Как работает rs триггер кратко

Обновлено: 05.07.2024

Триггер – это электронное устройство, которое предназначается для записи и хранения информации. Обычно он имеет два выхода: прямой и инверсный; и некоторое количество входов, в зависимости от выполняемой задачи. Под действием входных сигналов, изменяется состояние выходов. Напряжение на выходах изменяется резко – скачкообразно. Для изготовления триггеров обычно используются биполярные, униполярные транзисторы (полупроводниковые приборы).

Информация может записываться в триггеры свободно (непрерывно), то есть при подаче сигналов на вход, состояние выхода меняется в реальном времени. Такие триггеры называются асинхронными . А может информация записываться, только когда активен синхронизирующий сигнал. При отсутствии положительного уровня напряжении на нем, информация на выходах измениться не может – синхронные (тактируемые) триггеры .

RS-триггер именуется так из-за названия его входов:

Он оснащен двумя входами, как говорилось, и двумя выходами:

Асинхронный RS -триггер можно реализовать на логических элементах двумя схемами:

Первая схема реализована на двух логических ИЛИ-НЕ, по рисунку 1 рассмотрим принцип работы приведенного RS -триггера. В нулевой момент времени, когда ни на один вход (R и S) не подана логическая единица, прямой выход Q =0, соответственно, инверсный =1. Если на вход S подать напряжение, уровень которого будет соответствовать единице, то выход Q скачкообразно изменит свое значение на 1, а на 0. Это произойдет запись информации. Если убрать единицу с “ Set ”, тогда выходы не изменят свое состояние, останутся такими, какими были – проявление свойства памяти. При подаче положительного сигнала на вход сброса, то есть R =1, инверсный выход резко станет равен 1, а прямой Q – 0. В работе RS -триггера есть недостаток: существует запрещенная комбинация . Нельзя одновременно подавать единичные сигналы на оба входа, нормальная работа триггера в этом случае невозможна.

Вторая схема собрана с помощью двух логических элементов И-НЕ. Разница между ними заключается в том, что управление в прошлой схеме осуществлялось положительным сигналом (единицей), а в текущей активный уровень – ноль. Работают обе схемы идентично, поэтому описание принципа действия здесь не требуется.

Работу выше описанных устройств иллюстрирует временная диаграмма:



Рисунок 3 – Временная диаграмма RS-триггера

Таблица истинности асинхронного

На схемах RS-триггер показывается как отдельное устройство, а не совокупность логических элементов, и имеет свое условное обозначение:



Рисунок 4 – Графическое обозначение асинхронного RS -триггера

В любой электронный прибор заложена возможность управления встроенной функциональностью и ее взаимодействие со смежными системами.

Триггер внешний вид

Статья подробно раскроет тему, что такое RS-триггер. Будет дана информация о назначении этого элемента, разновидностях и принципах действия.

Назначение

Основным назначением RS-триггеров является запись и хранение полученной информации. RS-триггер может легко оперировать данными и использовать их для периодического изменения общего состояния принципиальной схемы. Например, элемент может использоваться для включения определенных функций в электронной схеме.

Принцип работы

Простой RS-триггер использует особый принцип работы, основанный на получении входных сигналов, которые в зависимости от поставленной задачи изменяют состояние выходов устройства. При входе сигнала на основной блок, на выходах происходит скачкообразное изменение напряжения, вследствие чего осуществляется управление поставленной задачей.

Принцип работы триггера

Логическое электронное устройство состоит из нескольких активных входных и выходных контактов. Рассмотрим эти контакты:

Далее рассмотрим, как работает простой RS-элемент.

Принцип работы простого RS-триггера невозможен без выходов. Они имеют такие обозначения:

Самый первым был сделан триггер на транзисторах. Современные логические элементы сильно минимизированы, поэтому в основе всех таких устройств обязательно лежит микросхема. Такие устройства не подвержены воздействию помех, имеют низкий процент метастабильности, немного больше памяти и более широкие возможности для использования.

Транзисторный триггер

Транзисторные модели надежнее, но их основные недостатки: размер, наличие множества компонентов. Для увеличения памяти такие элементы подключаются параллельно в схему.

Разновидности

Набор функциональности и задач, которые выполняются современными логическим устройствами, требует их постоянной модификации. Далее будет дано описание существующих разновидностей RS-устройств.

Синхронный триггер

Синхронный триггер

Синхронный триггер имеет очень важное назначение. Он нашел применение в цепях, где используется защита от электромагнитных помех.

Далее будет приведена таблица истинности простого синхронного RS-триггера. Графическое изображение диаграммы синхронизации сигналов приведена ниже.

Таблица истинности простого синхронного триггера

Благодаря таблице можно проследить зависимость значений выхода от состояния входов.

Асинхронный триггер

Асинхронный RS-элемент можно отнести к самым простым логическим устройствам. Их главное отличие заключается в отсутствии сигнала синхронизации. Как работает асинхронный RS-триггер, можно понять по его схеме. Принцип работы следующий:

На момент установки сигнала схема будет находиться во включенном состоянии, например, будет запущен электродвигатель.

Асинхронный триггер

Подобное простое сочетание и переключение напряжения с входных сигналов, используется для обеспечения работы более сложных триггеров или схем автоматического управления. Синхронный тип элемента относится к нетактируемым устройствам.

Для прослеживания принципа работы используется таблица истинности асинхронного RS-триггера. Она показана ниже.

Таблица истинности асинхронного триггера

Цепь ИЛИ-НЕ полностью идентична. Основное отличие заключается только в подаче 0 и низкого напряжения к входному контакту. Любое нарушение закономерности этих схем приводит общую цепь к уровню запрещенного состояния, чего можно достичь только при неправильном подключении или ошибки управления. Далее будут представлены УГО триггера на логических элементах И-НЕ и ИЛИ-НЕ.

И не или не

RS-триггер с активными инверсными выходами сильно зависим от работоспособности и скачков напряжения. Его правильная эксплуатация осуществляется с использованием устройств защиты.

D-триггер

D триггер

Динамические устройства используются в вычислительной технике и простой автоматике в качестве дополнения к синхронным триггерам (дополнительная ячейка). УГО схемы работы устройства представлено ниже.

Таблица истинности

JK-триггер

Jk триггер

Одновременно две логические 1 не приводят общую цепь в запрещенное состояние. Если запрещенная комбинация приводит к общей нестабильности цепи, один из выходов просто меняет свое положение с 0 на 1 или наоборот. Для стабилизации запрещенного сочетания, если оно необходимо практически, используется дополнительный триггер синхронного типа. Такие модели устройств могут использоваться для одновременного включения 2 функций одного устройства.

Диаграмма триггера

Метастабильность

Работоспособность триггеров строится на точности перехода от логических параметров 1 и 0. Устройство способно работать в одном состоянии 0 или 1. При этом переход от логических величин осуществляется без задержки в заданное время. Переход зависит от смены напряжения на входах элемента.

Метастабильность

Основная проблема устройств кроется в эффекте метастабильности. Это состояние, при котором сигнал попадает на контакт входа в момент перехода из одного состояния в другое. В такие моменты напряжение находится между переходами. Это может привести:

  1. К полному нарушению работоспособности.
  2. Несанкционированному включению/выключению цепи.
  3. Общему нестабильному состоянию.
  4. Выгоранию ячейки памяти.

Метастабильность можно представить, как шарик, установленный в верхней точке холма. В момент перехода из логического состояния, шарик (напряжение) переходит в одну из сторон согласно схеме. При метастабильности шарик (напряжение) замедляет переход. Этот эффект зависит от шумов цепи, высокого электромагнитного потока и скачков напряжения.

Данный эффект сильно зависим от временного интервала перехода. Также существует погрешность нахождения триггера в состоянии метастабильности. Для снижения данного эффекта инженеры вносят в схему 2 устройства, подключенных параллельно. Такая цепь позволяет снизить возможность появления метастабильности, уменьшить время нахождения цепи в этом состоянии. Так же 2 триггера в цепи значительно увеличивают время перехода, снижают зависимость от частотных и электромагнитных влияний.

Использование

Все выше описанные разновидности триггеров используются только в простейших электронных схемах контроля. Способность устройств к синхронизации и удерживанию сигнала используется в технике для взаимодействия с простейшими таймерами. Большая доля использования приходится для стабилизации работы механических кнопок и клавиш. Эти устройства испытывают эффект дребезга контактов. Например, при включении электрических двигателей. Дребезг контактов становится причиной появления сигналов с высокой частотой взаимодействия. Триггеры выравнивают и сглаживают этот эффект.

Использование триггера в оборудовании

В персональных компьютерах простые триггеры не используются. Причина заключается в малом операционном объеме памяти. Устройство обладает только ячейкой емкостью 1 бит, что очень мало для сложной вычислительной техники.

Заключение

Триггер — очень нужный элемент в схеме автоматического управления. Такие логические устройства способны управлять функциональностью сложного электронного оборудования. Обладая маленькой памятью, они могут контролировать рабочее состояние аппаратуры, моменты включения и выключения, перераспределять логические задачи в приборах, работающих с высокочастотными сигналами, применяться в составе цифровых фильтров.

Триггер

Одним из важнейших элементов цифровой техники является триггер (англ. Trigger - защёлка, спусковой крючок).

Сам триггер не является базовым элементом, так как он собирается из более простых логических схем. Семейство триггеров весьма обширно. Это триггеры: T, D, C, JK, но основой всех является самый простой RS-триггер.

Без RS триггеров невозможно было бы создание никаких вычислительных устройств от игровой приставки до суперкомпьютера. У триггера два входа S (set) - установка и R (reset) - сброс и два выхода Q-прямой и Q- инверсный. Инверсный выход имеет сверху чёрточку. Триггер бистабильная система, которая может находиться в одном из двух устойчивых состояний сколь угодно долго. На рисунке показан RS-триггер выполненный на элементах 2ИЛИ – НЕ.

Точно так же триггер может быть выполнен и на элементах 2И – НЕ.

Единственная разница это то, что триггер на элементах И – НЕ активируется, то есть переводится в другое состояние потенциалом логического нуля. Триггер, собранный на элементах ИЛИ – НЕ активируется логической единицей. Это определяется таблицей истинности логических элементов. При подаче положительного потенциала на вход S мы получим на выходе Q высокий потенциал, а на выходе Q низкий потенциал. Тем самым мы записали в триггер, как в ячейку памяти, единицу. Пока на вход R не будет подан высокий потенциал, состояние триггера не изменится.

На принципиальных схемах триггер изображается следующим образом.

Два входа R и S, два выхода прямой и инверсный и буква Т означающая триггер.

Хорошо отображает принцип работы RS-триггера несложная схема, собранная на двух элементах 2И – НЕ. Для этого используется микросхема 155ЛА3, которая содержит четыре таких элемента. Нумерация на схеме соответствует выводам микросхемы. Напряжение питания +5V подаётся на 14 вывод, а минус подаётся на 7 вывод микросхемы. После включения питания триггер установится в одно из двух устойчивых состояний.

Схема RS-триггера на микросхеме К155ЛА3

Исходя из того, что сопротивление переходов транзисторов логических элементов не может быть абсолютно одинаковым, то триггер после включения питания, как правило, принимает одно и то же состояние.

Допустим, после подачи питания у нас горит верхний по схеме светодиод HL1. Можно сколько угодно нажимать кнопку SB1 ситуация не изменится, но достаточно на долю секунды замкнуть контакты кнопки SB2 как триггер поменяет своё состояние на противоположное. Горевший светодиод HL1 погаснет и загорится другой - HL2. Тем самым мы перевели триггер в другое устойчивое состояние.

На данной схеме всё достаточно условно, а на реальном триггере принято считать, что если на прямом выходе "Q" высокий уровень то триггер установлен, если уровень низкий то триггер сброшен.

Основной недостаток рассматриваемого триггера это, то, что он асинхронный. Другие более сложные схемы триггеров синхронизируются тактовыми импульсами общими для всей схемы и вырабатываемые тактовым генератором. Кроме того сложная входная логика позволяет держать триггер в установленном состоянии до тех пор пока не будет сформирован сигнал разрешения смены состояния триггера.

RS-триггер может быть и синхронным, но двух логических элементов для этого мало.

На рисунке изображена схема синхронного RS-триггера. Такой триггер может быть собран на микросхеме К155ЛА3, которая содержит как раз четыре элемента 2И – НЕ. В данной схеме переключение триггера из одного состояния в другое может быть осуществлено только в момент прихода синхроимпульса на вход "C".

Схема синхронного RS-триггера

Благодаря своей простоте и недорогой стоимости RS-триггеры широко применяются в схемах индикации. Часто для повышения надёжности и устранения возможности случайного срабатывания RS-триггер собирается по так называемой двухступенчатой схеме. Вот схема.

Схема двухступенчатого триггера

Здесь можно видеть два совершенно одинаковых синхронных RS-триггера, только для второго триггера синхроимпульсы инвертируются. Первый триггер в связке называют M (master) - хозяин, а второй триггер называется S (slave) - раб.

Допустим на входе "С" высокий потенциал. М-триггер принимает информацию, но низкий потенциал на входе синхронизации S-триггера блокирует приём информации. После того как потенциал поменялся на противоположный информация из M-триггера записывается в S-триггер, но приём информации в M-триггер блокируется.

Такая двухступенчатая система намного надёжнее обычного RS-триггера. Она свободна от случайных срабатываний.

Для более наглядного изучения работы RS-триггера рекомендую провести эксперименты с RS-триггером.

Триггер – элемент цифровой техники, бистабильное устройство, которое переключается в одно из состояний и может находиться в нем бесконечно долго даже при снятии внешних сигналов. Он строится из логических элементов первого уровня (И-НЕ, ИЛИ-НЕ и т.д.) и относится к логическим устройствам второго уровня.

На практике триггеры выпускаются в виде микросхем в отдельном корпусе или входят в качестве элементов в состав больших интегральных схем (БИС) или программируемых логических матриц (ПЛМ).

Определение триггера.

Классификация и типы синхронизации триггеров

Триггеры делятся на два больших класса:

Принципиальное различие между ними в том, что у первой категории устройств уровень выходного сигнала меняется одновременно с изменением сигнала на входе (входах). У синхронных триггеров изменение состояния происходит только при наличии сихронизирующего (тактового, стробирующего) сигнала на предусмотренном для этого входе. Для этого предусмотрен специальный вывод, обозначаемый буквой С (clock). По виду стробирования синхронные элементы делятся на два класса:

У первого типа уровень выхода меняется в зависимости от конфигурации входных сигналов в момент появления фронта (переднего края) или спада тактового импульса (зависит от конкретного вида триггера). Между появлением синхронизирующих фронтов (спадов) на входы можно подавать любые сигналы, состояние триггера не изменится. У второго варианта признаком тактирования является не изменение уровня, а наличие единицы или нуля на входе Clock. Также существуют сложные триггерные устройства, классифицируемые по:

  • числу устойчивых состояний (3 и более, в отличие от 2 у основных элементов);
  • числу уровней (также более 3);
  • другим характеристикам.

Сложные элементы имеет ограниченное применение в специфических устройствах.

Типы триггеров и принцип их работы

Существует несколько основных типов триггеров. Перед тем, как разобраться в различиях, следует отметить общее свойство: при подаче питания выход любого устройства устанавливается в произвольное состояние. Если это критично для общей работы схемы, надо предусматривать цепи предустановки. В простейшем случае это RC-цепочка, которая формирует сигнал установки начального состояния.

RS-триггеры

Самый распространенный тип асинхронного бистабильного устройства – RS-триггер. Он относится к триггерам с раздельной установкой состояния 0 и 1. Для этого имеется два входа:

Имеется прямой выход Q, также может быть инверсный выход Q1. Логический уровень на нём всегда противоположен уровню на Q – это бывает удобно при разработке схем.

При подаче положительного уровня на вход S на выходе Q установится логическая единица (если есть инверсный выход, он перейдет на уровень 0). После этого на входе установки сигнал может меняться как угодно – на выходной уровень это не повлияет. До тех пор, пока единица не появится на входе R. Это установит триггер в состояние 0 (1 на инверсном выводе). Теперь изменение сигнала на входе сброса никак не повлияет на дальнейшее состояние элемента.

Логическая схема RS-триггера.

Важно! Вариант, когда на обоих входах присутствует логическая единица, является запретным. Триггер установится в произвольное состояние. При разработке схем такой ситуации надо избегать.

Логическая схема RS-триггера.

RS-триггер можно построить на основе широко распространенных двухвходовых элементов И-НЕ. Такой способ реализуем как на обычных микросхемах, так и внутри программируемых матриц.

Один или оба входа могут быть инверсными. Это означает, что по этим выводам триггер управляется появлением не высокого, а низкого уровня.

Логическая схема RS-триггера с инверсными входами.

Если построить RS-триггер на двухвходовых элементах И-НЕ, то оба входа будут инверсными – управляться подачей логического нуля.

Существует стробируемый вариант RS-триггера. У него имеется дополнительный вход С. Переключение происходит при выполнении двух условий:

  • присутствие высокого уровня на входе Set или Reset;
  • наличие тактового сигнала.

Такой элемент применяют в случаях, когда переключение надо задержать, например, на время окончания переходных процессов.

D-триггеры

Пока на входе для синхронизации присутствует логическая единица, сигнал на выходе Q повторяет сигнал на входе данных (режим прозрачности). Как только уровень строба перейдет в состояние 0, на выходе Q уровень останется тем же, что был в момент перепада (защелкнется). Так можно зафиксировать входной уровень на входе в любой момент времени. Также существуют D-триггеры с тактированием по фронту. Они защёлкивают сигнал по положительному перепаду строба.

Логическая схема работы D-триггера.

На практике в одной микросхеме могут объединять два типа бистабильных устройств. Например, D и RS-триггер. В этом случае входы Set/Reset являются приоритетными. Если на них присутствует логический ноль, то элемент ведёт себя как обычный D-триггер. При появлении хотя бы на одном входе высокого уровня, выход устанавливается в 0 или 1 независимо от сигналов на входах С и D.

Объединённое исполнение D и RS-триггеров.

Схема TT-триггера.

T-триггеры

T-триггер относится к классу счётных бистабильных элементов. Логика его работы проста – он изменяет своё состояние каждый раз, когда на его вход приходит очередная логическая единица. Если на вход подать импульсный сигнал, выходная частота будет в два раза выше входной. На инверсном выходе сигнал будет противофазен прямому.

Логическая схема работы T-триггера.

Так работает асинхронный Т-триггер. Также существует синхронный вариант. При подаче импульсного сигнала на тактирующий вход и при наличии логической единицы на выводе T, элемент ведёт себя так же, как и асинхронный – делит входную частоту пополам. Если на выводе Т логический ноль, то выход Q устанавливается в низкий уровень независимо от наличия стробов.

Схема работы синхронного T-триггера.
JK-триггеры

Этот бистабильный элемент относится к категории универсальных. Он может управляться раздельно по входам. Логика работы JK-триггера похожа на работу RS-элемента. Для установки выхода в единицу используется вход J (Job). Появление высокого уровня на выводе K (Keep) сбрасывает выход в ноль. Принципиальным отличием от RS-триггера является то, что одновременное появление единиц на двух управляющих входах не является запретным. В этом случае выход элемента меняет свое состояние на противоположное.

Логическая схема работы JK-триггера.

Если выходы Job и Keep соединить, то JK-триггер превращается в асинхронный счётный Т-триггер. Когда на объединённый вход подаётся меандр, на выходе будет в два раза меньшая частота. Как и у RS-элемента, существует тактируемый вариант JK-триггера. На практике применяются, в основном, именно стробируемые элементы такого типа.

Практическое использование

Свойство триггеров сохранять записанную информацию даже при снятии внешних сигналов позволяет применять их в качестве ячеек памяти ёмкостью в 1 бит. Из единичных элементов можно построить матрицу для запоминания двоичных состояний – по такому принципу строятся статические оперативные запоминающие устройства (SRAM). Особенностью такой памяти является простая схемотехника, не требующая дополнительных контроллеров. Поэтому такие SRAM применяются в контроллерах и ПЛМ. Но невысокая плотность записи препятствует использованию таких матриц в ПК и других мощных вычислительных системах.

Выше упоминалось использование триггеров в качестве делителей частоты. Бистабильные элементы можно соединять в цепочки и получать различные коэффициенты деления. Та же цепочка может быть использована в качестве счетчика импульсов. Для этого надо считывать с промежуточных элементов состояние выходов в каждый момент времени – получится двоичный код, соответствующий количеству пришедших на вход первого элемента импульсов.

В зависимости от типа примененных триггеров, счетчики могут быть синхронными и асинхронными. По такому же принципу строятся преобразователи последовательного кода в параллельный, но здесь используются только стробируемые элементы. Также на триггерах строятся цифровые линии задержки и другие элементы двоичной техники.

Цифровая линия задержки, с помощью RS-триггера.

RS-триггеры используются в качестве фиксаторов уровня (подавителей дребезга контактов). Если в качестве источников логического уровня применяются механические коммутаторы (кнопки, переключатели), то при нажатии эффект дребезга сформирует множество сигналов место одного. RS-триггер с этим успешно борется.

Область применения бистабильных устройств широка. Круг решаемых с их помощью задач во многом зависит от фантазии конструктора, особенно в сфере нетиповых решений.

Что такое компаратор напряжения и для чего он нужен

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Что такое операционный усилитель?

Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

Читайте также: