Как создать незатухающие колебания в контуре кратко

Обновлено: 02.07.2024

1. Автоколебания. Генератор незатухающих электромагнитных колебаний.

2. Если в систему, в которой могут происходить свободные электромагнитные колебания, поместить источник энергии и система сама

регулировала бы подачу энергии порциями,
то появятся незатухающие колебания.
Системы называются
автоколебательными, если в них
создаются незатухающие колебания за
счет поступления энергии от источника
внутри системы.
Генератор на транзисторе –
автоколебательная система.

Примерами автоколебаний могут служить:
- незатухающие колебания маятника часов за счёт
постоянного действия тяжести заводной гири;
- колебания скрипичной струны под воздействием
равномерно движущегося смычка;
возникновение
переменного
тока
в
цепях
мультивибратора и в других электронных
генераторах при постоянном напряжении питания;
- колебание воздушного столба в трубе орга́на, при
равномерной подаче воздуха в неё;
- вращательные колебания латунной часовой шестерёнки
со стальной осью, подвешенной к магниту и закрученной
(опыт Гамазкова)

4. Условия возбуждения автоколебаний

а) энергия от источника должна поступать
в такт с колебаниями в контуре;
б) поступающая от источника энергия
должна быть равна ее потерям в контуре.

5. Часы как автоколебательная система.

6. Аналогия между механическими и электромагнитными автоколебаниями

Электромагни
Механическая
тная
Элементы
автоколебател
автоколебател
автоколебател ьная система
ьная система
ьной системы (маятниковые
(генератор на
часы)
транзисторе)
1
источник
энергии
поднятый груз
2
клапан
Аналогия
между анкер
колебательная
механическими
и
3
маятник
система
электромагнитными
через ходовое
4
Обратная связь
автоколебаниямиколесо
батарея
гальванических
элементов
транзистор
колебательный
контур
индуктивная –
через катушку

7. Генератор высокочастотных электромагнитных колебаний

8. ГВЧ (генератор высокой частоты) – устройство, поддерживающее незатухающие электромагнитные колебания.

Источник энергии – батарея
Клапан – транзистор
Колебательная система – колебательный
контур
Катушка связи – катушка обратной связи

9. Работа генератора на транзисторе

10. Как создать незатухающие колебания в контуре:

11. Принцип работы генератора незатухающих электромагнитных колебаний

При замыкании ключа конденсатор колебательного
контура заряжается от батареи. В цепи контура
возникает ток, который создает магнитное поле.
Это магнитное поле в катушке связи наводит ЭДС
индукции, изменяющуюся с частотой колебаний в
контуре. ЭДС индукции изменяет направление тока
на базе. В результате чего ток через транзистор то
пропускается, то нет. Пропускания тока по частоте
совпадают с частотой колебаний в контуре. Контур
автоматически подзаряжается, и в нем происходят
незатухающие электромагнитные колебания.

12. Ответить на вопросы (письменно) 1. Где возникают автоколебания? 2. Чем отличаются автоколебания от свободных и вынужденных

Ответить на вопросы
(письменно)
1. Где возникают автоколебания?
2. Чем отличаются автоколебания от свободных и
вынужденных колебаний?
3. Описать роль транзистора в создании автоколебаний?
4. Что такое обратная связь и как она осуществляется в
генераторе на транзисторе?
5. Выделить элементы автоколебательной системы.

Автоколебания. Генератор незатухающих колебаний (на транзисторе)

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.


Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.


При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды. Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю. Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура — это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре — это амплитудное условие самовозбуждения.

Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы — напряжением источника, расстоянием между Lсв и L, сопротивлением контура.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 394-395.

Пополнять энергию колебательного контура можно, подзаряжая конденсатор. Для этого контур подключают к источнику тока. Контур подключается к источнику тока только в те интервалы времени, когда пластина конденсатора, присоединенная к положительному полюсу источника, заряжена положительно.

Если источник постоянного тока будет все время подключен к контуру, то в первую половину периода Т энергия поступает в контур, а следующую половину Т возвращается в источник, т. е. колебания затухают.

Незатухающие колебания установятся в том случае, если контур будет подключаться к источнику только в первую половину периода. Для выполнения такого условия ключ должен замыкать и размыкать цепь с частотой, соответствующей частоте электромагнитных колебаний контура (формула 7). Однако механический ключ инертен. Безынерционным ключом является транзистор. Транзистор обеспечивает поступление энергии к колебательному контуру, если напряжение на электронном переходе меняется синфазно (в одной фазе) с напряжением на контуре.

Свободные незатухающие электромагнитные колебания можно получить в электрической цепи, состоящей из последовательно соединенных конденсатора емкостью С, катушки индуктивностью L и резистора сопротивлением R:

Такую электрическую цепь называют колебательным контуром, потому что в ней могут происходить периодические изменения электрического заряда и разности потенциалов на обкладках конденсатора, а также электрического тока в цепи. Периодические колебания перечисленных физических величин достаточно вызвать даже при кратковременном подключении конденсатора колебательного контура к источнику постоянного тока. Однако, из-за потерь электрической энергии, связанной с нагреванием катушки и резистора, имеющих электрическое сопротивление R, колебания в контуре будут затухающими.

Свободные незатухающие электромагнитные колебания можно получить только в идеализированном случае, когда можно пренебречь электрическим сопротивлением (R 0) контура. Такие свободные незатухающие колебания называют еще собственными электромагнитными колебаниями.

Можно доказать, что в колебательном контуре происходят гармонические колебания заряда, согласно закону:

где : q - мгновенное значение заряда конденсатора;

q0 - амплитудное значение электрического заряда;

w0 - собственная частота колебаний в контуре.

Форма записи (через cos или sin) не имеет значения, так как отличие будет определяться лишь начальными условиями, а именно различной начальной фазой колебаний. Зная связь между зарядом конденсатора и разностью потенциалов на его обкладках:

можно аналогично записать гармонические колебания разности потенциалов:

где: U - мгновенное значение напряжения на обкладках конденсатора;

U0 - амплитудное значение напряжения;

w0 - собственная частота колебаний в контуре.

Сила тока является первой производной от электрического заряда по времени:

Поэтому гармонические колебания силы тока в колебательном контуре будут происходить по закону:

где: i - мгновенное значение тока в контуре;

J0 = q0 w0 - амплитудное значение тока;

w0 - собственная частота колебаний в контуре.

Циклическая частота w0 называется собственной частотой электромагнитных колебаний, она зависит только от параметров колебательного контура, а именно - от емкости конденсатора С и индуктивности L:

Период собственных электромагнитных колебаний, соответственно, вычисляется по формуле (Формула Томсона.):

Физические процессы, происходящие в колебательном контуре, сопровождается непрерывными преобразованиями одного вида энергии в другой, а именно: энергия электрического заряда конденсатора превращается в энергию магнитного поля катушки и наоборот. При этом, в полном соответствии с законом сохранения и превращения энергии, полная энергия в колебательном контуре остается величиной постоянной:

где: U и J - соответственно напряжение на обкладках конденсатора и сила тока в контуре в любой момент времени; U0 и J0 - амплитудные (максимальные) значения этих же величин.

ПЕРИОД И ЧАСТОТА КОЛЕБАНИЙ.

Важнейшей характеристикой механических, электрических, электромагнитных и всех других видов колебаний является период-время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5 с. Период колебаний больших качелей - около 2 с, а период колебаний струны может быть от десятых до десятитысячных долей секунды.

Другой величиной, характеризующей колебания, является частота (от слова "частое-число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащие тела, ток в проводнике и т. п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут: Гц): 1 Гц-это одно колебание в 1 с. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон "ля" первой октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При таком токе электроны в .проводниках в течение 1 с текут попеременно 50 раз в одном направлении н столько же раз в обратном, т. е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты-килогерц (пишут: кГц), равный 1000 Гц, и мегагерц (пишут: МГц), равный 1000 кГц, или 1000000 Гц.

Вынужденные электромагнитные колебания. Установившиеся вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение методом векторных диаграмм. Явление резонанса. Резонанс токов и напряжений.

Вынужденные колебания.

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.

Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.

Для установления стационарных вынужденных колебаний необходимо некоторое время Δt после включения в цепь внешнего источника. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.

Рассмотрим последовательный колебательный контур, то есть RLC-цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):

где 0 – амплитуда, ω – круговая частота.

Вынужденные колебания в контуре

Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому закон Ома можно записать для мгновенных значений токов и напряжений:

Величина – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности.

Уравнение вынужденных колебаний можно записать в виде

где uR(t), uC(t) и uL(t) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами UR, UC и UL. При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм.

На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).

Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме Длины векторов на диаграмме равны амплитудам колебаний A и B, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом Δφ = φ1 – φ2. Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:

Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

Резонанс

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).

При последовательном резонансе (ω = ω0) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

Было введено понятие добротности RLC-контура:

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в Q раз превышают амплитуду напряжения внешнего источника.

Резонансные кривые для контуров с различными значениями добротности Q. Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω для различных значений добротности Q. Кривые на рис. 2.3.3 называются резонансными кривыми.

Читайте также: