексы действующих значений линейных токов:

4. Рассчитываются мощности каждой фазы в отдельности и всей цепи:

Читайте также: