Как образуется планетная система кратко

Обновлено: 04.07.2024

Солнечная система состоит из центрального небесного тела – звезды Солнца, 8 больших планет, обращающихся вокруг него, их спутников, множества малых планет – астероидов, многочисленных комет и межпланетной среды. Большие планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун.

Один из важных вопросов, связанных с изучением нашей планетной системы – проблема ее происхождения.

Развитие представлений о происхождении Солнечной системы

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И. Кантом и французским математиком и физиком П. Лапласом:

  1. Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, входе которого сначала возникло центральное массивное тело – Солнце, а потом родились и планеты.
  2. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты.

Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи – Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта–Лапласа.


Английский астроном Хойл утверждает, что Солнце в момент рождения представляло собой сгусток газопылевой туманности, в котором существовало магнитное поле. Вначале он вращался с большой скоростью, а позже из-за влияния магнитного поля его вращение начало снижаться.

Гипотеза Джинса – формирование системы произошло в результате катастрофы. Солнце столкнулось с другой звездой, в результате часть выброшенного в космическое пространство вещества конденсировалось и образовало планеты.

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта.

Стадии образования Солнечной системы


Основная теория предполагает, что на месте нынешней Солнечной системы 5 млрд. лет тому назад существовало гигантское облако из газов и пыли. Оно имело огромные размеры, и было растянуто в пространстве на 6 млрд. км.

Аналогичные пылевые облака существуют во многих уголках необъятной Вселенной. Их основная масса состоит из водорода. Это тот газ, из которого первоначально образуются звёзды. Затем, в результате термоядерной реакции, начинает выделяться инертный газ гелий. На долю остальных веществ приходится всего 2%.

Образование Солнца


В какой-то момент пылевое облако получило внешний мощный импульс, представляющий собой огромный выброс энергии. Это могла быть ударная волна, сгенерированная взрывом сверхновой звезды. А возможно, что внешнего воздействия и не было. Просто за счёт закона притяжения облако стало уменьшаться в объёме и уплотняться.

Данный процесс дал толчок гравитационному коллапсу. То есть произошло быстрое сжатие космической массы. В результате этого в центре возникло раскалённое ядро с очень высокой плотностью. Вся остальная масса рассосредоточилась по краям ядра. А так как в космосе всё вращается вокруг своей оси, то эта масса приобрела форму диска.

Ядро уменьшалось в размере, увеличивая свою температуру и плотность. В результате оно трансформировалось в протозвезду. А газовое облако вокруг ядра всё больше уплотнялось, пока в ядре температура и давление достигли критической величины. Это спровоцировало начало термоядерной реакции, и водород начал превращаться в гелий.

С момента формирования туманности до запуска в протозвезде термоядерных реакций проходит в среднем 100000 лет.

Протозвезда перестала существовать, а вместо неё возникла звезда под названием Солнце.


Новая звезда еще очень мала – она находится в стадии коричневого карлика. Она в течение нескольких сотен миллионов лет превращается в звезду солнцеподобного типа.

После того, как значительная часть массы протозвездной туманности сформировало звезду, вокруг нее образуется протопланетный диск.

Формирование планет земной группы


А вот далее пошёл другой процесс. Газопылевые облака, вращающиеся вокруг Солнца, стали стягиваться в плотные кольца.

Планеты внутренней группы сформировались в тех областях протопланетного диска, где температура слишком высока для существования частиц льда и газа в диком состоянии. Поэтому эти объекты построены преимущественно из термоустойчивых горных пород.

Планетазимали вначале быстро приращивают массу, достигая диаметра более километра. Далее крупные фрагменты притягивают к себе более мелкие, пока запас планетазималей в диске не окажется полностью исчерпан. Наступает стадия окончательного формирования Солнечной системы и приобретения ее телами определенной орбиты.

Весь процесс возникновения планеты внутренней группы занял от 10 до 100 миллионов лет.

Возникновение газовых гигантов


Формирование газовых гигантов, к которым относятся Юпитер, Сатурн, Уран и Нептун, более сложный процесс.

До момента образования крупных планетазималей их развитие подобно планетам земного типа. Но в их составе содержатся частицы льда, и они наращивают свою массу путем аккреции газа из протопланетного диска. Это возможно, т.к. во внешней области будущей звездной системы температуры относительно невысоки.

Процесс сбора газа занимает несколько миллионов лет до истощения газовых запасов диска.

Формирование газовых гигантов оказывает значительное влияние на количество твердотельных планет внутри системы. Чем раньше началось образование газовых планет, тем меньше строительного материала останется на формирование землеподобных тел.

Образование спутников


В дальнейшем произошло возникновение спутников вокруг планет.

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Так возле Земли появилась Луна.

Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов);
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом);
  • захват пролетающего объекта

И, в конце концов, образовалось единое космическое сообщество, которое существует по сей день.

Вот таким образом наука объясняет происхождение Солнечной системы. Кстати, данная теория присуща и другим звёздным образованиям, которых в космосе бесконечное множество.

Будущее Cолнечной системы


По последним научным данным, Солнечная система является стабильной системой. То есть больших изменений в ближайшее время не стоит ждать. Самые большие изменения будут происходить с изменением состояния Солнца.

Другими словами, не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца в фазу красного гиганта.

Спустя 1 миллиард лет из-за увеличения солнечного излучения околозвёздная обитаемая зона Солнечной системы будет смещена за пределы современной земной орбиты.

В настоящее время

Солнечная система и ее происхождение изучаются во многих известных институтах мира.

Наступит момент, и благодаря неустанным трудам ученых завеса тайны приоткроется, чтобы население Земли смогло узнать еще больше о происхождении нашей удивительной планеты.

Видео

Каждое мгновение в нашей огромной Вселенной что-то рождается или умирает. Ни для кого не секрет, что мы обитаем в огромной галактике, и помимо неё в космосе подобных ещё миллиарды. И, разумеется, Солнечная система далеко не единственная планетарная система.

Немного предыстории

- притяжение (гравитационное тяготение);

- отталкивание (как, например, при взаимодействии газов);

- соединение (различие частиц по плотности).

Именно различие частиц по плотности приводит к сгущению материи (к более плотным элементам притягиваются более лёгкие), а сила отталкивания помогает не слеплять всю материю в один огромный ком. Вечная борьба двух равных между собой сил – отталкивания и притяжения приводит к дальнейшему развитию мира. Философски звучит, не правда ли? Когда эти две силы сталкиваются, вокруг сгущений материи образовывались вихревые движения – это и заставляет двигаться планеты по своим орбитам. Частицы движутся вокруг центра, объединяясь друг с другом – так рождаются не только звездные системы по типу нашей, но ещё и галактики, туманности и звёздные скопления. Этим же способом Кант описал и наличие спутников у планет, и систему колец Сатурна. Но и на этом немецкий философ не остановился! Он впервые предсказал наличие других планет за орбитой Сатурна, существование двойных звёздных систем, идею о флуктуации плотности, движение комет и многое другое – то, что сейчас подтверждено. Таким образом, мы видим первое логичное объяснение различных систем.

В 1796 году французский ученый Лаплас сделал вывод о том, что Солнечная система родилась из сжимающейся газовой туманности. Часть вещества отделилась от центрального сгустка материи (зародыша Солнца) из-за увеличившейся центробежной силы при его сжатии – из данного вещества и сформировались планеты. Поскольку и Кант и Лаплас считали, что Солнечная система сформировалась из рассеянного вещества, то эта гипотеза называется гипотезой Канта-Лапласа . Позднее некоторые ученые задавались этими вопросами и строили различные гипотезы, весьма далёкие от истины.

До сих пор точно никто не может сказать, какие процессы идут при формировании планет. Кто-то считает, что они образуются ещё до момента рассеивания протопланетного диска. Кто – то полагает, что важнейшую роль играет аккреция – процесс наращивания массы небесного тела с помощью притяжения материи силами гравитации. Планеты прекратят своё формирование только после того, как в звезде начнутся ядерные реакции. Она рассеет протопланетный диск с помощью солнечного ветра, очистив, тем самым, пространство в своей системе.

Формирование Солнечной Системы

Чтобы понять, как формируются планетарные системы, астрономы начали изучение с Солнечной системы, а также наблюдали и за другими.

Считается, что Солнечная система начала формироваться примерно 4,6 млрд лет назад из гигантского межзвёздного газопылевого облака. Из-за гравитационного сжатия размеры газопылевого облака уменьшались, а скорость его вращения постепенно возрастала – так из облака образовался протопланетный диск.

В протопланетном диске элементы вещества сталкивались друг с другом, их гравитационное поле усиливалось из-за увеличения массы, и они притягивали к себе всё больше материи. Из-за постоянных столкновений увеличивалась и температура молодых небесных тел, причем, сильнее всех нагревались именно центральные области протопланетного диска. Планеты земной группы (Меркурий, Венера, Земля, Марс) состоят из термоустойчивых горных пород.

Учёных интересует ещё одна загадка – возникновение пояса астероидов, который находится между Марсом и Юпитером. Долгое время существовало предположение о некой разрушенной планете – Фаэтон, из осколков которой и получилось это каменистое кольцо, но данная гипотеза не подтверждена официально до сих пор.

Солнечная система по подсчётам учёных будет существовать ещё около 4,5 млрд лет до тех пор, пока в нашем Солнце не закончится ядерное топливо. Исчерпав свои запасы, оно превратится в красного гиганта, поглотив Меркурий, Венеру и, возможно, Землю, а затем, сбросив оболочку, погибнет, и станет белым карликом. Так постепенно и затеряется наш дом во мраке молчаливой бездны.

Образование планетных систем

До середины 90-х годов такая тема, как образование планетных систем, можно сказать, не существовала. Однако существовал другой сюжет: образование планетной системы, — поскольку в то время была известна единственная такая система во всей Вселенной — наша Солнечная система. В результате все усилия, которые и теоретиками, и наблюдателями направлялись на решение этой проблемы, были ориентированы на единственный объект во Вселенной, обитателями которого мы являемся.

Первые идеи о том, как могла сформироваться Солнечная система, были высказаны еще в XVII-XVIII веке. До сих пор эта общая идеология формирования планетной системы часто называется теорией Канта-Лапласа, по имени тех ученых, которые впервые более или менее её четко сформулировали. Это представление о том, что Солнечная система образовалась из газо-пылевого диска, который вращался вокруг Солнца. И в результате того, что этот диск становился все более плоским, он постепенно разбивался на фрагментики, которые в свою очередь превращались в планеты. В таком виде образование Солнечной системы представлялось до 50-х годов. В 50-е годы оно из образной фазы перешло в фазу более точного, более численного научного исследования.

Сегодня мы можем с гордостью говорить о том, что основоположником современных представлений об образовании планет является советский ученый Виктор Сергеевич Сафронов. И хотя основная идеология была сформулирована Шмидтом, в научном плане эти представления были развиты Сафроновым и его учениками.

Согласно идеям, высказанным Сафроновым, в газо-пылевом диске, который окружает молодую звезду, пылинки начинают постепенно слипаться между собой, превращаться во все более и более крупные тела, которые достигают сначала метровых, а потом километровых размеров. На этом этапе они приобретают специальное имя — планетезимали. Дальнейшая агломерация планетезималей приводит к тому, что в планетной системе образуются гигантские тела — планеты. При этом протосолнечная система по температурному режиму оказывается разделена на две области: ближе к звезде, там, где достаточно горячо из-за ее излучения, не могут конденсироваться льды, не могут конденсироваться в твердое вещество вода, аммиак, другие газы, поэтому там возможно образование только каменных планет. И, соответственно, эти планеты получаются менее массивными, потому что для их образования доступно меньше вещества. За снеговой линией возможна конденсация льдов, возможно образование более массивных тел, и там мы имеем массивные планеты — планеты-гиганты. Эта картина очень красиво описывает Солнечную систему. Мало того, что она объясняет, почему у нас 4 каменных планеты и 4 планеты-гиганта, она объясняет еще и химический состав пояса астероидов. Эта граница называется снеговой линией и в Солнечной системе проходит по поясу астероидов. И оказывается, что те астероиды, которые находятся внутри снеговой линии, действительно, менее богаты водой, водяным льдом, чем астероиды, которые находятся за снеговой линией, дальше от Солнца, чем это нужно для конденсации водяного льда.

Очень логичная и стройная картина существовала до 90-х годов, однако именно в этот период было сделано несколько открытий, которые прямо или косвенно затрагивали наше представление об образовании планет. Во-первых, это открытие пояса Койпера, во-вторых, открытие первых коричневых карликов, в-третьих, начало первых прямых наблюдений протопланетных дисков у других звезд, и, конечно, самое главное — это открытие внесолнечных планет.

Первая внесолнечная планета была открыта в 1995 году. Сейчас их число уверенно приближается к тысяче. И именно с открытием внесолнечных планетных систем мы начали понимать, что Солнечная система далеко не типична среди планетных систем в нашейГалактике. Нельзя сказать, что она имеет совершенно уникальные характеристики, но она, как минимум, представляет собой не единственный возможный вариант. Соответственно, теории, которые разрабатывались для объяснения существования Солнечной системы, нуждаются в каких-то поправках, поскольку они не способны объяснить все многообразие планетных систем, которые нам сейчас известны. Поэтому, начиная с середины 90-х годов, наши представления об образовании планет претерпели довольно-таки существенную эволюцию.

Основные новшества, которые пришлось ввести в уже существующие к 90-ым годам теории, связаны с тем, что среди внесолнечных планет оказалось очень большое количество так называемых горячих юпитеров. Это планеты-гиганты, массы которых иногда значительно превышают массу Юпитера и которые обращаются на очень небольшом расстоянии от своих звезд. У многих из них орбиты находятся ближе к их звездам, чем в Солнечной системе орбита Меркурия находится к Солнцу. Согласно прежним объяснениям, Юпитер должен образоваться далеко от Солнца, за снеговой линией. В новой ситуации мы имеем те же самые массивные планеты, но на расстояниях в сотые доли астрономической единицы от звезды. Традиционные представления объяснить данное явление были не в состоянии. Еще одна проблема, с которой пришлось столкнуться людям, которые занимаются изучением образования планет, — это обнаруженное с тех пор очень короткое время жизни протопланетных дисков. Благодаря тому, что мы умеем измерять возраст звезд, мы можем измерять возраст и протопланетных дисков у этих звезд. И оказывается, что протопланетные диски живут не более 10 миллионов лет. Тогда как в стандартном варианте, в варианте Сафронова, для образования планет требуются сотни миллионов лет. Такого времени у молодой планетной системы нет: планету нужно образовать за несколько млн. лет, потом диск просто прекращает существовать, рассеивается вещество протопланетного диска.

В настоящее время есть два подхода к образованию планетных систем. Один из них — это развитие подхода Сафронова, так называемая модель аккреции на ядро. Согласно этой модели, сначала образуется некая заготовка планеты, зародыш, каменное ядро, на которое потом аккрецирует газ, и образуется уже планета-гигант наподобие Юпитера, Сатурна или внесолнечных планет-гигантов. В этом случае существует проблема возраста, и люди, которые разрабатывают эту модель, сейчас пытаются каким-то образом ускорить этот модельный процесс, понять, как он может идти не сотни миллионов лет, а всего несколько миллионов лет.

Второй вариант связан с попытками объяснить образование планет в протопланетном диске тем же механизмом, который приводит и к образованию звезд — гравитационной неустойчивостью. Другими словами, если диск достаточно массивен и в нем достаточно много вещества, в нем могут образовываться какие-то неоднородности, которые будут сжиматься под действием собственной тяжести. Если они будут достаточно массивны, они будут падать внутрь себя, коллапсировать и превращаться в массивные планеты. У такого процесса нет проблемы возраста: гравитационная неустойчивость может приводить к тому, что планеты типа Юпитера будут образовываться за тысячу лет, за десять тысяч лет. Такое время образования планеты — мгновение даже по сравнению с небольшими возрастами протопланетных дисков. Но пока создателям этой модели не удается объяснить, каким образом сжимающееся вещество успевает остыть. Дело в том, что при сжатии вещество разогревается и эту избыточную энергию необходимо куда-то сбрасывать. Однако пока неизвестно, как этот сброс энергии может происходить так быстро. Именно поэтому в научной среде преимущество сейчас имеет первая, сафроновская теория образования планет, согласно которой образование планеты происходит в два этапа: образование каменного ядра, которое потом либо становится либо самостоятельной планетой земного типа, либо затравкой для планеты-гиганта: потом на него уже выпадает вещество из протопланетного диска и образуется планета-гигант.

Исследования Солнечной системы: состояние и перспективы. Зеленый Л.М., Захаров А.В., Ксанфомалити Л.В. Успехи физических наук, том 179, стр. 1118–1140 (2009)

Образование планетных систем

Дмитрий Вибе , доктор физико-математических наук, заведующий отдела физики и эволюции звезд Института астрономии РАН

Егор

Егор Морозов | 24 Декабря, 2020 - 18:15


Нашей Солнечной системе 4.5 миллиарда лет, и мы живем в относительно спокойное время: Солнце находится в середине жизненного пути, все планеты и большая часть комет давно приобрели устойчивые орбиты, а падение на нашу планету крупного астероида — из ряда вон выходящее событие, о котором долго пишут различные СМИ.

Но как мы пришли к такому благополучию? Как образовалось Солнце и планеты рядом с ним? Как планеты приобрели свои орбиты? Формирование Солнечной системы является сложной головоломкой для современной астрономии и потрясающей демонстрацией работы чудовищных сил гравитации, действующих в огромных временных рамках. Так что давайте разбираться.

Досолнечная туманность



Туманности — места активного звездообразования.

При этом исследователи могут вполне обоснованно сказать, что такая сверхновая взорвалась относительно недалеко по космическим меркам, потому что при таких звездных взрывах образуется большое количество определенных радиоактивных элементов, которые обычно не обнаруживаются внутри досолнечных туманностей, однако мы их наблюдаем в нашей Солнечной системе.

В результате в какой-то момент переход от туманности к Солнечной системе стал необратимым. В течение многих миллионов лет туманность сжималась и нагревалась, в конечном итоге достигнув точки, когда протосолнце было окружено тонким, быстро вращающимся диском из газа и пыли.

И тут началось самое интересное.

Появляются планеты

Четыре с половиной миллиарда лет назад наше Солнце еще не было такой яркой звездой, как сегодня. Оно было компактное и очень, очень горячее, но все же еще не достигло критической плотности и температуры, необходимых для поддержания ядерного синтеза в его ядре.

И, пока Солнце было на этой эмбриональной стадии, планеты начали свое медленное вальсирующее формирование. Ближе к юной звезде жара и света хватало, чтобы в этих областях оставался только каменистый материал: лед испарился, а различные газы, такие как водород и гелий, просто улетели вглубь молодой Солнечной системы. Оставшимся каменистым кускам ничего не оставалось, как медленно слипаться под действием гравитации, образуя все более крупные сгустки.



Протосолнце с протопланетами на художественном изображении.

В конце концов, по прошествии достаточного количества времени (а у Вселенной возрастом больше 13 миллиардов лет свободного времени, очевидно, хватает), эти кусочки сформировали планетезимали, маленькие зародыши планет. Их было много, и это было довольно жестокое время для нашей Солнечной системы, поскольку эти планетезимали сталкивались, разрушались и преобразовывались бесчисленное количество раз. Наша собственная Земля тогда столкнулась с объектом размером почти с Марс, и обломки от этого удара в конечном итоге стали Луной.

Затем эти большие ядра с мощной гравитацией стали притягивать окружающий материал, в основном как раз водород и газообразный гелий, улетевшие из внутренней части Солнечной системы. В итоге эти миры стали окутываться плотной пеленой атмосферы — так и родились планеты-гиганты.

Поздняя тяжелая бомбардировка

Передвинемся на полмиллиарда лет вперед. Температура и давление в ядре Солнца наконец-то достигли достаточных значений, чтобы начался ядерный синтез, который продолжается до сих пор. При этом гравитация нашего светила стабилизировала внутренние каменистые планеты на своих орбитах.



Страшное время для внутренних планет — их буквально закидывало астероидами на протяжении сотен миллионов лет.

Но вот внешние газовые гиганты были окружены роями обломков, оставшихся от хаотического процесса строительства планет. В результате начались гравитационные танцы поистине космических масштабов.

Астрономы подозревают, что четыре планеты-гиганта нашей Солнечной системы — Юпитер, Сатурн, Уран и Нептун — изначально сформировались гораздо ближе друг к другу, чем они находятся сегодня, и гравитационные взаимодействия с оставшимися вокруг них обломками заставили их сменить орбиты. На передел нашей Солнечной системы потребовались сотни миллионов лет, и ученых есть несколько возможных объяснений, как он мог произойти.

Каким бы способом не происходила перестановка планет-гигантов, она вызвала настоящий хаос в Солнечной системе. Астрономы считают, что мигрирующие внешние планеты дали начало эпохе, названной поздней тяжелой бомбардировкой — из-за гравитационных возмущений начались интенсивные столкновений комет и астероидов во внутренней Солнечной системе около 4 миллиардов лет назад, и продолжался этот хаос несколько сотен миллионов лет.



Мы живем во времена стабильного Солнца, и оно еще долго не будет меняться.

Несмотря на эту катастрофическую бомбардировку, на самом деле все было не так уж плохо: процессия комет, устремившихся во внутреннюю часть Солнечной системы, в изобилии доставила воду на каменистые миры, потенциально помогая создать жизнь на Земле — разумеется, уже после того, как наша звездная система снова стала стабильной.

Что касается будущего, то сложно предсказать поведение системы из миллионов движущихся компонентов через несколько миллиардов лет. Но, вполне возможно, наша Солнечная система останется стабильной еще очень долгое время, пока в Солнце не кончится топливо и оно не превратится в красного гиганта, тем самым убив внутренние планеты.

Однако, возможно, глобальные изменения произойдут и раньше: так, за несколько миллиардов лет орбита Марса может стать более вытянутой и заходить за орбиту Земли, что может привести к катастрофическим последствиям. Аналогичная проблема может произойти и с Меркурием: его орбита может вытянуться, из-за чего гравитационное взаимодействие с Венерой может выкинуть его из Солнечной системы.

В любом случае, все эти возможные события произойдут крайне не скоро даже по меркам Вселенной, так что нам остается только радоваться, что мы живем в спокойный отрезок существования Солнечной системы.


Есть несколько гипотез, которые могут ответить на этот вопрос.

Если речь идет о Солнечной системе, то наиболее популярным и широко признанным взглядом является небулярная гипотеза происхождения миров. Согласно этой модели, Солнце, планеты и все остальные объекты Солнечной системы образовались многие миллиарды лет назад из плотных облаков молекулярного водорода. Первоначально предложенная в качестве объяснения происхождения Солнечной системы, она по-прежнему остается наиболее широко принятой.

Небулярная гипотеза — что это?

Согласно данной модели, Солнце и все планеты нашей Солнечной системы начали свою историю с гигантского молекулярного облака из газа и пыли. Затем, около 4,47 миллиарда лет назад что-то произошло, что привело к коллапсу облака. Возможно, причиной стала пролетающая мимо звезда или взрывные волны сверхновой, точно никто не знает, но конечным результатом стал гравитационный коллапс в центре облака.

С этого момента из облаков газа и пыли начали формироваться более плотные сгустки. Достигнув определенной плотности, сгустки согласно закону сохранения импульса начали вращаться, а повышающееся давление их разогрело. Большая часть материи собралась в центральном сгустке, в то время как оставшаяся материя образовала вокруг этого сгустка кольцо.

Сгусток в центре со временем превратился в Солнце, а остальная материя образовала протопланетарный диск.

Планеты же образовались из материи этого диска. Притягивающиеся друг к другу частицы пыли и газа собрались в более крупные тела. Рядом с Солнцем смогли сформироваться в более плотные объекты только те сгустки, в которых присутствовала наибольшая концентрация металлов и силикатов. Так появились Меркурий, Венера, Земля и Марс. Поскольку металлические элементы слабо присутствовали в первичной солнечной туманности, планеты не смогли очень сильно вырасти.

Как появились планеты

В свою очередь такие гигантские планеты, как Юпитер, Сатурн, Уран и Нептун, образовались уже где-то в точке между орбитами Марса и Юпитера — где-то за границей отрицательных температур, где материал замерзает настолько, что позволяет летучим соединениям сохранять твердую форму в виде льда. Разнообразие этого льда оказалось гораздо шире, чем разнообразие металлов и силикатов, из которых образовались планеты внутренней части Солнечной системы. Это позволило им вырасти настолько огромными, что в конечном итоге у них появились целые атмосферы из водорода и гелия. Оставшийся материал, который так и не был использован для образования планет, сосредоточился в других регионах, сформировав в конечном итоге пояс астероидов, пояс Койпера и облако Оорта.


Ранняя Солнечная система в представлении художника. Столкновение между собой частиц в аккреционном диске привело к формированию планетоземалей и в конце концов планет

В течение следующих 50 миллионов лет давление и плотность водорода в центре протозвезды стали достаточно высокими для начала термоядерной реакции. Температура, скорость реакции, давление и плотность продолжили возрастать до тех пор, пока не было достигнуто гидростатическое равновесие. С этого момента Солнце превратилось в звезду главной последовательности. Солнечные ветра создали гелиосферу, сметав при этом оставшийся от протопланетарного диска газ и пыль в межзвездное пространство и ознаменовав завершение процесса планетарного формирования.

История небулярной гипотезы


Туманность Sh 2-106. Компактная область звездообразования в созвездии Лебедя

Небулярная модель Лапласа получала широкое признание в течение 19-го века, хотя и содержала некоторые явные нестыковки. Основной вопрос вызывало угловое распределение импульса между Солнцем и планетами, которое небулярная теория не объясняла. Помимо этого, шотландский ученый Джеймс Клерк Максвелл (1831–1879) утверждал, что разность скорости вращения между внешней и внутренней частью протопланетарного диска не позволила бы материи накапливаться. Кроме того, теория была не принята также и астрономом сэром Дэвидом Брюстером (1781–1868), который однажды сказал:

Например, модель допланетного облака успешно объясняет появление аккреционных дисков вокруг молодых звездных объектов. Множественные симуляции также показали, что аккреция вещества в этих дисках ведет к формированию нескольких тел размером с Землю. Благодаря книге Сафронова вопрос происхождения планет земной группы (или землеподобных, если хотите) можно считать решенным.

Несмотря на то, что изначально модель допланетного облака применялась только в отношении Солнечной системы, многие теоретики считают, что ее можно использовать в качестве универсальной системы мер для всей Вселенной. Поэтому ее даже сейчас нередко используют для объяснения процесса формирования многих экзопланет, которые были нами найдены.

Недостатки небулярной гипотезы

Несмотря на то, что небулярная модель имеет широкое признание, она по-прежнему содержит ряд вопросов, которые не могут решить даже современные астрономы. Например, есть вопрос, связанный с наклоном. Согласно небулярной теории, все планеты, находящиеся вокруг звезд, должны обладать одинаковым наклоном осей по отношению к плоскости эклиптики. Но нам известно, что планеты внутреннего и внешнего кругов обладают совершенно разными наклонами осей.

В то время как планеты внутреннего круга обладают углом наклона осей, составляющим от 0 градусов, оси других (Земли и Марса, например) имеют угол наклона около 23,4 и 25 градусов соответственно. Планеты внешнего круга, в свою очередь, тоже обладают разными наклонами осей. Наклон оси Юпитера, например, составляет 3,13 градуса, в то время как у Сатурна и Нептуна эти показатели составляют 26,73 и 28,32 градуса соответственно. А Уран вообще имеет экстремальный наклон оси в 97,77 градуса, что фактически заставляет один из его полюсов постоянно находиться лицом к Солнцу.


Список потенциально обитаемых экзопланет согласно Planetary Habitability Laboratory

Вероятнее всего, неразрешенные вопросы имеют наиболее близкое значение к пониманию природы формирования, и поэтому на них так трудно ответить. Просто когда мы думаем, что нашли наиболее убедительное и логичное объяснение, всегда остаются моменты, которые объяснить мы не в состоянии. Тем не менее мы прошли немалый путь, пока не пришли к нашим текущим моделям звездообразования и планетарного формирования. Чем больше мы узнаем о соседних звездных системах и чем больше исследуем космос, тем более зрелыми и совершенными становятся наши модели.

Читайте также: