Как образуется звуковая волна кратко

Обновлено: 03.07.2024

Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.

Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.

Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.

  • Звуковые волны, как и свет, представляет собою действие на нас специальных волнообразных движений. Явления, общие для всех родов волнообразного движения, будут иметь место и в свете, и в звуке, хотя существуют огромные различия между тем и другим родом волнообразных движений.
  • Звуковые волны отличаются от света тем, что волнообразные движения происходят не в межзвездном пространстве, а в материальной среде. Такою средою, большею частью, служит воздух. Но ею может быть также всякий газ или смесь газов, ею могут быть и жидкости, как вода, и твердые тела. Там же, где нет обычной материи, не может быть и звука.

Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.

Источники звуковых волн

Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.

Источники звуковых волн. Схема натянутая струна

Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

Звуковые волны. Опыт со звонком

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Распространение звуковых волн

Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.

Распространение звуковых волн. Опыт с бильярдными шарами

Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.

Скорость звука

Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.

Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.

1. Скорость звука в воздухе

Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.

Самолет преодолевает скорость звука

Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.

Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.

2. Скорость звуковых волн в твёрдых телах

Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе

Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.

Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.

3. Скорость звука в разных средах

  • Хлор – 206 м/сек
  • Углекислый газ – 259м/сек
  • Кислород – 316 м/сек
  • Водород – 1 284м/сек
  • Неон – 435 м/сек
  • Метан – 430 м/сек
  • Воздух – 331 м/сек
  • Вода – 1 483 м/сек
  • Ртуть – 1 383 м/сек

Твёрдые тела:

  • Стекло – 4 800 м/сек
  • Литий – 6 000 м/сек
  • Алмаз – 12 000 м/сек
  • Железо – 5 950 м/сек
  • Золото – 3 240 м/сек

Сила звука

Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.

На точном научном языке закон о силе звука излагается так:

Сила звука изменяется обратно пропорционально квадрату расстояния от его источника

Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.

Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.

Отражение звука

Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.

Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.

  1. Первый из них говорит, что угол падения волны равен углу ее отражения: это значит, что угол, под которым волна достигает поверхности, точно такой, под которым волна удаляется от нее в другую сторону. Точно такое же явление происходит при бросании мяча в стену. Если мы бросим мяч в стену в перпендикулярном направлении, то в таком же направлении он отскочит от нее; если мы бросим мяч вкось, он так же вкось отскочит. А в том случае, когда стена плоская и на мяче нет никаких неровностей и если при этом мы можем измерить угол, под которым мяч падает на стену, и тот, под которым он отскакивает от нее, то всегда найдем, что оба эти угла равны.

Угол отражения равен углу падения

  1. Второй: плоскость, в которой волна приближается, всегда та же самая, по которой она удаляется от отражаемой ее поверхности. Предположим, например, что звук движется по поверхности листа бумаги и на краю листа ударяется в перпендикулярную к нему стену. Он отразится не только под тем же углом, под которым приближался, а пойдет назад опять в плоскости листа бумаги, не уклоняясь ни вверх, ни вниз.

Падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения

Падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

  • Гром — это сотрясение воздуха, образующее звук
  • Он происходят благодаря тому, что молния проходит от облака к облаку или от облака к земле.
  • Если нет эха, то мы слышим просто единичный удар грома, соответствующий одной мгновенной причине, производящей его
  • Когда же мы слышим раскаты грома, мы просто слышим эхо одного и того же удара, отражающегося много раз от облаков к земле

Молния

Волны Рэлея

Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.

Звуковые волны. Опыт Рэлея с часами и шаром

Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Звуковые волны

002

Уравнение звуковой волны в газе (гармоничные колебания) будет выглядеть так:

p0 – начальное давление (Па);

ω – круговая частота (Гц);

k – волновое число.

Формулы связи длины звуковой волны, скорости, иные характеристики:

101

v – скорость волны (м/с);

λ – длина волны (м);

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

106

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи голосовых связок.


Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

Звуковые волны

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

Громкость звука

Зависит от перемещаемой волной энергии. Замеряют в Вт/м 2 . Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

103

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

104

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

105

106

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

Интерференция звуковых волн

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

Звуковая дифракция

3. Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

Эффект Доплера в акустике


Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород. Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия. Предупрежден – значит вооружен.



Наиболее частым видом механических волн в жизни человека являются звуковые волны. Рассмотрим кратко их особенности, а также механизм образования и распространения.

Возникновение звуковых волн

Для иллюстрации схемы возникновения звуковой волны, представим себе кристалл упругого вещества, по которому нанесен внешний удар. В результате удара возникнет некоторая деформация кристаллической решетки.


Рис. 1. Деформация кристаллической решетки после удара

Возникают силы, которые, во-первых, деформируют более далекие области кристалла, а во-вторых, стремятся вернуть деформированные области к исходному состоянию.

Исходная область возвращается в состояние равновесия, однако, при этом приобретает некоторую скорость и кинетическую энергию. В результате атомы кристалла проходят некоторое расстояние дальше точки равновесия, пока снова не возникнут силы, направленные обратно.

Таким образом, атомы области, в которую был нанесен удар, начинают колебаться. Более далекие области кристалла испытывают воздействие, и также приходят в колебательное движение с некоторой задержкой, и, в свою очередь, передают колебания дальше. В среде возникает упругая волна сжатий и растяжений, распространяющаяся с некоторой скоростью, которая имеет все характеристики, присущие волновым процессам, и описывается теми же формулами.

Такая волна называется звуковой волной или просто звуком.


Рис. 2. Распространение звуковой волны

Звуковые волны в воздухе и в других средах

Чаще всего, когда речь идет о звуке, имеются ввиду звуковые волны в воздухе. Примерами звуковых волн могут являться звуки грома, шум листьев, наш голос – любой звук, который мы можем слышать – является звуковой волной.

Однако, звук может распространяться не только по воздуху, но и по любой среде, в которой есть силы упругости. И скорость его распространения зависит от величины этих сил.

Для газов силы упругости возникают из-за локальных колебаний давления. Для кристаллов силами упругости являются межмолекулярные взаимодействия. Поскольку силы, возникающие во втором случае, гораздо больше, то и передача колебаний в кристалле происходит с гораздо большей скоростью, чем в воздухе. В жидкостях силы упругости имеют обе описанных составляющих, поэтому скорость звука в них больше, чем в газах, но меньше, чем в кристаллах.

Интересное явление происходит на границе разделения двух сред с различными упругостями. Из-за разности упругих свойств на границе передача колебаний происходит не полностью. Часть колебаний передается дальше, а часть – возвращается в среду, и начинает движение в обратном направлении. В среде возникает волна, имеющие характеристики, близкие к исходной, но имеющая более низкую мощность, и движущаяся в обратном направлении – эхо.


Рис. 3. Образование звукового эха

Особенности звуковых волн

Из представленного описания можно отметить следующие особенности звуковых волн.

  • Звук – это упругие колебания среды, распространяющиеся с некоторой скоростью.
  • Звук не может распространяться в отсутствие упругой среды. Вакуум не проводит звук.
  • Скорость звука тем выше, чем более упруга среда. Наименьшая скорость звука в разреженных газах при низкой температуре. Наибольшая скорость звука в кристаллах с высокой упругостью (металлы, стекло).
  • Звуковые колебания представляют собой продольную волну.
  • Звуковые волны могут отражаться от границы сред, и возвращаться в виде эха.

Скорость звука в воздухе составляет около 300 метров в секунду. Это позволяет примерно оценить расстояние до удаленных источников, например, по задержке между молнией и громом можно оценить расстояние до молнии.

Что мы узнали?

Звуковые волны – это механические колебания, распространяющиеся в упругой среде. Звуковые волны представляют собой продольную волну. В различных средах скорость звуковых волн различна.


Ухо здорового человека еще в утробе матери начинает улавливать и воспринимать самые разные звуки: разговор, музыку, стук и т.п. Так как различный звуковой шум окружает людей всю сознательную жизнь, мы редко задумываемся о том, что это за явление. Тем не менее, современная физика может подробнейшим образом ответить на этот вопрос, описать характеристики и свойства звука.

Что такое звук — определение в физике

Звуком называют механические колебания, распространяющиеся в окружающей среде и воспринимаемые органом слуха человека.

Раздел физики, который занимается изучением звуковых колебаний, называется акустикой.

Основные понятия явления

Звуковая волна — это поперечная волна, представляющая собой ряд чередующихся между собой разряженной и сжатой среды, которые имеют различную частоту. Звуковые волны возникают за счет колебаний, вызываемых и производимых вибрацией от любых тел.

Звуки могут возникать и распространяться в следующих видах упругой среды:

  • газообразной;
  • жидкой;
  • твердой.

Возникая в одной из перечисленных сред, звуковые колебания влекут за собой изменения этой среды:

  • плотности воздуха;
  • давления воздуха;
  • перемещение частиц воздуха и т.п.

Скорость звука находится в зависимости от двух условий:

В атмосфере при температуре равной 0 градусов, скорость звука равняется 331 м/с, при повышении температуры на 1 градус, скорость увеличивается на 1,7 м/с.

Звукопоглощением называется процесс преобразования одного вида энергии (звуковой или колебательной) в другую (тепловую).

Теория звука и акустики понятным языком

Рассмотрим чуть подробнее физическую природу явления. Все звуки, которые распространяются в воздухе, являются вибрациями звуковой волны.

Эти вибрации возникают за счет колебания объекта и расходятся от источника по всем направлениям. Распространяясь в пространстве, звуковая волна отражается от всех объектов, которые встречаются ей на пути, и создает изменения в окружающей среде. Когда эти изменения достигают органов слуха, они воздействуют на барабанную перепонку, нервные окончания в ухе подают сигналы в мозг, и человек воспринимает колебания как звук.

Какими характеристиками обладают звуковые волны

Звуковые волны, как и любой другой вид волн, обладают рядом волновых свойств.

Описание волны и её свойства

Простейшая форма описания звуковых колебаний — это синусоида.

Несмотря на то, что такой вид волн редко встречается в природе, любые звуки могут быть представлены комбинацией синусоидных волн.

Синусоида позволяет продемонстрировать основные физические критерии звука, которые называются специальными терминами:

Частотой называется физическая величина, которая характеризует количество колебаний в единицу времени (секунду) и измеряется в герцах (Гц). Ухо человека способно воспринимать звуковые сигналы в диапазоне от 20 Гц до 20 КГц. Звуки, которые находятся выше указанного диапазона называется ультразвуком, ниже – инфразвуком, для человеческих органов слуха они неуловимы.

Амплитуда или интенсивность звуковой волны — это сила звука, которую органы слуха воспринимают как громкость звукового сигнала. Для измерения громкости звука используются фонометры, единицами ее измерения являются децибелы.

Характеристика волн

Значение длины волны соответствует одной из следующих формул:

где \( \lambda\) — длина волны, \(V \) — скорость распространения звуковой волны, \(T\) — период колебания, v — частота колебания.

Такая величина, как фаза, нужна для того, чтобы описать свойства 2-х звуковых волн. Если два звуковых сигнала обладают одинаковой амплитудой и частотностью, говорят о том, что они находятся в фазе. Диапазон измерения фазы лежит в пределах от 0 до 360, где 0 означает, что две волны синхронны, т.е находятся в фазе, а 180 означает, что волны находятся в противофазе.

Волны в фазе

Что такое децибел

Децибелы — это единицы измерения уровня электрического напряжения или звукового давления. Бел назван в честь ученого-американца — слишком большая единица для измерения звука, именно поэтому на практике стали использовать децибел, который составляет всего 1/10 от бела.

Громкость звука измеряется в децибелах. Этот показатель определяется амплитудой сигнала: чем выше амплитуда звуковой волны, тем громче сигнал. Громкость человеческого слуха измеряется в фонах и обозначается Фон.

Уровень шума

Не можете разобраться со сложной темой по физике? По другому предмету? Не отчаивайтесь и не переживайте! Обращайтесь за помощью к экспертам Феникс.Хелп.

Читайте также: