Как образовалась земная кора кратко

Обновлено: 05.07.2024

Наша планета особенная, отличающаяся от других планет существованием жизни. Однако ее строение тоже привлекала ученых во все времена. Вы уже знаете, что на Земле можно выделить несколько оболочек. В 6 классе приступим к подробному их рассмотрению. Этот урок мы посвятим изучению первой оболочки - литосферы. Рассмотрим внутреннее строение планеты и земной коры. Узнаем, какие формы рельефа и горные породы существуют. Выявим, как обозначается рельеф на планах и картах.

План урока:

Внутреннее строение и состав земной коры

Пока еще о внутреннем строении Земли мы знаем очень мало. В самом деле, самая глубокая буровая скважина около 12 км – примерно в тысячу раз меньше, чем радиус Земли. Это ничтожная глубина по сравнению с размерами нашей планеты.

Из каких же пород состоит наша планета, в каком они состоянии – твердом или жидком?

Об этом ученые только догадываются. Правда, используя геофизические методы, сложилось определенная теория о внутреннем строении Земли. Наиболее достоверные данные были получены при применении сейсмических методов. На земной поверхности совершают взрыв, и происходит распространение колебаний. Специальное оборудование регистрирует эти движения. Сейсмические волны, проходят через разные породы с различной скоростью. Например, для осадочных пород она будет составлять 3 км в секунду, а для гранита приблизительно 5 км в секунду.

Какой информацией мы располагаем о внутреннем строении Земли?

Предполагают, что возможно выделить несколько слоев: земная кора, мантия и ядро Земли.

Сверху планеты расположена литосфера. Первая ее часть стала именоваться земная кора. По ней мы ходим, на ней построены города и поселки, здесь текут реки.

Особенностью строения земной коры является ее небольшая глубина примерно до 1200 км. Однако мощность ее не везде одинаковая. Под материком земная кора более массивна и поэтому имеет сложное строение. Под океаном имеет небольшую толщину.

В состав земной коры входят горные породы различного происхождения. Некоторые породы более твердые, иные – рассыпчатые, но все они считаются элементами земной коры.

Химический состав земной коры представлен на рисунке.

Нам может казаться, что верхняя часть неподвижная. Однако земная кора регулярно пребывает в движении. Они очень медленные и мы их не всегда замечаем.

Для изучения внутреннего строения земной коры в ней бурят различные скважины. Именно по ним ученые выяснили строение и состав земной коры.

Верхняя область Земли переходит в мантию. Она простирается почти на 3000 км вглубь. Предполагают, что мантия Земли твердая и в то же время пластичная, раскаленная. С продвижением вглубь увеличивается температура.

Самой внутренней частью Земли является ядро. Считается, что температура ядра Земли достигает 4000 С 0 , поэтому наружная часть жидкая и вязкая. Внутри ядро Земли состоит из железа, находится в твердом состоянии.

Разнообразие горных пород

Представлена земная кора всевозможными горными породами и образующими их минералами.

Минералами считаются вещества различные по составу и отличающиеся по облику. Такие свойства как цвет, прозрачность, твердость и другие, у минералов также будут различными. Основная их масса встречается редко. Например, платина, алмазы, серебро.

Постоянно возможно увидеть в природе минералы, составляющие породы. Самые распространенные из них представлены на рисунке.

Минералы в горных породах скрепляются между собой с различной плотностью. Это во многом зависит от происхождения горных пород, то есть от того в каких условиях они образовались. В связи с этим горные порода подразделяются на магматические, осадочные и метаморфические.

  1. Магматические горные породы формируются при извержении расплавленной массы мантии или магмы из глубин планеты и после ее затвердевании. Если магма внедряется в поверхность и медленно застывает в условиях высокого давления на глубине, то образуются породы с зернистым кристаллическим строением. Такой глубинной горной породой магматического происхождения является гранит. Если магма изливается на земную кору и там быстро застывает, то образуются породы с мелкозернистым или пористым строением. Какие горные породы магматического происхождения считаются поверхностными? Например, базальт, вулканический туф, пемза и другие.
  1. Осадочные горные породы создаются непосредственно на поверхности разными путями. Если осадочные горные породы возникают за счет жизнедеятельности организмов, то они имеют органическое происхождение.

В результате воздействия внешних факторов на рельеф формируются обломочные горные породы. Обломки могут иметь различные габариты. При соединении их между собой образуются плотные породы. Такими осадочными горными породами являются песчаник, глина, суглинки, щебень и другие.

Осадочные горные породы формируются при протекании химических реакций, осуществляющихся в воде. Вы уже знаете, что в воде растворены многие вещества. Если этих веществ очень много содержится, то они начинают скапливаться ближе ко дну. Происходит образование осадочных горных пород химического происхождения, например, поваренная соль, бокситы, гипс и другие.

  1. Метаморфические горные породы возникают в результате преобразований или метаморфозов других пород, попавших вглубь, под действием высоких температур и давления. В результате такого воздействия из одних горных пород возникают другие.

Разнообразные горные породы способны быть несхожими по происхождению, но они все тесно связаны между собой.

Земная кора и литосфера, их строение

Верхняя часть Земли представляет собой тонкую оболочку, состоящую из различных горных пород. Мы уже упоминали, что толщина ее везде различается. Поэтому различают два типа земной коры: континентальнаяи океаническая.

Какая земная кора лежит в основании океанов? Эту земную кору именуют океанической и она маломощная – около 7 км. Строение океанической земной коры представлено двумя слоями. Поверх залегает тонкий слой рыхлых морских осадков – осадочный. Далеев океанической земной коре находится базальтовый слой. Основным отличием земной коры океанического типа считается нехватка гранитного пласта.

Существенной внутренней частью считается мантия, скрепленная с земной корой и образующие литосферу Земли. Строение литосферы представлено на рисунке.

Литосфера расположена поверх мантии и возникает ощущение, что колышется на ней. Соответственно передвигаться,способна в любых направлениях. Особенностью строения литосферы является ее неоднородность. В нее входят крупные блоки, получившие название литосферные плиты. Познакомимся с ними по карте литосферных плит.

На планете различают 7 значительных литосферных плит, взаимодействующих между собой. Движение литосферных плит осуществляется поверх мантии. Поэтому на одних областях происходит их раздвижение, а в других - столкновение литосферных плит. Вследствие этого формируется рельеф Земли.

Рельеф и его основные формы

Внимательно присмотревшись к земной поверхности можно увидеть, что она неодинаковая. Одни участки ровные, другие возвышенные. Можно наблюдать чередование таких участков. Современным рельефом Земли считаются все неровности поверхности.

Любая неровность поверхности Земли получила название форма рельефа. Основными формами рельефа считаются материки и океанические впадины, горы и равнины. Различают выпуклые формы рельефа поверхности Земли, к которым относят горы, хребты, возвышенности, холмы. Примерами вогнутых форм могут считаться низменности, межгорные котловины, овраги и т.д.

Рельеф сформировался вследствие действия различных факторов. Процессы, формирующие рельеф Земли могут быть внутренними и внешними. Такие формы рельефа как горы и равнины, возникают в результате действия внутренних сил. Небольшие части рельефа Земли возникают благодаря внешним силам, примерами которых считаются речные долины, холмы, овраги.

Познакомимся с одними из форм рельефа – равнинами. Считается, что это значительные области поверхности с малыми колебаниями высот и незначительными уклонами. По абсолютной высоте равнины разные, познакомимся подробнее на рисунке.

К низменным равнинам относят Амазонскую, Прикаспийскую, Западно-Сибирскую и другие. Возвышенностями рельефа считаются Среднерусская равнина, Валдайская, Приволжская. Из плоскогорий значительными по размерам считаются Среднесибирское, Аравийское и Декан. Интересен рельеф обширной Восточно-Европейской равнины – здесь чередуются возвышенные и низменные участки.

Рельеф равнин может различаться по внешнему облику. Так встречаются плоские, волнистые, холмистые, ступенчатые равнины. Различный облик равнин зависит от происхождения и строения.

Другой значительной частью рельефа считаются горы. К ним относят приподнятые высоко над окружающей местностью области поверхности Земли. Одиночные горы практически не встречаются, в основном они представляют собой горные страны. Познакомимся с их строением.

Все составляющие частив горах считаются формами рельефа.

Горы могут быть разные по высоте. Тогда обратим внимание, что горам с неодинаковой высотой свойственен различный внешний вид.

Горы формируются при влиянии внутренних сил, но как только они поднимаются, сразу начинаются процессы их разрушения. Под воздействием внешних процессов склоны становятся более сглаженными, вершины округлыми. В результате таких процессов формировался рельеф Уральских гор.

Изображение рельефа на планах и картах

Составить характеристику рельефа Земли можно с использованием карты. С целью обозначения на картах рельефа существуют отметки высот и глубин. Данные отметки характеризуют высоту или глубину местности относительно уровня Мирового океана, который считают за 0 м. Данная высота считается абсолютной. Также существует относительная высота, при которой одна точки местности превышает другую, например, вершины гор над подножием.

Часто на карте есть точки, рядом с которыми стоят числа – это будут отметки высот.

Например, абсолютная высота горы Эльбрус составляет 5642 м. Данное число будет говорить о том, что Эльбрус располагается выше уровня моря на 5642 м.

Для изображения поверхности на карте применяют горизонтали (они представляют собой линии, соединяющие точки земной поверхности с одинаковой абсолютной высотой). На топографической карте у горизонталей есть небольшие линии – бергштрихи. На карте их проставляют перпендикулярно горизонталям. Бергштрихи показывают направление понижения склона.

На физических картах рельеф показывается с помощью послойной окраски. Она подчеркивает переход высот с помощью разных оттенков цвета. Например, высота от 0м до 200м на суше изображается зеленым цветом. При высоте свыше 200м используют разные оттенки коричневого. На карте наибольшая абсолютная высота окрашивается в темные оттенки коричневого. Глубины океанов окрашиваются в разные оттенки синего по абсолютным отметкам. Поэтому на картах высоту рельефа местности можно определить по шкале, которая расположена внизу.

Таким образом, по физической карте мира можно составить описание рельефа какой-либо территории. Для этого существует определенный план характеристики рельефа.

Можно давать характеристику не только рельефу в целом, но и отдельным его формам, изображенным на карте. Приведем план описания отдельных форм рельефа.

Таким образом, используя карты, мы можем по плану составить комплексную характеристику рельефа местности.

Рельеф дна океанов

Поверхность Земли люди изучали с давних времен, а вот проникнуть в глубины океана не представлялось возможным. Поэтому до второй половины 20 века рельеф дна Мирового океана не был изучен. С постройкой специальных судов и аппаратуры люди стали пополнять свои знания о Мировом океане и рельефе его дна. В результате исследований ученые пришли к выводу, что рельеф суши и дна океана во многом похожи.

В рельефе дна океана можно выделить три основные формы: срединно-океанические хребты, ложе и переходные зоны.

  1. Срединно-океанические хребты считаются горными цепями, находящимися в толще воды, и располагаются посередине океана. Отсюда и название. Образуются срединно-океанические хребты в зоне раздвигания литосферных плит. В данном месте по разломам происходит излияние лавы, при ее застывании создаются срединно-океанические хребты океанов.
  1. Ложе океана очень большое, занимает значительную часть Мирового океана. Как и на суше здесь выделяются глубоководные равнины. Сверху они покрыты слоем ила, однако, он очень тонкий. На ложе океана находятся подводные хребты, между которыми расположены равнины. Представляют они собой потухшие либо действующие вулканы, которые тянутся на многие километры. Бывает, что вершина вулкана возвышается над водой и представляет собой остров. Такие формы рельефа характерны для ложа Тихого океана.
  1. Между сушей и океаном имеются переходные зоны. Познакомимся на картинке.

Континентальным шельфом считается затопленная область суши примерно 200 м. Материковый склон представляет собой высокую ступень между отмелью и ложем. Глубина обрыва материкового склона составляет более 2900 м. Тихий океан не имеет такой переходной зоны.

Глубоководные желоба океана внешне похожи на длинные узкие впадины. Формируются в области разломов, возникающих при соударении литосферных плит.

Таким образом, можно сделать вывод, что рельеф суши и дна Мирового океана очень разнообразны и характеризуются общими чертами строения.

В верхней мантии начинает формироваться астеносфера. Астеносфера быстро разрастается и перегревается (из-за лунных приливов), что способствует гравитационной дифференциации земного вещества, а в дальнейшем приводит к появлению тектонической активности.

В это же время происходит второй импульс ускоренного отодвигания Луны от Земли и выметание Луной других мелких спутников, которые ещё обращались вокруг нашей планеты. Возможно это было лишь благодаря образованию в то время у Земли её астеносферного слоя, резко снизившего механическую добротность нашей планеты быстрым расплавлением и перегревом вещества верхней мантии. Таким образом, именно этой общей причиной объясняется примечательное совпадение, казалось бы, совершенно разноплановых явлений: ударной тектоники на Луне, сопровождавшейся интенсивным базальтовым магматизмом, с началом тектонической активности Земли, приблизительно 4-3,8 млрд. лет назад.

Астеносфера была также одной из причин того, что на Землю перестали выпадать крупные небесные тела, образовавшиеся из первоначального протопланетного облака, из которого образовались Земля и Луна. Выпадали лишь мелкие тела, образовавшиеся в результате столкновения удалявшейся Луны с более мелкими спутниками.

Вскоре после возникновения астеносферы, по-видимому, около 3,9×10 9 лет назад произошли и первые базальтовые излияния, быстро охватившие всю экваториальную, а затем тропическую зоны Земли. В результате первозданная ультраосновная земная оболочка в этой зоне столь же быстро (вероятно, за 10 8 лет) сменилась тонкой базальтовой литосферой. Под влиянием конвективных течений в перегретом веществе верхней мантии молодая и тонкая базальтовая литосфера вскоре оказалась разбитой на большое количество движущихся относительно друг друга мелких пластин. Начинает формироваться океаническая базальтовая кора. В зонах торошения базальтовых пластин происходит переплавление вещества и образование магмы среднего и кислого состава. В этих зонах происходит формирование континентальной коры, с зачатками гранитного слоя.

Осадочный слой формируется гораздо позже, т.к. для его образования необходимо наличие воздуха, водной среды, которых в то далёкое время просто не было.

Тектоника плит

Земна́я кора́ — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, или сокращённо Мохо, на которой происходит резкое увеличение скоростей сейсмических волн. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Кора есть на Марсе и Венере, Луне и многих спутниках планет-гигантов. На Меркурии, хотя он и принадлежит к планетам земной группы, кора земного типа отсутствует. В большинстве случаев она состоит из базальтов. Земля уникальна тем, что обладает корой двух типов: континентальной и океанической.

Масса земной коры оценивается в 2,8·10 19 тонн (из них 21 % — океаническая кора и 79 % — континентальная). Кора составляет лишь 0,473 % общей массы Земли.

Содержание

Океаническая кора

Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.

Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.

В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 130-140 километров.

Континентальная кора

Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.

Состав верхней континентальной коры

Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 25% — на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba — составляют 99,8 % массы земной коры [источник не указан 869 дней] .

Элемент Порядковый номер Содержание, % массы Молярная масса Содержание, % кол-во в-ва
Кислород 8 49,13 16 53,52
Кремний 14 26,0 28,1 16,13
Алюминий 13 7,45 27 4,81
Железо 26 4,2 55,8 1,31
Кальций 20 3,25 40,1 1,41
Натрий 11 2,4 23 1,82
Калий 19 2,35 39,1 1,05
Магний 12 2,35 34,3 1,19
Водород 1 1,00 1 17,43
Титан 22 0,61 47,9 0,222
Углерод 6 0,35 12 0,508
Хлор 17 0,2 35,5 0,098
Фосфор 15 0,125 31,0 0,070
Сера 16 0,1 32,1 0,054
Марганец 25 0,1 54,9 0,032
Фтор 9 0,08 19,0 0,073
Барий 56 0,05 137,3 0,006
Азот 7 0,04 14,0 0,050
Остальные - ~0,2 - -


Определение состава верхней континентальной коры стало одной из первых задач, которую взялась решать молодая наука геохимия. Собственно из попыток решения этой задачи и появилась геохимия. Эта задача весьма сложна, поскольку земная кора состоит из множества пород разнообразного состава. Даже в пределах одного геологического тела состав пород может сильно варьировать. В разных районах могут быть распространены совершенно разные типы пород. В свете всего этого и возникла задача определения общего, среднего состава той части земной коры, что выходит на поверхность на континентах. С другой стороны, сразу же возник вопрос о содержательности этого термина.

Следующую попытку определить средний состав земной коры предпринял Виктор Гольдшмидт. Он сделал предположение, что ледник, двигающийся по континентальной коре, соскребает все выходящие на поверхность породы, смешивает их. В результате породы, отлагающиеся в результате ледниковой эрозии, отражают состав средней континентальной коры. Гольдшмидт проанализировал состав ленточных глин, отлагавшихся в Балтийском море во время последнего оледенения. Их состав оказался удивительно близок к среднему составу, полученному Кларком. Совпадение оценок, полученных столь разными методами, стало сильным подтверждением геохимических методов.

Впоследствии определением состава континентальной коры занимались многие исследователи. Широкое научное признание получили оценки Виноградова, Ведеполя, Ронова и Ярошевского.

Некоторые новые попытки определения состава континентальной коры строятся на разделении её на части, сформированные в различных геодинамических обстановках.

См. также

Граница между верхней и нижней корой

Для изучения строения земной коры применяются косвенные геохимические и геофизические методы, но непосредственные данные можно получить в результате глубинного бурения. При проведении научного глубинного бурения часто ставится вопрос о природе границы между верхней (гранитной) и нижней (базальтовой) континентальной корой. Для изучения этого вопроса в СССР была пробурена Саатлинская скважина. В районе бурения наблюдалась гравитационная аномалия, которую связывали с выступом фундамента. Но бурение показало, что под скважиной находится интрузивный массив. При бурении Кольской сверхглубокой скважины граница Конрада также не была достигнута. Недавно (2005) в печати обсуждалась возможность проникновения к границе Мохоровичича и в верхнюю мантию с помощью самопогружающихся вольфрамовых капсул, обогреваемых теплом распадающихся радионуклидов [3] .

Примечания

  1. ↑ Химия цемента и вяжущих веществ: Учеб. пособие / Н.А. Андреева; СПбГСУ. - СПб., 2011. - 67 с.
  2. ↑ Определитель минералов / Т.Б. Здорик; - М., 1978. - 325 с.
  3. ↑ M.I. Ojovan, F.G.F. Gibb, P.P. Poluektov, E.P. Emets. Probing of the interior layers of the Earth with self-sinking capsules. Atomic Energy, 99, No. 2, 556—562.

Ссылки

1) Кора (Континентальная кора · Океаническая кора): Осадочный слой • Верхняя кора • Граница Конрада • Нижняя кора • Литосфера (Литосферные плиты) • Поверхность Мохоровичича
2) Мантия: Верхняя мантия (Астеносфера) • Сейсмический раздел 660 км • Нижняя мантия • Граница Гутенберга
3) Ядро: Внешнее ядро • Внутреннее ядро

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проставив сноски, внести более точные указания на источники.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Земная кора" в других словарях:

Земная кора — в настоящее время под. З. к. подразумевается сиалическая оболочка Земли, располагающаяся выше границы Мохоровичича (М), слагающая верхнюю часть литосферы Земли и отделяющаяся от подстилающего субстрата скачком в изменении скорости распространения … Геологическая энциклопедия

Земная кора — Земная кора, строение: 1 вода; 2 осадочный слой; 3 гранитный слой; 4 базальтовый слой континентальной коры; 5 базальтовый слой океанической коры; 6 магматический слой океанической коры (породы габроидного состава); 7 вулканические острова; 8, 9… … Иллюстрированный энциклопедический словарь

ЗЕМНАЯ КОРА — верхняя оболочка твердой Земли, ограниченная снизу Мохоровичича поверхностью. Различают континентальную кору (толщина от 35 45 км под равнинами до 70 км в области гор) и океаническую (5 10 км). В строении первой имеются три слоя: верхний… … Большой Энциклопедический словарь

земная кора — ▲ земная оболочка ↑ верхний твердое (состояние) земная кора, литосфера: осадочный слой. гранитный слой (в материковой зоне) и базальтового слоя; гранитный слой выходит на поверхность в пределах щитов, состоит из гранитов, гнетов и др. ♥ суша ↓ … Идеографический словарь русского языка

ЗЕМНАЯ КОРА — ЗЕМНАЯ КОРА, наружная твердая оболочка Земли, состоящая под континентами из осадочного, гранитного и базальтового слоев общей мощностью до 80 км; под океанами ее толща составляет 5 10 км, а гранитный слой полностью отсутствует. В ее строении… … Современная энциклопедия

ЗЕМНАЯ КОРА — самая верхняя часть литосферы наиболее сложная область Земли, в которой происходят различные циклические процессы осадконакопления, магнетизма, формирования новых физико химических структур, непосредственно влияющих на биотические компоненты… … Экологический словарь

земная кора — Верхняя оболочка твердой Земли толщиной от 5 10 км под океанами до 35 70 км под материками, отделенная от нижележащей мантии поверхностью Мохоровичича. → Рис. 102 … Словарь по географии

ЗЕМНАЯ КОРА — – верхняя твердая оболочка Земли, лежащая на мантии; верхняя часть литосферы, располагающаяся выше сейсмической границы Мохоровичича. См. континентальная земная кора, океанская земная кора … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

Следы движений литосферы сохраняются на века

Наша Земля состоит из множества слоев, нагромождающихся друг на друга. Однако лучше всего нам известны земная кора и литосфера. Это не удивляет — ведь мы не только обитаем на них, но и черпаем из глубин большинство доступных нам природных ресурсов. Но еще верхние оболочки Земли сохраняют миллионы лет истории нашей планеты и всей Солнечной системы.

Литосфера и земная кора — 2 в 1

Эти два понятия так часто встречаются в прессе и литературе, что вошли повседневный словарь современного человека. Оба слова используются для обозначения поверхности Земли или другой планеты — однако между понятиями есть разница, базирующаяся на двух принципиальных подходах: химическом и механическом.

Химический аспект — земная кора

Если разделять Землю на слои, руководствуясь различиями в химическом составе, верхним слоем планеты будет земная кора. Это относительно тонкая оболочка, заканчивающаяся на глубине от 5 до 130 километров под уровнем моря — океаническая кора тоньше, а континентальная, в районах гор, толще всего. Хотя 75% массы коры приходится только на кремний и кислород (не чистые, связанные в составе разных веществ), она отличается наибольшим химическим разнообразием среди всех слоев Земли.

Строение земной коры

Строение земной коры

Физический аспект — литосфера

Характеристики этой оболочки полностью соответствуют названию — это единственный, кроме внутреннего ядра, твердый слой Земли. Прочность, правда, относительная — литосфера Земли является одной из самых подвижных в Солнечной системе, из-за чего планета уже не раз изменяла свой внешний вид. Но для значительного сжатия, искривления и прочих эластических изменений требуются тысячи лет, если не больше.

Последствия смещения литосферных плит. Самое известное такое место — разлом Сан-Андреас в Калифорнии

  • Интересный факт — планета может и не обладать поверхностной корой. Так, поверхность Меркурия — это его затвердевшая мантия; кору ближайшая к Солнцу планета потеряла давным-давно в результате многочисленных столкновений.

Подводя итог, земная кора — это верхняя, химически разнообразная часть литосферы, твердой оболочки Земли. Первоначально они обладали практически одинаковым составом. Но когда на глубины воздействовала только нижележащая астеносфера и высокие температуры, в формировании минералов на поверхности активно участвовали гидросфера, атмосфера, метеоритные остатки и живые организмы.

Литосферные плиты

Еще одна черта, которая отличает Землю от других планет — это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли воздух и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника — это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.

Смещения литосферы

О плитах вы уже наверняка слышали — это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:

  • Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
  • В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.

Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии — более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.

Динамическая схема Земли

Главные плиты

За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи — там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли — чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.

  • Интересный факт — дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, Ио, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с Юпитером, из-за которого недра Ио разогреваются.

Границы литосферных плит весьма условны — одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:

  • Австралийская
  • Антарктическая
  • Африканская
  • Евразийская
  • Индостанская
  • Тихоокеанская
  • Северо-Американская
  • Южно-Американская

Карта литосферных плит

Карта литосферных плит

Такое разделение появилось недавно — так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.

Геологическая активность

Литосферные плиты движутся очень медленно — они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности — извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.

Динамика мантии

  • Интересный факт — в горячих точках часто образуются щитовые вулканы, характерные своей пологой формой. Они извергаются много раз, разрастаясь за счет текучей лавы. Также это типичный формат инопланетных вулканов. Самый известный из них вулкан Олимп на Марсе, самая высокая точка планеты — высота его достигает 27 километров!

Океаническая и континентальная кора Земли

Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.

Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит.

Возраст океанической коры (красный соответствует молодой коре, синий — старой).

Возраст океанической коры (красный соответствует молодой коре, синий — старой). Смотреть в полном размере.

Континентальная кора, напротив, находится на стабильных участках литосферы — ее возраст на отдельных участках превышает 2 миллиарда лет, а некоторые минералы зародились вместе с Землей! Отсутствие активных разрушительных процессов позволило развиться мощному слою осадочных пород, а также сохранить прослойки разных эпох развития планеты. Это позволило также создать метаморфические вещества — минералы, сформированные за счет попадания осадочных или магматических пород в непривычные условия. Яркими примерами таких минералов являются алмазы.

Литосфера и кора Земли в астрономии

Изучение Земли редко когда происходят просто так — часто поиски ученых имеют вполне четкую практическую цель. Это особенно актуально в изучении литосферы: на стыках литосферных плит выходят наружу целые россыпи руд и ценных минералов, для добычи которых в ином месте пришлось бы бурить многокилометровую скважину. Многие данные о земной коре были получены благодаря нефтепромыслу — в поисках месторождений нефти и газа ученые немало узнали о внутренних механизмах нашей планеты.

Вулканы Марса

Поэтому астрономы не просто так стремятся к подробному изучению коры других планет — ее очертания и внешний вид раскрывают все внутреннее устройство космического объекта. Например, на Марсе вулканы очень высокие и многократно извергаются, когда на Земле они постоянно мигрируют, возникая периодически в новых местах. Это свидетельствует о том, что на Марсе отсутствует такое активное движение литосферных плит, как на Земле. Вместе с отсутствием магнитного поля, стабильность литосферы стала главным доказательством остановки ядра красной планеты и постепенного остывания ее недр.

Читайте также: