Как строение ткани связано с выполняемыми функциями в организме сделайте вывод кратко

Обновлено: 02.07.2024

Клетки одного типа выполняют свои специальные функции, образуют своё сообщество, живут и работают в конкретном месте – ткани. Это похоже на то, как представители одной профессии работают в одной организации, например, врачи в больнице или учителя в школе

План урока:

Общее строение тканей. Взаимодействие клеток

Организм человека состоит примерно из двух сотен различных типов клеток. Клетки одного типа выполняют свои специальные функции, образуют своё сообщество, живут и работают в конкретном месте – ткани. Это похоже на то, как представители одной профессии работают в одной организации, например, врачи в больнице или учителя в школе. Изучением тканей и их свойств занимается наука гистология. В строении ткани есть два главных элемента – клетки и межклеточное вещество.

  • Клетки – это главный компонент ткани. Они выполняют основную функцию, например, нейрон проводит нервный импульс, иммунная клетка атакует бактерии.
  • Клетки вырабатывают второй компонент ткани – межклеточное вещество. Оно бывает жидким, рыхлым, твёрдым, его может быть много или мало.
  • Некоторые клетки превращаются в постклеточные структуры, но и без них жизнь организма невозможна. Например, эритроцит был клеткой, которая утратила ядро. Тромбоцит – это кусочек цитоплазмы клетки костного мозга мегакариоцита. Эритроцит переносит кислород и углекислый газ, а тромбоцит участвует в остановке кровотечения. Без этих структур человек не смог бы жить.

Эритроциты и тромбоциты в кровеносном русле. Это не клетки, а постклеточные структуры.

Ещё одна особенность строения и функции тканей заключается в том, что в ней нет главных и второстепенных элементов. Нейроны проводят нервный импульс, но без вспомогательных клеток (клеток нейроглии, о них будет сказано ниже) нейроны работать не будут. В костном мозге созревают клетки крови и иммунной системы, но происходит это при участии вспомогательных клеток.

Стволовые клетки, развитие и изменение тканей

Стволовые клетки

Стволовая клетка – это клетка, которая в процессе своего развития может превратиться в другую клетку. Её можно сравнить с выпускником школы, который выбирает из множества профессий. Например, в костном мозге живут стволовые клетки крови, которые могут дать начало любой клетке или элементу крови, будь то нейтрофил, лимфоцит, эритроцит или тромбоцит.

Стволовые клетки могут делиться, то есть создавать запас, который заменит погибшие клетки. Но не для всех тканей эти возможности одинаковы.

Стволовая клетка может превратиться в другую клетку

stemcell – стволовая клетка;

enterocytes – энтероциты (клетки, выстилающие просвет кишки), intestines – кишечник;

hepatocytes – гепатоциты (клетки печени), liver – печень;

cardiaccells – клетки сердца, heart – сердце;

osteocyte – остеоцит (клетка костной ткани), bone – кость.

Восстановление (регенерация) ткани

Многие зрелые клетки делиться не могут: нейроны, нейтрофилы (клетки крови и иммунной системы), остеоциты (клетки костной ткани), кардиомиоциты (клетки сердца). Из зрелых клеток к делению способны гепатоциты (клетки печени), поэтому печень восстанавливается после серьёзных повреждений.

Восстановление тканей – регенерация тканей – происходит по нескольким механизмам:

  • Деление клеток (гепатоцитов в печени).
  • Восстановление мембран и органелл клеток; это единственный способ обновления для нервной ткани и сердечной мышечной ткани.
  • Восстановление за счёт стволовых клеток.

Сейчас разрабатываются технологии лечения стволовыми клетками. Сердечная мышца после повреждения (инфаркта) не может восполнить запас кардиомиоцитов. Предполагается использовать стволовые клетки, которые способны превратиться в кардиомиоциты. Пока не совсем понятно, как поведут себя стволовые клетки в сердце и других органах. Один из важных вопросов: могут ли стволовые клетки стать источником злокачественной опухоли? Поэтому к технологиям лечения и омоложения стволовыми клетками относятся очень осторожно.

Реакция клетки на нагрузки

Если ткань подвергается повышенным нагрузкам, её клетки увеличиваются в размере и активнее работают. Такое явление называется гипертрофией. За счёт гипертрофии нарастает мышечная масса после спортивных тренировок.

Если ткань работает меньше, то происходит атрофия её клеток: они уменьшаются в объёме и меньше работают. Например, из-за длительного постельного режима или космического полёта атрофируются скелетные мышцы ног.

Эпителиальные ткани

Эпителиальные ткани также называются пограничными, потому что они представляют собой барьер между внутренней средой организма и окружающей средой.

Эпителий образует верхний слой кожи – эпидермис. Эпителиальная ткань выстилает ротовую полость, пищевод, желудок и кишечник, дыхательные пути. Она лежит на границе с внешней средой, то есть с пищей, воздухом, водой.

Особенности эпителиальной ткани:

  • Клетки плотно сомкнуты друг с другом, тем самым образуют целые пласты. Следовательно, межклеточного вещества в таких тканях очень мало.
  • Эпителиальные клетки лежат на базальной мембране.
  • К эпителиальным клеткам не подходят сосуды. Питательные вещества из нижележащих сосудов проникают в эпителий через базальную мембрану.
  • Эпителиальная ткань очень легко восстанавливается.

В эпителиях много клеток, которые восполняют убыль повреждённых клеток. Поэтому неглубокие порезы и царапины на коже быстро заживают без следа.

Но высокая способность к восстановлению имеет негативную сторону. При регенерации могут возникать генетические дефекты, способные превратить нормальную клетку в клетку злокачественной опухоли. Рак – это и есть опухоль, которая возникла из эпителиальной ткани.

Виды эпителиальной ткани

Эпителии могут быть однослойными или многослойными.

Однослойные эпителии обеспечивают транспорт питательных веществ. Они выстилают кровеносные сосуды (такой эпителий называется эндотелием), альвеолы лёгких (в альвеолах происходит газообмен), просвет желудка и кишечника (где происходит всасывание питательных веществ).

Эпителиальные клетки располагаются на базальной мембране. Питательные вещества поступают из сосудов к клеткам, проникая через базальную мембрану

Однослойный эпителий. Один слой клеток лежит на базальной мембране, клетки плотно сомкнуты

Однослойный многорядный эпителий. Клетки образуют нижний и верхний ряды, но все они связаны с базальной мембраной, то есть принадлежат одному слою

Многослойные эпителии защищают ткани, которые находятся под ними. Самый нижний слой многослойного эпителия лежит на базальной мембране, остальные слои клеток с ней не связаны. В этом нижнем слое находятся клетки (их можно назвать стволовыми), которые делятся и по мере своего развития смещаются вверх.

Многослойный эпителий встречается в полости рта, пищеводе, мочеиспускательном канале. Им покрыты конъюнктива и роговица глаза.

В местах, где требуется максимальная защита от механического повреждения, многослойный эпителий ороговевает.

Многослойный ороговевающий эпителий

Например верхний слой кожи – эпидермис – покрыт роговыми чешуйками. Роговые чешуйки – это постклеточные структуры, у которых нет ядра и органелл, есть плотная плазмолемма и цитоскелет. Они устойчивы к механическим и химическим повреждениям. Роговые чешуйки слущиваются вместе с прикрепившимися к ним микроорганизмами.

Бактерии на эпидермисе

Железистый эпителий

Железистый эпителий – это основная ткань желёз. Железистые клетки (гландулоциты) продуцируют особый продукт – секрет, например, слюну, грудное молоко.

Железистая клетка. Жёлтым цветом показаны гранулы, в которых содержится секрет.

Железистые встречаются среди эпителиальных клеток.

Железистые клетки (белого цвета) в составе эпителия трахеи

Внутри эпителия могут находиться маленькие железы.

Железа в составе эпителия

И, конечно, железистая ткань образует крупные железы

Сенсорный эпителий

Сенсорные эпителии входят в состав органов чувств. Например, сенсорные эпителиальные клетки (волосковые клетки) в органе слуха воспринимают звук.

Волосковые клетки внутреннего уха

Соединительные ткани

Кровь и лимфа

Кровь переносит питательные вещества, кислород и углекислый газ. Вместе с лимфой она обеспечивает иммунную защиту.

Кровь и лимфане похожи на все остальные ткани:

  • они жидкие, потому что их межклеточное вещество представлено плазмой – водой, в которой растворены органические и неорганические вещества;
  • клетки крови и лимфы возникают в отдельном органе – костном мозге;
  • не все клетки крови находятся в ней постоянно: лейкоциты через несколько часов или дней перемещаются в другие ткани, лимфоциты перемещаются между кровью, лимфой и другими тканями.

Эритроциты в кровеносном русле

Кроветворные ткани

Клетки крови и иммунной системы образуются в костном мозге из стволовой клетки крови. Некоторые иммунные клетки дальнейшем развиваются в органах иммунной системы (тимусе, лимфатических узлах). Кроветворные ткани создают для этого необходимые условия. Они выделяют факторы роста, которые распознаёт стволовая клетка. Под их влиянием она превращается в конкретную клетку крови или иммунной системы.

Кроветворные ткани состоят из особых клеток, которые называются ретикулярными. Среди них живут и развиваются стволовые клетки крови. Кроветворная ткань костного мозга называется миелоидная, кроветворная ткань органов иммунной системы – лимфоидная.

Среди ретикулярных клеток созревают клетки иммунной системы лимфоциты

Собственно соединительные ткани

Различают рыхлую волокнистую и плотную волокнистую соединительные ткани. Органы состоят из разных тканей, которые выполняют свои функции. Рыхлая волокнистая соединительная ткань пронизывает почти все органы, объединяя разные ткани в одно целое.Она сопровождает сосуды и нервы, поэтому крупные сосуды и нервы идут вместе друг с другом. Плотная волокнистая соединительная ткань очень прочна, так как она содержит много волокон, ею образованы связки и сухожилия.

Основные клетки соединительной ткани – фиброциты, а также фибробласты и жировые клетки адипоциты. Фибробласты продуцируют межклеточное вещество, фиброциты поддерживают нормальное состояние межклеточного вещества. Из крови на некоторое время в соединительную ткань поступают лейкоциты.

Collagenfiber – коллагеновое волокно

Elastinfiber – эластиновое волокно

Жировая ткань

Жировая ткань создаёт запас жиров и жирорастворимых витаминов (A, D, E, K). Расщепление молекулы жира даёт очень много энергии. Кроме этого, жировая ткань синтезирует и накапливает женские половые гормоны эстрогены. Она создаёт мягкую прослойку вокруг органов, которая смягчает силу ударов. Жировая ткань лучше развита у северных народов, потому что она сберегает тепло.

Существует белая и бурая жировая ткань. У человека больше белой жировой ткани. Основная клетка жировой ткани – адипоцит, её цитоплазма содержит крупную жировую каплю.

Бурая жировая ткань у человека находится в подмышечных впадинах, между лопатками, в области шеи, рядом с почками. Она содержит большие запасы энергии и поддерживает тепло. Больше всего бурой жировой ткани у новорождённых. Организм новорождённых плохо регулирует температуру, поэтому бурая жировая ткань им особенно нужна для сохранения тепла и энергии. С возрастом этой ткани становится меньше.

Количество бурой жировой ткани мало зависит от питания. В её клетках находится несколько жировых капель, которые не сливаются в одну.

Клетка белой и бурой жировой ткани

Whiteadipocyte – клетка белой жировой ткани

Brownadipocyte – клетка бурой жировой ткани

Пигментная ткань

Похожа на волокнистую соединительную ткань, в ней много сосудов и пигментных клеток. Она находится в радужке и сосудистой оболочке глаза.

Скелетные соединительные ткани

Твёрдый скелет тоже состоит из соединительных тканей – хрящевой и костной. Твёрдость костям и некоторым хрящам придаёт межклеточное вещество.

Хрящевая ткань образует основу носа, ушных раковин, участвует в соединении костей, придаёт жёсткость трахее и бронхам. Её основные клетки – хондроциты, они вырабатывают межклеточное вещество.

Matrix –межклеточное вещество

Lacunae – лакуна – пространство, в котором находится хондроцит

Примерно 70% массы костной ткани приходится на минеральные вещества, которые делают кости прочными. Около 30% массы костной ткани – это органические вещества, придающие ткани упругость.

Межклеточное вещество создают клетки остеобласты. Со временем они замуровывают себя в нём и изменяются настолько, что становятся другими клетками – остеоцитами. Остеоциты продолжают работать, они не вырабатывают межклеточное вещество, а поддерживают его в оптимальном состоянии.

В костной ткани также есть остеокласты – гигантские клетки с несколькими ядрами. Точнее, это не клетки, а многоядерные структуры. Остеокласты разрушают костную ткань, это естественный процесс, который происходит одновременно с образованием костной ткани.

Остеокласты разрушают костную ткань

Мышечные ткани

Мышечная ткань может сокращаться, а значит, перемещать тело в пространстве.

Скелетная мышечная ткань состоит из пучков поперечнополосатых мышечных волокон. Мышечное волокно – это сложная структура. В нём есть много ядер, которые вместе с другими органеллами заключены в плазмолемму. Другой его компонент – белковые нити миофибриллы – обеспечивают сокращение волокна.

Строение мышечного волокна

Сердечная мышечная ткань может ритмически сокращаться сама по себе без внешнего воздействия. Она образована клетками кардиомиоцитами, которые связаны между собой в трёхмерную сеть.

Гладкая мышечная ткань есть в желудке, кишечнике, бронхах, мочеточниках, мочевом пузыре, матке. Благодаря ей желудок и кишечник проталкивают пищу, бронхи сужаются и расширяются. Мышечная ткань есть в кровеносных сосудах, она меняет их просвет, таким образом регулируется кровоток.

Основные клетки гладкой мышечной ткани – гладкие миоциты, которые соединяются друг с другом.

Гладкая мышечная ткань

Нервная ткань

Нервная ткань проводит нервный импульс. Благодаря этому она посылает сигналы от всех элементов тела к мозгу, а от мозга отправляет команды к органам. Таким образом она объединяет работу всего организма.

Строение тканей напрямую связанно с функцией ткани. Важное значение имеет расположение клеток, их форма, а также строение клеток. Мышечная ткань состоит из волокон. Это придает ей прочность и дает возможность выполнять свои функции. Костная ткань имеет свое строение, благодаря которому кости прочны и твердые. Особое строение различных тканей имеют не только животные, а и растения с грибами. Другие царства - бактерии, протисты и хромисты не имеют тканей, так как они являются одноклеточными организмами.

Строение и биологическая роль тканей человеческого организма:

Общие указания: Ткань - это совокупность клеток, имеющих сходное происхождение, строение и функции.

Каждая ткань характеризуется развитием в онтогенезе из определенного эмбрионального зачатка и типичными для нее взаимоотношениями с другими тканями и положением в организме (Н.А. Шевченко)

Тканевая жидкость - составная часть внутренней среды организма. представляет собой жидкость с растворенными в ней питательными веществами, конечными продуктами метаболизма, кислородом и углекислым газом. Находится в промежутках между клетками тканей и органов у позвоночных. Выполняет роль посредника между кровеносной системой и клетками организма. Из тканевой жидкости в кровеносную систему поступают углекислый газ, а вода и конечные продукты метаболизма всасываются в лимфатические капилляры. Объем ее составляет 26,5% массы тела.

Эпителиальная ткань:

Эпителиальная (покровная) ткань , или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Эпителий отделяет организм от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Соединительная ткань состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткан ь состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны. Аксоны образуют нервные волокна.

Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Мышечная ткань

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани – гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Каждая ткань выполняет определённые функции, исходя из своего строения. Например, особенность мышечной ткани - это сокращение, следовательно, она выполняет функции движения. Нервная ткань — состоит из клеток, специализированных для проведения электрохимических импульсов и называемых нейронами, поэтому её функция принимать раздражение и т. д

Каждая ткань выполняет определённые функции, исходя из своего строения. Например, особенность мышечной ткани - это сокращение, следовательно, она выполняет функции движения. Нервная ткань — состоит из клеток, специализированных для проведения электрохимических импульсов и называемых нейронами, поэтому её функция принимать раздражение и т. д

Каждая ткань выполняет определённые функции, исходя из своего строения. Например, особенность мышечной ткани - это сокращение, следовательно, она выполняет функции движения. Нервная ткань — состоит из клеток, специализированных для проведения электрохимических импульсов и называемых нейронами, поэтому её функция принимать раздражение и т. д

Каждая ткань выполняет определённые функции, исходя из своего строения. Например, особенность мышечной ткани - это сокращение, следовательно, она выполняет функции движения. Нервная ткань — состоит из клеток, специализированных для проведения электрохимических импульсов и называемых нейронами, поэтому её функция принимать раздражение и т. д

Читайте также: