Как работает система gps кратко

Обновлено: 07.07.2024

Принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение.

Спутники и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время).

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности.

Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.

Как работает GPS?

Для определения положения и времени почти в любом месте Земли используется орбитальная группировка и наземные станции.

На высоте более 19 тыс. км над Землей постоянно развернуто по меньшей мере 24 активных спутника.

Их позиции рассчитаны таким образом, чтобы в небе над любой точкой планеты всегда находилась ровно половина из них.

Основной целью спутников является передача информации на Землю на частотах в диапазоне 1,1–1,5 ГГц. С помощью этих данных и математических расчетов наземный приемник или модуль GPS могут вычислять свое местоположение и текущее время.

В 2010 г. была восстановлена альтернативная система глобального позиционирования ГЛОНАСС. Она также насчитывает 24 спутника и вещает на частотах 1,2–1,6 ГГц.

Каналы

Число каналов, с которыми работает GPS-модуль, влияет на время первого исправления (TTFF). Поскольку неизвестно, какие спутники находятся в поле зрения, чем больше частот можно проверить сразу, тем быстрее будет произведена коррекция. После установления связи или получения исправления некоторые модули отключают дополнительные каналы для экономии энергии. Если пользователь не против того, чтобы немного дольше подождать, 12 или 14 каналов достаточно для отличной работы приемника.

Трилатерация

Это математический метод, используемый для вычисления позиции с несколькими контрольными точками. Чтобы GPS-приемник мог вычислить точное положение и время, он должен установить связь по крайней мере с 4 спутниками. Для вычисления расстояния до объекта методом триангуляции нужны 2 точки. Но в случае GPS нужно определить 4 значения – широту, долготу, высоту и время.

Определение местоположения и времени

Данные, передаваемые на Землю с каждого спутника, содержат несколько разных фрагментов информации, которые позволяют GPS-приемнику точно рассчитать свое местоположение и время. Важным элементом оборудования на каждом из них являются чрезвычайно точные атомные часы. Данные о времени посылаются на Землю вместе с орбитальным положением и временем прибытия в разные точки орбиты. Другими словами, GPS-модуль получает временную метку от всех видимых спутников, а также информацию об их местонахождении. Из этих данных можно вычислить расстояние до каждого из них. Если антенна видит не менее 4 спутников, то можно точно рассчитать положение приемника.

Есть еще сторона глобальной системы позиционирования. Наряду с вышеперечисленными элементами существуют наземные станции, которые могут взаимодействовать со спутниковой сетью и некоторыми приемниками GPS. Такая система называется сегментом управления и повышает точность измерений. Ее примерами являются WAAS и DGPS. Первая используется большинством приемников и снижает ошибку до 5 м. Вторая требует наличия ресивера определенного типа и обеспечивает сантиметровую погрешность. Устройства данного типа дорогие и имеют тенденцию быть более крупными, поскольку требуют дополнительной антенны.

Точность геопозиционирования

Погрешность измерений приемника GPS или GLONASS зависит от ряда переменных, в первую очередь от отношения сигнал/шум, положения спутника, погодных условий и наличия препятствий, таких как здания и горы. Эти факторы могут создавать ошибки расчета местоположения пользователя. Шум обычно создает ошибку от 1 до 10 м. Горы, здания и другие предметы, которые могут препятствовать прохождению сигнала от спутника, могут вызывать в 3 раза большую ошибку. Для нормальной работы GPS-приемник должен иметь возможность принимать сигнал от 4 спутников. Связь с первым из них позволяет получить данные об альманахе и, следовательно, доступности остальных. Хотя и можно определить местонахождение и с меньшим, чем 4, числом спутников, погрешность измерений может быть довольно большой. Самое точное определение местоположения происходит, когда есть открытый обзор ясного неба, свободный от любых препятствий, c более чем 4 спутниками над головой. Для борьбы с этими ошибками создано несколько вспомогательных средств.

Дифференциальный GPS

Другим методом является дифференциальная система геопозиционирования DGPS. Данная система определения местоположения также использует наземные станции. Однако она отличается тем, что находит разницу между показаниями спутника и приемника. Станции могут находиться на расстоянии до 370 км от ресивера, и важно отметить, что по мере удаления от них точность измерений ухудшается. DGPS осуществляется наземной станцией, передающей сигнал, который диктует ошибку между фактической и измеренной псевдодальностью. Это значение рассчитывается путем умножения скорости света на время прохождения сигнала со спутника на приемник.

Вот пример NMEA-строки, полученной от приемника, установившего связь со спутником:

В предложении содержится следующая информация:

  • время по Гринвичу: 23:53:17;
  • широта: северная, 40,039039°;
  • долгота: западная, 10,5125793°;
  • количество спутников: 08;
  • высота: 1577 м.

Данные разделяются запятыми, чтобы упростить чтение и анализ компьютерами и микроконтроллерами.

Чтение данных

Большинство модулей GPS оборудованы последовательным портом, который позволяет подключить их к микроконтроллеру или компьютеру.

Микроконтроллер обычно анализирует данные NMEA. Разбор предложения производится путем простого выделения из него части информации.

Например, микроконтроллеру требуется прочитать только высоту GPS. Вместо того чтобы иметь дело со всем текстом, он анализирует предложение GPGGA и выбирает только высоту. Как только необходимая информация будет отобрана, ею можно манипулировать, чтобы выполнять другие действия.

Платформа Arduino также может легко анализировать данные NMEA с помощью библиотеки Tiny GPS.


В этой статье мы расскажем про глобальные системы позиционирования, разработанные в США, России, ЕС и Китае; объясним, как поддержка технологий глобальной спутниковой навигации реализована в электронных устройствах, а также опишем ключевые и дополнительные функции современных навигационных приемников.


Система GPS (Global Positioning System) создавалась для применения в военных целях. Она начала работать в конце 80-х — начале 90-х годов, однако до 2000 года искусственные ограничения на определение местоположения существенно сдерживали ее возможности использования в гражданских целях.

  • Определение точного местоположения
  • Навигация, движение по маршруту с привязкой к карте на основании реального местоположения
  • Синхронизация времени


Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat — это число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).

ГЛОНАСС


Российский аналог GPS — ГЛОНАСС (глобальная навигационная спутниковая система) — была развёрнута в 1995 году, но в связи с недостаточным финансированием и малым сроком службы спутников она не получила широкого распространения. Вторым рождением системы можно считать 2001 год, когда была принята целевая программа ее развития, благодаря которой ГЛОНАСС возобновил полноценную работу в 2010 году.

Сегодня на орбите работают 24 спутника ГЛОНАСС, они охватывают навигационным сигналом весь земной шар.
Новейшие потребительские устройства используют GPS и ГЛОНАСС как взаимодополняющие системы, подключаясь к ближайшим найденным спутникам, это значительно увеличивает скорость и точность их работы.


Пример: aвтомобильное GPS/ГЛОНАСС-навигационно-связное устройство на базе ОС Android, разработанное командой Promwad по заказу российского конструкторского бюро. Реализована поддержка GSM/GPRS/3G. Устройство автоматически обновляет информацию о дорожной обстановке в режиме реального времени и предлагает водителю оптимальный маршрут с учётом загруженности дорог.

Сейчас на стадии разработки находятся еще две спутниковые системы: европейская Galileo и китайская Compass.

Galileo


Галилео — совместный проект Европейского союза и Европейского космического агентства, анонсированный в 2002 году. Изначально рассчитывали, что уже в 2010 году в рамках этой системы на средней околоземной орбите будут работать 30 спутников. Но этот план не был реализован. Сейчас предположительной датой начала эксплуатации Galileo считается 2014 год. Однако ожидается, что полнофункциональное использование системы начнется не ранее 2020 года.

Compass


Это следующая ступень развития китайской региональной навигационной системы Beidou, которая была введена в эксплуатацию после запуска 10 спутников в конце 2011 года. Сейчас она обеспечивает покрытие в границах Азии и Тихоокеанского региона, но, как ожидается, к 2020 году система станет глобальной.



Сравнение орбит спутниковых навигационных систем GPS, ГЛОНАСС, Galileo и Compass (средняя околоземная орбита — MEO) с орбитами Международной космической станции (МКС), телескопа Хаббл и серии спутников Иридиум (Iridium) на низкой орбите, а также геостационарной орбиты и номинального размера Земли.

Поддержка ГНСС

  • Smart Antenna — модуль, состоящий из керамической антенны и навигационного приемника. Преимущества: компактность, не требует согласования, удешевляет разработку за счет сокращения сроков.
  • MCM (Multi Chip Module) — чип, включающий все компоненты навигационного приемника.
  • OEM — экранированная плата, включающая ВЧ интерфейсный процессор и процессор частот основной полосы (RF-frontend + baseband), SAW-фильтры и обвязку. Это наиболее популярное решение на данный момент.

Ключевые параметры навигационных приемников

  1. Сигналы от спутников
  2. Альманах — информация о приблизительных параметрах орбит всех спутников, а также данные для калибровки часов и характеристики ионосферы
  3. Эфемериды — точные параметров орбит и часов каждого спутника

Производители приемников используют различные методы уменьшения TTFF, включая скачивание и сохранения альманаха и эфемерид по беспроводным сетям передачи данных (т.н. метод Assisted GPS или A-GPS), это быстрее чем извлечение этих данных из сигналов ГНСС.

Холодный старт описывает ситуацию, когда приемнику нужно получение всей информации для определения места. Это может занять до 12 минут.

Теплый старт описывает ситуацию, когда у приемника есть почти вся необходимая информация в памяти, и он определит место в течении минуты.

Одним из ключевых параметров навигационных модулей в мобильных устройствах является энергопотребление. В зависимости от режима работы модуль потребляет различное количество энергии. Фаза поиска спутников (TTFF) характеризуется большим, а слежение меньшим энергопотреблением. Также производители реализуют различные схемы уменьшения энергопотребления, например, путем периодического перевода модуля в режим сна.

Как правило, все модули выдают данные по текстовому протоколу NMEA-0183, но кроме указанного текстового протокола каждый производитель имеет свой собственный двоичный протокол (Binary), который позволяет изменять конфигурацию модуля под конкретное использование либо получать доступ к дополнительному функционалу, а также доступ к сырым измерениям. Двоичный протокол удобен для использования на микроконтроллерах, т.к. при этом нет необходимости выполнять преобразование из текста в двоичные данные, тем самым экономя программную память путем исключения библиотеки работы со строками и времени на преобразование.

Стандарт NMEA-2000 — это развитие протокола NMEA-0183. В качестве физического уровня в NMEA-2000 используется CAN-шина, которая была выбрана в виду большей защищенности по сравнению с RS-232. С точки зрения протокола передачи данныхNMEA-2000 существенно отличается от своего предшественника, т.к. использует двоичный протокол, базирующийся на стандарте SAE J1939.

Частота обновления данных о местоположении и скорости всех модулей составляет 1 Гц, но при необходимости ее можно поднять до 5 или 10 Гц.

В зависимости от области применения модуль можно сконфигурировать под определенные динамические характеристики, которые он должен отслеживать (например, максимальное ускорение объекта). Это позволяет использовать оптимальный алгоритм и улучшать качество измерений.

Для выполнения навигационной задачи модуль должен одновременно принимать сигналы от нескольких спутников, т.е. иметь несколько приемных каналов. На сегодняшний день это число лежит в диапазоне от 12 до 88.

Точность определения местоположения по GPS составляет в среднем 15 м, она обусловлена используемым неточным сигналом, влиянием атмосферы на распространение радиосигнала, качеством кварцевых генераторов в приемниках и пр. Но с помощью корректирующих методов возможно улучшить точность определения местоположения. Эта технология называется Differential GPS. Существует два метода коррекции: наземный и спутниковый DGPS.

В наземных методах коррекции наземные станции дифференциальных поправок постоянно сверяют свое заведомо известное местоположение и сигналы от навигационных спутников. На базе этой информации вычисляются корректирующие величины, которые могут быть переданы с помощью УКВ- или ДВ-передатчика на мобильные DGPS-приемники в формате RTCM. На основании полученной информации потребитель может корректировать процесс определения собственного местоположения. Точность этого метода составляет 1—3 метра и зависит от расстояния до передатчика корректирующей информации и качества сигнала.

Спутниковые методы, такие как система WAAS (Wide Area Augmentation System), доступная в Северной Америке, и система EGNOS (European Geostationary Navigation Overlay System), доступная в Европе, шлют корректирующие данные с геостационарных спутников, таким образом достигается большая область приема, чем при наземных методах.


Спутниковые системы дифференциальной коррекции (SBAS — Space Based Augmentation Systems) позволяют улучшить точность, надежность и доступность навигационной системы за счет интеграции внешних данных в процессе расчета



Демонстрация принципа работы системы WAAS (Wide Area Augmentation System) на территории США

Одним из основных параметров, влияющих на точность определения местоположения и стабильность приема является чувствительность. Она, как правило, определяется качеством малошумящего усилителя на входе приемника и сложностью реализованных алгоритмов цифровой обработки. Типовые значения современных приемников лежат в диапазоне 143 дБм для поиска и 160 дБм для слежения.

Кроме определения местоположения ГНСС предоставляют информацию о точном времени. Как правило, все приемники имеют выход PPS (pulse per second, импульсов в секунду) — секундная метка (1 Гц), которая точно синхронизирована с временной шкалой UTC.

Дополнительные функции навигационных устройств

Счисление пути. На основе информации о направлении движения и пройденном пути (предоставляется дополнительными датчиками) приемник может рассчитывать свои координаты при отсутствии сигналов от спутников (например, в туннелях, на подземных стоянках и в плотной городской застройке).

Некоторые модули имеют возможность напрямую подключать флэш-память (например, по SPI) к модулю для записи трека c необходимой периодичностью. Эта функция позволяет отказаться от использования отдельного микроконтроллера, либо она может быть полезной для минимизации энергопотребления (т.е. система на кристалле может находиться в состоянии сна).

На этом поверхностный обзор технологий глобальной спутниковой навигации завершен. Спасибо за внимание. Примеры реализованных проектов на базе этих ГЛОНАСС и GPS можно посмотреть на странице разработок компании Promwad.


В наше время навигатор — это не только инструмент путешественников и исследователей, с помощью которого можно построить курс в открытом море или глухой тайге, но и привычное многим бытовое устройство, помогающее автомобилисту или пешеходу найти нужный пункт назначения или привязать к координатам какие-то данные, например фотографии. Часто мы пользуемся этими приспособлениями, не задумываясь о том, почему и как они работают. В данной статье мы попробуем разобраться с этим и ответить на часто возникающие вопросы: что такое GPS, откуда она взялась, для чего она нужна, на чем основан принцип ее действия и работает ли GPS без GPS, без сотовой связи и интернета.

GPS навигатор

История создания

Система GPS (читается как Джи Пи Эс) была создана по заказу Министерства обороны США для военных целей.

Идея использования искусственных спутников для навигации возникла в середине прошлого века после запуска в СССР первого космического спутника. Американские ученые обнаружили факт, который впоследствии ляжет в основу принципа работы GPS: зная координаты наблюдателя на Земле, можно рассчитать координаты спутника, и наоборот — если известно расстояние до спутника, то можно узнать координаты объекта на Земле.

В 1973 году в США была начата программа DNSS, переименованная в конце того же года в NavStar-GPS. Ее задачей было достижение при помощи искусственных спутников Земли более точной навигации для армии США.

В 1974 году по этой программе на орбиту был выпущен первый спутник, а последний из 24 спутников, которые нужны для покрытия всей планеты, был запущен в 1993 году.

Мирное использование GPS

Когда в 1983 году корейский пассажирский самолет был сбит после вторжения в воздушное пространство Советского Союза из-за проблем с навигацией, президент Рональд Рейган принял решение разрешить использование GPS гражданским службам всего мира.

Для предотвращения использования этой технологии в военных целях точность работы GPS, доступной для общего использования, с помощью умышленной ошибки поначалу искусственно уменьшалась до 100 метров, но в 2000 году это ограничение было убрано. А специализированное военное применение этой системы спутниковой навигации армией США происходит через зашифрованный P(Y) код, дающий более точные результаты — до миллиметров.

Спутник GPS

Система Глобального Позиционирования

Сейчас благодаря GPS можно вычислить свое местоположение в любой точке поверхности земного шара (кроме полярных областей) и в околоземном космическом пространстве. Часто люди, пользующиеся этой системой в быту, воспринимают ее в качестве составной части своего устройства (”В телефоне работает GPS-навигатор, потому что телефон высокотехнологичный”). Однако в действительности это гораздо более масштабная вещь: по сути, для того, чтобы узнать свое местоположение, нам необходимо связаться с космосом (хотя и не очень дальним).

GPS — Система Глобального Позиционирования — содержит в себе три раздела: космический, наземный и пользовательский.

Космический раздел

Сейчас космический раздел GPS составляет 32 спутника (один из них — резервный). Вес каждого спутника — около тонны, срок их службы — примерно 10 лет (однако по факту до сих пор работает спутник, выведенный на орбиту еще в 1993 году). Спутники вращаются в разных плоскостях по шести орбитам на высоте около 20 тысяч километров над Землей. Орбиты построены так, что в каждый момент времени в любом месте Земли видно несколько спутников, а если какой-то из них выйдет из строя, то остальные изменят свои орбиты, чтобы заполнить пустующее пространство. За звездные сутки спутник делает два оборота вокруг Земли, пролетая над одним и тем же местом в определенное время.

Спутники GPS

Каждый спутник имеет свой идентификационный номер, который он посылает приемникам на Землю. Также на них размещены атомные часы (по четыре на каждом), точность которых — около наносекунды.

Наземный раздел

На Земле находятся несколько станций слежения, наблюдающих за спутниками GPS и передающих информацию о них на главную контрольную станцию, расположенную в Колорадо на авиабазе BBC США. Там высчитываются текущие и будущие орбиты и координаты и ежедневно передаются на спутники, а они затем передают эти данные GPS-приемникам. В памяти приемника хранится информация обо всех спутниках, даже недоступных в данный момент, благодаря чему он знает, какие спутники ему следует использовать.

Пользовательский раздел

Пользовательский раздел — это приемники, которые отслеживают все видимые в данном месте спутники и принимают их радиосигналы. Сейчас их встраивают не только в предназначенные для навигации специализированные приборы, но и в смартфоны, планшеты, наручные часы и собачьи ошейники.

принцип работы gps

То, как работает GPS-навигатор, во многом зависит от синхронизации часов в спутнике и в приемнике. В отличие от находящихся на спутниках высокоточных атомных часов (стоимостью 100 тысяч долларов), часы в обычных приемниках сигнала гораздо менее точны, что приводит к ошибкам в работе системы. Поэтому для определения местоположения необходимо использовать сигналы как можно большего количества спутников, благодаря чему погрешность корректируется.

Принцип работы

Чтобы понять принцип работы GPS, представьте себе такую ситуацию: вы заблудились в лесу и несколько ваших спутников с разных сторон издали кричат вам, чтобы помочь вам сориентироваться, где вы находитесь. По громкости их голосов вы можете определить расстояние от каждого из них до вас. Если при этом они будут кричать не просто “Ау!”, а сообщать собственные координаты, то вы сможете определить свое местоположение относительно этих точек пространства. Примерно на этом же и основывается принцип работы системы GPS, хотя в ней расстояние от источника сигнала до приемника определяется не громкостью, а также невозможно определить направление сигнала.

Система GPS так работает: спутники непрерывно шлют радиосигналы, временная задержка которых показывает время движения сигнала от спутника до приемника GPS. На основании этого времени и известной скорости (скорость света постоянна) рассчитывается расстояние между спутником и приемником. Чтобы точно определить местоположения приемника, необходимо получить несколько сигналов с разных спутников (как минимум четырех) — точка, которая нас интересует, будет располагаться на пересечении окружностей, центры которых — это координаты спутников (которые известны приемнику, потому что содержатся в сигнале), а радиусы — это расстояния до них. После этого приемник высчитывает широту, долготу и высоту своего местоположения, которую для удобства привязывает к картам, хранящимся в его памяти.

Как работает GPS

Таким образом, для работы прибора GPS нужна антенна, которая примет радиосигнал со спутника; система, которая произведет необходимые вычисления; и чаще всего еще карта, на которую проецируется данная точка в пространстве. Отвечая на распространенный вопрос “Как работает GPS-навигатор без интернета?”, можно ответить, что он работает так же, как и с интернетом, потому что для GPS интернет (а также сотовая связь) не нужен — он нужен только для карт, которые можно загрузить заранее.

Точность GPS

Сейчас определить местоположение с помощью GPS можно с точностью от 1 до 15 метров. Точность зависит от нескольких факторов: от наличия или отсутствия мешающих сигналу помех; от количества, направления и высоты спутников, которые видит приемник в данный момент; от того, есть ли поблизости станции, которые передают поправки для сигналов.

Использование GPS

В настоящее время GPS используется во многих областях жизни. Принцип работы GPS-навигатора одинаков для всех устройств, однако может различаться его точность. GPS-приемники делятся на два класса: профессиональные и бытовые. Профессиональные приемники, для которых крайне важна высокая точность, отличаются поддерживаемыми режимами работы, частотами, разными системами навигации, количеством одновременно принимаемых сигналов, запасом электропитания, алгоритмами корректировки неточностей и высокой ценой. Подобные приемники используют военные, а также геодезисты и картографы.

GPS в геодезии

Бытовые приемники GPS бывают специализированными (портативными) и встроенными в другое устройство (например, в мобильный телефон или ноутбук). У специализированных приемников GPS (это разнообразные навигаторы, туристические, автомобильные, авиационные, морские) в отличие от встроенных есть свой собственный процессор.

Еще одна разновидность — это GPS-трекер. Это устройство используется для спутникового слежения за определенными объектами (например, для контроля за людьми, животными, ценным грузом или автомобилем). GPS-трекер работает похожим на навигатор образом, однако обычно он не имеет экрана, и полученные им координаты передаются через радиосвязь или GSM-передатчик в центр контроля.

Вариантом GPS-трекера является GPS-логгер — устройство, которое может работать в качестве обычного приемника GPS, но, кроме этого, может запоминать данные о пройденном пути. От GPS-трекера он отличается тем, что эти данные невозможно передать в режиме реального времени — их необходимо загружать в компьютер, подключившись к нему.

Альтернативы GPS

Учитывая, что GPS вместе со всеми своими спутниками является собственностью США и в ситуации конфликта может быть запрещена к использованию в других государствах, некоторые страны занимаются разработкой собственных систем спутниковой навигации. Каждая из них имеет свои достоинства, и большинство современных приемников умеют совмещать разные системы, что существенно повышает их точность.

"Глонасс"

Вторая полностью функционирующая система глобальной спутниковой навигации, кроме GPS, это российская система "Глонасс". Принцип ее работы тот же, как и у GPS. Основное отличие этой системы состоит в том, что у ее спутников нет резонанса с движением Земли, поэтому они более стабильны и не нуждаются в периодической коррекции. Их орбита так устроена, что эту систему можно использовать и в полярных регионах, где GPS работает плохо.

Орбиты спутников GPS и GLONASS

Недостатком российской системы является небольшой срок эксплуатации спутников — семь лет. Официально программа была начата в 1976 году, первый спутник по программе "Глонасс" СССР запустил в 1982 году, в 1991 году спутников было 12 и в 1993 году система начала эксплуатироваться. В 1995 году были запущены все запланированные 24 спутника, однако к 2001 году это количество из-за их небольшого срока службы и проблем с финансированием сократилось до 6. В нулевые годы программа возобновилась и к 2017 году на орбиту вывели 27 спутников.

Другие системы спутниковой навигации

В 2016 году в Евросоюзе официально введена в эксплуатацию система Galileo (хотя пока в режиме начальной производительности). Сейчас она состоит из 26 спутников (планируется 30).

В Китае с 2012 года работает собственная навигационная система — BeiDou, на данный момент на орбите находится 21 спутник (планируется 35). Сейчас эта система работает в качестве региональной, покрывая территорию Китая, но к 2020 году планирует выйти на глобальный уровень.

Также собственные системы спутниковой навигации разрабатывает Франция (DORIS), Индия (IRNSS), Япония (QZSS).

Как работает GPS

Маленький, но уже военный


Слухи и факты

Среди форумных забияк бытует мнение, что ГЛОНАСС — плохая система с очень низкой точностью позиционирования, ее работе может помешать даже дерево. Слухи начали распространяться в начале 2000 годов.
Десяток спутников отправились в космос полетать, один сошел с орбиты, их осталось девять.
Девять спутников, в космосе летая, ловили солнца луч, один не смог поймать, их осталось восемь.
Из-за недостатка финансирования в 2001 году количество летунов сократилось до шести. В те времена пациент был скорее мертв, чем жив. В 2007 аппаратов стало 18, в 2010 на орбиту вывели 26 штук. Космические скитальцы постоянно падают, срок жизни американского образчика технического искусства — 10 лет, у российского меньше.


Как это работает?

Спутник в космосе — летающая радиостанция, посылающая приветственные сигналы приемникам. Роль приемников играют наши смартфоны и навигаторы. Вопреки расхожему заблуждению, телефон никуда и никакие сигналы не отправляет с помощью супермощной антенны. Для точного вычисления координат необходимо минимум 4 спутника — три передают данные о своем местоположении относительно земли и друг друга, четвертый фиксирует время прохождения сигнала от передатчика к приемнику. Местоположение устройства определяет процессор — он должен быть мощным. Флагманский вычислитель обрабатывает информацию практически мгновенно. Старенький же процессор, как Сусанин, будет долго водить по кустам, кочкам и болотам. Современные устройства умеют принимать сигналы от 12 летающих радиостанций, в скором времени научатся и от всех 24. Чем больше источников информации — тем лучше.
Кроме широко известной GPS и отечественного аналога, существует еще несколько похожих систем навигации — китайский Beidou, европейский Galileo, индийский IRNSS. Но чтобы точно определять координаты, достаточно только одной. Такое многообразие обуславливается лишь страхом пред отключением GPS и необходимостью координировать передвижение войск в случае войны.


Не такой, как все

У ГЛОНАСС, в отличии от GPS, отсутствует привязка к планете. Из-за этого спутники не видят краев и часто падают, сгорая в атмосфере. Точность тоже страдает — 4–8 метров против 2,5 метров у американцев. Зато в России можно пользоваться двумя системами одновременно, получая точность в 1,5 метра. В США такая опция доступна только в некоторых штатах, устройства просто не видят российские спутники. Для точного определения местоположения на территории РФ достаточно 18 спутников на орбите. ГЛОНАСС лучше всего ловит на севере, потому что изначально система создавалась для позиционирования войск в северных регионах страны. GPS info — приложение, помогающее ловить сигналы от двух систем одновременно. Узнать, сколько космических летунов видит конкретное устройство, можно с помощью софта GPS Test.

Почему тупит?

Спутники все время находятся в движении, их траекторию отслеживают наземные станции. Актуальная информация отправляется на гаджеты в альманахах — библиотеках с самыми точными сведениями о местоположении всех доступных спутников. Обновляются альманахи по воздуху через GPRS или Wi-Fi. Если скорость Интернет-соединения низкая, процедура поиска может затянутся на 5–10 минут. В нормальном режиме на обновление уйдет 30 секунд.


Для тех, у кого с интернетом все норм, придумали A-GPS — специальный софт, передающий данные о местоположении спутника с помощью всемирной сети. Используется там, куда не пробиться сигналу от крылатой радиостанции — горы, подвалы, низины. По сути A-GPS — это цифровой репитер, повторяющий сигналы от GPS по другим каналам.

Незаменимые помощники

Акселерометр приходит на помощь спутникам, показывая куда поворачивает телефон, с какой скоростью он движется.
Магнитометр помогает акселерометру понять, где север, чтобы сориентировать в пространстве. Чем больше всяких датчиков в гаджете, тем точнее будут определены координаты.
Датчик компаса помогает определить направление движения. Если он не настроен, точность позиционирования значительно снижается. Чтобы привести его в рабочее состояние, достаточно запустить приложение и откалибровать, следуя инструкции от производителя.

А что в целом?

ГЛОНАСС — ровесник GPS, идеален для северных регионов, об этом хорошо осведомлены Шведы, использующие именно эту систему спутниковой связи. Самый большой минус — низкая точность, компенсируется подключением GPS-спутников через специальное приложение для Android и iOS.
В смартфонах антенна не важна, главное процессор и вспомогательные датчики, топовые устройства не имеют проблем с навигацией. A-GPS и другой софт — отличные костыли, помогающие престарелым устройствам ориентироваться в условиях мегаполисов и бездорожий. Для быстрого и правильного позиционирования навигатор необходимо подключать к 4G или регулярно обновлять информацию с помощью ноутбука, смартфона по Bluetooth.


Путешествуйте чаще, не бойтесь открывать новые места, ведь современные технологии не стоят на месте и в ногу идут с желаниями человека, помогая и упрощая ему жизнь в исследовании неизведанного.

Читайте также: