Как накладывают и снимают заземление кратко

Обновлено: 02.07.2024

· необходимо непосредственно после проверки отсутствия напряжения. Переносные заземления сначала нужно присоединить к земле, а затем после проверки отсутствия напряжения наложить на токоведущие части.

В какой последовательности следует снимать переносные заземления?

· снимать переносные заземления следует в обратной наложению последовательности: сначала снять их с токоведущих частей, а затем отсоединить от земли.

Как выполняются операции по наложению и снятию переносных заземлений?

· операции по наложению и снятию переносных заземлений выполняются в диэлектрических перчатках с применением в электроустановках напряжением выше 1000 В изолирующей штанги. Закреплять зажимы наложенных переносных заземлений следует этой же штангой или непосредственно руками в диэлектрических перчатках.

· запрещается пользоваться для заземления проводниками, не предназначенными для этой цели, а также присоединять заземление посредством скрутки.

Кто может включать заземляющие ножи, накладывать переносные заземления, а также отключать заземляющие ножи в электроустановках напряжением выше 1000 В?

· включать заземляющие ножи разрешается одному лицу с группой не ниже IV из оперативного или оперативно-ремонтного персонала;

· накладывать переносные заземления должны два лица из оперативного или оперативно-ремонтного персонала с группами по электробезопасности не ниже IV и III. Второе лицо с группой не ниже III может быть из числа ремонтного персонала, при этом оно должно пройти инструктаж и быть ознакомлено со схемой электроустановки;

· отключать заземляющие ножи и снимать переносные заземления может одно лицо с группой не ниже III из оперативного или оперативно-ремонтного персонала.

Кому разрешается выполнять операции по наложению и снятию заземлений в электроустановках напряжением до 1000 В?

· в электроустановках напряжением до 1000 В все операции по наложению и снятию заземлений разрешается выполнять одному лицу с группой по электробезопасности не ниже III из оперативного или оперативно-ремонтного персонала.

14.72. Допускается ли и если да, то при каких условиях, временное снятие заземлений, наложенных при подготовке рабочего места?

· допускается временное снятие заземлений, наложенных при подготовке рабочего места если это требуется по характеру выполняемых работ (измерение сопротивления изоляции и т.п.). При этом место работы подготавливается в полном соответствии с требованиями настоящих Правил и лишь на время производства работы снимаются те заземления, при наличии которых работа не может быть выполнена.

14.73. Где заземляется ВЛ при подготовке рабочего места?

· ВЛ напряжением выше 1000 В заземляются во всех РУ и у секционирующих коммутационных аппаратов, где отключена линия.

· для ВЛ напряжением до 1000 В достаточно наложить заземление только на рабочем месте

Где накладывается заземление на рабочем месте на одноцепных ВЛ?

· на одноцепных ВЛ заземление на рабочем месте необходимо накладывать на опоре, на которой производится работа, или на соседней. Допускается наложение заземлений с двух сторон участка ВЛ, на котором работает бригада, при условии, что расстояние между заземлениями не превышает 2 км.

Где накладывается заземление при выполнении работы на проводах ВЛ в пролёте пересечения с другой ВЛ, находящейся под напряжением?

· при выполнении работы на проводах ВЛ в пролёте пересечения с другой ВЛ, находящейся под напряжением, заземление необходимо накладывать на опоре, где производится работа.

· если в этом пролёте подвешиваются или заменяются провода либо тросы, то с обеих сторон от места пересечения заземляются как подвешиваемый, так и заменяемый провод, трос.

К чему присоединяются переносные заземления на ВЛ?

· на металлических опорах – к их элементам;

· на железобетонных и деревянных опорах с заземляющими спусками – к этим спускам после проверки их целости;

· на железобетонных опорах допускается присоединять переносное заземление к арматуре или к металлическим элементам опоры, имеющим металлическую связь арматурой;

· в электросетях напряжением до 1000 В с заземлённой нейтралью при наличии повторного заземления нулевого провода допускается присоединять переносные заземления к нулевому проводу;

· на всех ВЛ переносное заземление на рабочем месте можно присоединить к специальному заземлителю, погружённому в грунт на глубину не менее 0,5 м, или в зависимости от местных условий к заземлителям других типов.

· места присоединения переносных заземлений к заземляющей проводке или к конструкциям должны быть очищены от краски.

На какие провода накладывается заземление на ВЛ напряжением до 1000 В при работах, выполняемых с опор либо с телескопической вышки без изолирующего звена?

· на ВЛ напряжением до 1000 В при работах, выполняемых с опор либо с телескопической вышки без изолирующего звена, заземление накладывается как на провода ремонтируемой линии, так и на все подвешенные на этих опорах провода, в том числе на провода радиотрансляции и телемеханики.

В какой последовательности накладывается заземление на ВЛ при подвеске проводов на разных уровнях?

· на ВЛ при подвеске проводов на разных уровнях заземление накладывается снизу вверх, начиная с нижнего провода, а при горизонтальной подвеске, начиная с ближайшего провода.

Кто должен на ВЛ накладывать переносные заземления и включать установленные на опорах заземляющие ножи, а также снимать переносные заземления и отключать заземляющие ножи?

· на ВЛ накладывать переносные заземления и включать установленные на опорах заземляющие ножи должны лица из оперативного и оперативно-ремонтного персонала, одно из которых – производитель работ с группой по электробезопасности не ниже IV на ВЛ напряжением выше 1000 В и с группой не ниже III на ВЛ напряжением до 1000 В, а второе лицо – член бригады, имеющий группу не ниже III. Снимать переносные заземления допускается двум лицам, имеющим группу не ниже III.

· отключать заземляющие ножи разрешается одному лицу с группой по электробезопасности не ниже III из оперативного или оперативно-ремонтного персонала.

· при наложении и снятии заземлений одно из двух лиц, выполняющих эти операции, в том числе и производитель работ, может оставаться на земле.

ЭЛЕКТРОУСТАНОВКИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Электролизные установки.

15.1.1. Какие требования предъявляются к электролизерам?

· электролизеры должны быть изолированы от земли;

· изоляция должна быть доступна для внешнего осмотра и контроля ее состояния;

· средняя точка серии электролизеров при электролизе воды и водных растворов не должна иметь глухого заземления;

15.1.2.Какие требования предъявляются к ваннам гальванопокрытий?

· корпуса ванн в гальванических цехах, питающихся по блочной схеме (выпрямитель – ванна), при номинальном напряжении постоянного тока 110В и выше должны быть заземлены, а токоведущие части недоступны для прикосновения;

· корпуса установленных на ваннах электроприемников переменного тока при напряжении выше 36В должны быть заземлены.

Когда допускается применять напряжение электроприемника выше 36В (но не выше 380В)?

· питание приемника осуществляется от разделительного трансформатора, установленного для какждого электроприемника или группы электроприемников, относящихся к одному электролизеру;

15.1.4.Какие требования предъявляются к залам электролиза?

· в залах электролиза разрешается применять переносные электрические светильники напряжением не выше 12В;

· в залах не разрешается устройство контура заземления трехфазных приемников переменного тока производственных механизмов; заземление корпусов электрооборудования должно осуществляться при помощи нулевой жилы четырехжильного кабеля, не имеющего заземленной металлической оболочки или брони; когда заземление осуществить невозможно, обязательно устройство быстродействующей защиты замыкания на землю.

При вводе в эксплуатацию и проведении ремонтных работ на оборудовании, временно выведенном из эксплуатации, часто возникает необходимость отсоединения рабочей заземляющей шины. Как обеспечить безопасность работ в таком случае? Требуется установить переносное заземление.

Что это такое, и почему его называют временным (переносным)

Переносное заземление1

Комплект временного заземления представляет собой набор гибких медных проводников (кабель без изоляции). На концах проводников расположены зажимы с постоянной фиксацией: типа струбцин.

Переносное заземление2

Как правило, проводники соединены в три связанные линии (для трехфазного оборудования). При замыкании фаз между собой, повышается вероятность срабатывания защиты, если на линию случайно будет подано напряжение. Струбцины, которые подключаются к питающим контактам, оборудуются изолирующими штангами (при работе с напряжением свыше 1000 вольт). Если во время подключения, шина окажется под напряжением, поражение электротоком не произойдет.

Существуют комплекты и для однофазных электроустановок, состоящие из одного проводника с зажимами на концах.

Переносное заземление3

Что такое переносное заземление и его назначение

Переносное заземление (ПЗ) – это специальное изделие, предназначенное для заземления отдельных участков электроустановки, в которых не предусмотрено стационарных заземляющих ножей. Основной функцией ПЗ является обеспечение безопасности работников при осуществлении ремонтных работ.



Переносное заземление типа ЗЛП-10

Конструкция изделия состоит из следующих элементов:

  • гибкий токопроводящий проводник (медь или алюминий);
  • закрепляющие зажимы;
  • наконечники (струбцины);
  • диэлектрическая штанга.

Бесштанговую конструкцию ПЗ, как правило, используют для применения в комплектных распределительных устройствах.



Пример бесштанговой конструкции ПЗ

Для одновременного закорачивания трёх фаз через единый заземляющий проводник пользуются трёхфазным заземлителем.

Однофазное исполнение портативного заземления предназначено для отдельного подключения фаз к контуру заземления. Используется на ЛЭП с уровнем напряжения более 110 кВ. Это обусловлено существенным расстоянием от заземляющей шины до фазных проводов и междуфазным пролётом.

Гибкий токопроводящий проводник может быть покрыт прозрачной изоляцией. Он может изготавливаться из алюминиевых или медных проводов. С помощью зажимов осуществляется крепление ПЗ к токоведущих частям и к контуру заземления. Устройство фазных зажимов может быть выполнено в виде струбцин и медных наконечников. Затягивание зажимов выполняется изолирующей штангой, с помощью которой достигается минимально допустимое расстояние до токоведущих частей.

Какие требования предъявляются к оборудованию

  • Проводники должны быть цельными на всем протяжении между зажимами, без сростков и калышков (петлеобразных завитков, образованных при перекручивании).
  • Использование изолированных проводов запрещено! Под оболочкой сложно контролировать возможные повреждения токоведущей жилы.
  • Сечение кабеля одинаковое по всей длине. Для электроустановок до 1000 В, не меньше 16 мм², выше 1000 В — 25 мм².
  • Длина проводников подбирается таким образом, чтобы можно было соединить шину заземления и заземляемые участки без натяжения кабеля. После подключения он не должен быть в подвешенном состоянии (за исключением точек заземления, находящихся на значительной высоте: например, линий электропередач).
  • Провода должны выдерживать динамические нагрузки на разрыв, и не нагреваться до температуры расплавления при протекании тока короткого замыкания (по крайней мере, до срабатывания защитных устройств на размыкание силовых линий). Сечение провода по параметрам короткого замыкания можно рассчитать самостоятельно по формуле: где Iкз — это ток короткого замыкания, а tзащиты — максимально возможное время срабатывания автомата аварийного отключения электропитания.
  • Длина изолирующих штанг должна обеспечивать безопасное наложение зажимов без приближения (а тем более касания) оператора к потенциально опасным токоведущим шинам.

Переносное заземление4

Требования к переносным заземлениям, как и правила дорожного движения, написаны кровью. Поэтому их соблюдение не просто является формальным исполнением ПУЭ. Это жизнь и здоровье людей.

Порядок установки временного заземления

Установка заземления производится с той стороны токоведущих шин, откуда может быть подано напряжение. Между точкой подключения и зоной проведения ремонтных работ не должно быть преобразующих устройств с гальванической развязкой (трансформаторов, умножителей напряжения, стабилизаторов и прочего).

Оператор, производящий накладку переносного заземления, должен быть в защитных средствах: изолирующих ботах, рукавицах, иметь на лице защитную прозрачную маску (от возможного искрообразования). Рекомендуется использовать диэлектрические коврики или подставки для ног.

Переносное заземление5

Дальнейшие работы выполняются строго в указанной последовательности:

  1. Центральный, или общий (при работе с трехфазным заземлителем) зажим крепится на действующую и проверенную шину заземления.
  2. Индикатором проверяется отсутствие напряжения на токоведущей шине.
  3. Непосредственно после проверки производится контрольное касание зажимом токоведущей шины, после чего проводник надежно закрепляется.

Важно! порядок наложения переносного заземления предписывает выполнять работу как минимум вдвоем. Это необходимо для того, чтобы при поражении электротоком, была возможность оперативно принять меры по отключению электроэнергии, и оказать первую помощь пострадавшему.

Разумеется, к работе допускается только квалифицированный персонал.

Присоединение заземления на оборудовании с напряжением выше 1000 В, производится с помощью штанги, изготовленной из прочного диэлектрика. При меньших напряжениях допускается работа в диэлектрических перчатках.

Установка и снятие переносного заземления

Процесс наложения и снятия заземления идентичен для всех уровней напряжения. Существуют отличия только в количестве людей выполняющих данные операции. В электроустановках до 1 кВ установка и снятие заземлителя проводится единолично, а при напряжении выше 1 кВ процедура производится вдвоём. Один человек выступает в роли контролирующего лица, а второй является исполнителем.



Процесс установки и монтажа ПЗ

Последовательность действий при установке ПЗ:

  1. Убедиться в целостности устанавливаемого заземления;
  2. Проверить отсутствие напряжения на электроустановке, которая подлежит заземлению;
  3. Подсоединить струбцину ПЗ к контуру заземления;
  4. Наложить заземляющие проводники на токоведущие элементы.

Операции по снятию переносного заземления, проводятся в обратном порядке.Все действия необходимо осуществлять с использованием диэлектрических перчаток и штанг, а также индивидуальных защитных средств. В электрической установке до 1 кВ допускается использовать только изолирующие перчатки. При напряжении токоведущих элементов более 1000 В, требуется одновременное применение перчаток и штанг.

Проверка отсутствия напряжения на участке распределительной установки осуществляется указателем напряжения.

Допускается параллельная установка портативных заземлителей в электрической сети напряжением более шести тысяч вольт. Это обусловлено тем, что требуемые сечения проводов достигают значительных величин. И приводит к увеличению массы и размеров ПЗ, что влечёт за собой трудности при их эксплуатации.

Что делать, если штатное защитное заземление отсутствует

Если работы выполняются на незаземленной (штатно) электроустановке, необходимо создать временный контур заземления. Для этого организуется тот самый треугольник, в соответствии с правилами организации защитного заземлителя. К нему присоединяется переносное заземление.

Заземлитель организуется с помощью металлических штырей, профилей (они забиваются с помощью кувалды), или буравчиков. У подобных устройств должно быть приспособление для извлечения их из грунта после окончания работ.

Переносное заземление6

Еще один вариант для простой установки — заземлитель с обратным молотком. С его помощью можно легко погрузить стержень в грунт и извлечь его обратно.

Переносное заземление7

Установка переносного заземления на временный контур производится по тем же правилам, что и на стационарную шину защитного заземления.

Снятие — переносное заземление

Снятие переносного заземления должно производиться в обратном порядке: сначала оно отсоединяется от токоведущих частей, а затеи от заземляющей проводки.

Снятие переносного заземления должно производиться в обратном порядке: сначала оно отсоединяется от токоведущих частей, а затем от заземляющей проводки.

Порядок снятия переносных заземлений обратный — сначала отсоединяют фазные концы, а затем заземляющий конец, также с применением средств защиты.

Установка переносного заземления.

При снятии переносного заземления, наоборот, сначала его отсоединяют от шин и проводов, а потом от заземляющего устройства. Такой порядок вызван тем, что сборные шины, электрические машины, аппараты и в особенности воздушные и кабельные линии после снятия напряжения могут в течение некоторого времени сохранять электрический заряд.

Приспособление на штанге для одновременной проверки отсутствия напряжения и наложения заземления на провода ВЛ на деревянных опорах.

При снятии переносных заземлений сначала снимают зажимы с токоведущих частей, затем отсоединяют заземляющий провод. Все операции по наложению и снятию переносных заземлений необходимо производить с применением диэлектрических перчаток.

Наложение и снятие переносных заземлений, включение и отключение заземляющих ножей должно отражаться на оперативной или пневматической схеме, в оперативном журнале и в наряде.

Наложение и снятие переносных заземлений должны осуществлять два лица. Все переключения в электрических схемах подстанции, ЗРУ-6-10 кВ и других эпергообъектах нефтепроводов производят по распоряжению или с ведома вышестоящего дежурного персонала.

Наложение и снятие переносных заземлений производится а диэлектрических перчатках, в.

Наложение или снятие переносных заземлений, выполняемое как единичная операция или в комплексе с переключениями, по которым не требуется составление бланка, и выполняемое в присутствии лица оперативного персонала, имеющего квалификационную группу V, производится без бланков переключений с записью в оперативном журнале.

Наложение и снятие переносных заземлений должны осуществлять два лица.

Установка и снятие переносных заземлений должны выполняться в диэлектрических перчатках с применением в электроустановках напряжением выше 1000 В изолирующей штанги. Закреплять зажимы переносных заземлений следует этой же штангой или непосредственно руками в диэлектрических перчатках.

Установка и снятие переносных заземлений в электроустановках выше 1000 В должны выполняться в диэлектрических перчатках с применением изолирующей штанги. Закреплять зажимы переносных заземлений следует этой же штангой или непосредственно руками в диэлектрических перчатках.

Установка и снятие переносных заземлений должны выполняться в диэлектрических перчатках с применением в электроустановках выше 1000 В изолирующей штанги. Закреплять зажимы переносных заземлений следует этой же штангой или непосредственно руками в диэлектрических перчатках.

Заземление линий электропередач на столбах

Переносное заземление8

Поскольку такие работы, проводятся как правило в поле, где нет штатного защитного заземления, применяются переносные заземлители. Они обычно входят в комплект.

Учитывая отсутствие винтовых зажимов, и, как следствие, менее надежный контакт с токонесущим проводом, устанавливаются дублирующие заземления: по 2–3 комплекта на один высоковольтный провод.

Монтаж производится с земли: то есть оператор стоит на грунте, а не устанавливает заземление со столба.

Переносное заземление9

Штанговые переносные заземления для ЛЭП выполняются однофазными. Для соединения заземленных проводов между собой, линии соединяются на грунте, в точке соединения с переносным заземлителем.

Предназначается для защиты людей, работающих на отключенных токоведущих частях оборудования или электроустановки, от поражения электрическим током в случае ошибочной подачи напряжения на отключенный участок или при появлении на нем наведенного напряжения. Переносное заземление применяется в тех частях электроустановки, в которых нет стационарных заземляющих ножей.

Защитное действие переносных заземлений или стационарных заземляющих ножей заключается в том, что они не позволяют появиться напряжению дальше места их установки. При подаче напряжения на заземленный и закороченный участок возникает короткое замыкание. Благодаря этому напряжение в месте короткого замыкания снижается практически до нуля и на токоведущие части за заземлением напряжение не будет попадать. Кроме того, сработает защита и отключит источник напряжения.

Переносное заземление

Отсутствие установленного переносного заземления на токоведущих частях обслуживаемой электроустановки, нарушение регламента их применения, применение некачественных или не соответствующих действующим техническим нормам заземлений неоднократно приводили к тяжелым, в том числе и смертельным электротравмам.

Устройство переносных заземлений

Переносное заземление состоят из: проводников для заземления и закорачивания между собой токоведущих частей разных фаз электроустановки и зажимов для присоединения проводников к заземляющей проводке и к токоведущим частям. Заземляющие и закорачивающие проводники изготовляются из медного многожильного гибкого голого провода. Переносные заземления выполняются как трехфазными (для закорачивания всех трех фаз и заземления с общим заземляющим проводником), так и однофазными (для заземления токоведущих частей каждой фазы отдельно). Однофазные переносные заземления применяются в электроустановках напряжением выше 110 кВ, поскольку там расстояния между фазами велики и закорачивающие проводники получаются чрезмерно длинными и тяжелыми. По способу применения переносные заземления подразделяются на заземления для применения на воздушных линиях электропередачи (ВЛ) и в распределительных устройствах (РУ).

Заземления для ВЛ

Переносное заземление для ВЛ предназначено для защиты работающих от поражения высоким напряжением путем заземления участка ВЛ от ошибочно поданного или наведенного напряжения от соседних линий. Заземления для ВЛ состоят из фазных струбцин или зажимов, закорачивающих/заземляющих гибких проводников, штанг заземлений изолирующих (изолирующих канатов), а также заземляющих струбцин. Для различных видов работ, заземления переносные могут выпускаться однофазными или трехфазными (для ВЛ 0,4 кВ – пятифазными), а также, в отдельных случаях, количество фаз может быть более 3-х.

На ВЛ применяются два основных типа заземлений – с цельной изолирующей штангой и составной штангой, состоящей из металлических токопроводящих звеньев и изолирующей части. Заземления для ВЛ с цельной изолирующей штангой универсальны и наиболее распространены. В основном применяются при работах с вышек и подъемников, а также при использовании когтей и лазов. Заземления с металлическими токопроводящими звеньями применяются на ВЛ высоких классов напряжения при работах с траверсы. В последнее время, такие заземления стали применяться на линиях 6-10 кВ для постановки с земли. Применение металлических токопроводящих звеньев вызвано необходимостью снижения веса заземления в целом при большой длине штанги. Объединение конструкционного и токопроводящего элемента заземления позволяет уменьшить весовую нагрузку на руки работающего до приемлемой величины. По этой причине, заземления для ВЛ с металлическими токопроводящими звеньями, как правило, выполняются однофазными.

Заземления для РУ

Переносное заземление для РУ предназначено для защиты работающих от поражения высоким напряжением путем заземления участка РУ от ошибочно поданного или наведенного напряжения от соседних цепей. Имея идентичную конструкцию, заземления для РУ различаются по способу установки в РУ: фазные струбцины устанавливаются на токопроводящие шины, на специальные шаровые или цилиндрические наконечники или вместо плавких предохранителей. Различные места установки заземления в РУ определяются регламентом проведения работ и конструктивными особенностями обслуживаемых электроустановок.

Требования предъявляемые к переносным заземлениям

Основным требованием, предъявляемым к переносным заземлениям, является их термическая и динамическая устойчивость к току короткого замыкания. Зажимы, которыми проводники закрепляются на токоведущих частях, должны быть такими, чтобы динамическими усилиями они не могли быть сорваны. Кроме того, зажимы должны обеспечивать весьма надежный контакт. В противном случае они при коротком замыкании перегреются и обгорят.

При протекании тока короткого замыкания закорачивающие проводники сильно нагреваются. Поэтому они должны быть достаточно термически устойчивыми, чтобы оставаться целыми в течение времени отключения под действием релейной защиты закороченного участка. Надо иметь в виду, что медь плавится при температуре 1083° С. Термическая устойчивость проводников важна, потому что при нагреве и обрыве проводников на концах их может появиться рабочее напряжение электроустановки. Минимальное сечение из соображений механической прочности принимается: для электроустановок напряжением выше 1000 В — 25 мм2 и для электроустановок напряжением ниже 1 000 В — 16 мм2. Меньше этих сечений проводники применять нельзя. Для электроустановок напряжением 6 — 10 кВ при значительных токах короткого замыкания проводники переносных заземлений получаются очень большого сечения (120 — 185 мм2), тяжелые и ими трудно пользоваться. В таких случаях разрешается использовать два переносных заземления и более, устанавливая их параллельно одно непосредственно возле другого.

Сечения заземляющих проводников в электроустановках выше 1000 В

Расчет сечения проводников переносного заземления производится по упрощенной формуле:

S = ( Iуст √tф ) / 272,

где Iуст — установившийся ток короткого замыкания, А,

tф — фиктивное время, сек.

Для практических целей значение tф может быть принято равным выдержке времени основной релейной защиты присоединения электроустановки, выключатель которого должен отключать короткое замыкание в точке переносного заземления. Чтобы не изготовлять переносных заземлении различного сечения для распредустройства одного напряжения, за расчетную выдержку времени обычно принимается наибольшая.

В сетях с заземленной нейтралью сечение проводников рассчитывается по току однофазного короткого замыкания, в то время как в системе с изолированной нейтралью достаточно обеспечить термическую устойчивость при двухфазном коротком замыкании. Применять для заземляющих проводников изолированный провод не разрешается, потому что изоляция не позволяет вовремя обнаружить повреждение жил проводника, которое уменьшает его расчетное сечение и может привести к пережиганию током короткого замыкания.

Переносное заземление

Переносное заземление

Конструкция зажимов для присоединения проводников должна обеспечивать возможность их надежного и прочного закрепления на токоведущих частях с помощью специальной штанги для установки заземления. Закорачивающие проводники присоединяются к зажимам непосредственно без переходных наконечников. Это требование объясняется тем, что в наконечниках могут быть неудовлетворительные контакты, которые трудно обнаружить, но которые при протекании тока короткого замыкания могут выгореть. Соединение закорачивающих проводников трехфазного заземления между собой и к заземляющему проводнику выполняется прочно и надежно опрессовыванием или сваркой. Может быть выполнено и болтовое соединение, но, кроме болтов, соединение должно быть пропаяно твердым припоем. Соединение только пайкой не допускается, поскольку нагрев заземлений при протекании тока может достигать сотен градусов, при котором припой расплавится и соединение нарушится.

Места наложения заземления

Переносное заземление должно быть наложено на токоведущие части всех фаз отключенного для производства работы участка электроустановки со всех сторон, откуда может быть подано напряжение, в том числе и вследствие обратной трансформации. Достаточным является наложение с каждой стороны одного заземления. Эти заземления могут быть отделены от токоведущих частей или оборудования, на которых производится работа, отключенными разъединителями, выключателями, автоматами или снятыми предохранителями.

Наложение заземлений непосредственно на токоведущие части, на которых производится работа, требуется тогда, когда эти части могут оказаться под наведенным напряжением (потенциалом) или на них может быть подано напряжение от постороннего источника опасной величины. Места наложения заземлений должны выбираться так, чтобы заземления были отделены видимым разрывом от находящихся под напряжением токоведущих частей. При пользовании переносными заземлениями места их установки должны находиться на таком расстоянии от токоведущих частей, оставшиеся под напряжением, чтобы наложение заземлений было безопасным. При работе на сборных шинах на них должно быть наложено не менее одного заземления. В закрытых распределительных устройствах переносные заземления должны накладываться на токоведущие части в установленных для этого местах. Эти места должны быть очищены от краски и окаймлены черными полосами.

В электроустановках, конструкция которых такова, что наложение заземления опасно или невозможно, при подготовке рабочего места должны быть приняты дополнительные меры безопасности, исключающие случайную подачу напряжения к месту работы. К этим мерам относятся:

  • запирание привода разъединителя на замок
  • ограждение ножей или верхних контактов указанных аппаратов резиновыми колпаками или жесткими накладками из изоляционного материала

Как правильно установить переносное заземление

Запрещается пользоваться для заземления какими-либо проводниками, не предназначенными для этой цели, а также производить присоединение заземлений путем их скрутки. Переносные заземления устанавливаются на токоведущих частях со всех сторон, откуда может быть подано напряжение на отключенный для производства работ участок. Если участок, на котором производятся работы, делится коммутационным аппаратом (выключателем, разъединителем) на части или в процессе работы нарушает целость токоведущих частей участка (снимается часть проводов и т. п.), то при опасности появления наведенного напряжения от соседних линий на каждом отдельном участке должно быть поставлено заземление.

Установка заземления производится изолирующей штангой, составляющей одно целое с заземлением или применяемой для поочередного оперирования с зажимами всех фаз. Сначала заземляющий проводник присоединяется к заземляющей проводке или к заземленной конструкции. Затем после проверки отсутствия напряжения на токоведущих частях указателем напряжения с помощью штанги зажимы заземления поочередно накладываются на токоведущие части всех фаз. Если штанга не приспособлена для закрепления зажимов, закрепление может быть выполнено вручную в диэлектрических перчатках.

При установке заземлений в распределительных устройствах операции следует производить с пола или земли, или с лестницы, не поднимаясь на еще не заземленное оборудование. Если с земли или лестницы в открытом распределительном устройстве невозможно установить и закрепить заземления на шинах, то подниматься для этой цели на оборудование (трансформатор, выключатель) можно только после полной проверки отсутствия напряжения на всех вводах. Подниматься на конструкцию разъединителя 35 кВ и выше, находящегося с одной стороны под напряжением, недопустимо ни при каких обстоятельствах. Потому что лицо, устанавливающее заземление, может оказаться в опасной близости к токоведущим частям, остающимся под напряжением. При таких операциях имели место поражения током. Необходимо учитывать, что наведенное напряжение отсутствует на токоведущей части только тогда, когда к ней присоединено заземление. Поэтому даже после снятия заряда с токоведущей части или после снятия заземления недопустимо касаться незаземленных токоведущих частей без защитных средств. Все операции по установке и снятию переносных заземлений производятся с применением диэлектрических перчаток.

Как правильно снять переносное заземление

Снятие заземления следует производить в обратном порядке с применением штанги и диэлектрических перчаток. То есть сначала снять его с токоведущих частей, а затем отсоединить от заземляющих устройств. Если характер работы в электрических цепях требует снятий заземления (например при проверке изоляции мегомметрами), допускается временное снятие заземлений, мешающих выполнению работы. При этом место работы должно быть подготовлено в полном соответствии вышеизложенными требованиями. И лишь на время производства работы могут быть сняты те заземления, при наличии которых работа не может быть выполнена.

В электроустановках напряжением выше 110 кВ снятие заземлений следует производить с помощью штанг. Даже если по месту установки возможно произвести операцию без штанги. В электроустановках напряжением 110 кВ и ниже допустимо пользоваться только диэлектрическими перчатками. Причем только в тех случаях, когда для снятия заземления не требуется влезать на конструкции разъединителей. Включение и отключение заземляющих ножей, наложение и снятие переносных заземлений должны учитываться по оперативной схеме, в оперативном журнале и в наряде.

Видео


В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.


1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения
Б. Назначение (виды) заземления

Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети

В. Качество заземления. Сопротивление заземления.

В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления

А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).


Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).

Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.


Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).

Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:


Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро :-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро :-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:


Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:


Б. Назначение (виды) заземления

Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление

Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление

Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).


Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)

УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

При достижении этого порога внутри разрядника возникает разряд :-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).


Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети

Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.


Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.

В1. Факторы, влияющие на качество заземления
  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды
В1.1. Площадь контакта заземлителя с грунтом.

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)

Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления

Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
    В3. Расчёт сопротивления заземления

    Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

    Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.


    Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
    Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

    Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
    Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

    В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

    Строительство заземлителей

    При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

    В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

    Читайте также: