Как можно представить процесс функционирования любой системы кратко

Обновлено: 05.07.2024

Процессы, происходящие в сложных системах, как правило, сразу не удается представить в виде математических соотношений или хотя бы алгоритмов. Поэтому для того, чтобы хоть как-то охарактеризовать стабильную ситуацию или ее изменения, используют специальные термины, заимствованные теорией систем из теории автоматического регулирования, биологии, философии.

Рассмотрим основные из этих терминов.

Поведение. Если система способна переходить из одного состояния в другое (например, %%s_1 → s_2 → s_3 →%%. ), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер, алгоритм.

С учетом введенных обозначений поведение можно представить как функцию

Поясняют это понятие обычно на примерах. Простейший пример — равновесие шарика на плоскости (рис. 1.4). Для экономических, организационных систем это понятие применимо достаточно условно.


Устойчивость. Под устойчивостью понимают способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (или в системах с активными элементами — внутренних) возмущающих воздействий. Эта способность обычно присуща системам при постоянном у только тогда, когда отклонения не превышают некоторого предела.

Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия. Возврат в это состояние может сопровождаться колебательным процессом. Соответственно в сложных системах возможны неустойчивые состояния равновесия.

Это понятие также обычно поясняют на примерах. Простейший пример — устойчивое состояние шарика в ямке до величины отклонений (под воздействием внешних возмущений), которые не выбрасывают его из ямки (рис. 1.5). Равновесие и устойчивость в экономических системах, несмотря на кажущуюся аналогию с техническими, — гораздо более сложные понятия, и ими можно пользоваться в основном как некоторыми аналогиями для предварительного описания поведения системы.


Развитие. Это понятие помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Исследование процесса развития, соотношения развития и устойчивости, изучение механизмов, лежащих в их основе, — наиболее сложные задачи теории систем. Ниже будет показано, что целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.


Для каждой отрасли промышленности деятельность предприятий и организаций на этапах ЖЦ от формирования требований к продукции до окончания ее эксплуатации определялась в ГОСТах и стандартах. В теории систем первым на необходимость включения в ЖЦ этапа ликвидации системы обратил внимание В. И. Николаев.

Методика ПАТТЕРН Теоретическое исследование. Поисковая разработка. Перспективная разработка. Техническое проектирование. Производственная готовность
Г. С. Поспелов Замысел новой системы. Целевые НИР. Конкурсные аванпроекты НИР, ОКР. Капитальное строительство.Производственная готовность. Серийное производство. Прекращение производства и снятие с эксплуатации
С. А. Саркисян Создание аналога и формирование ТЗ. Создание технической концепции и ее реализация (техпроект, опытный образец, испытания). Развертывание серийного производства и подготовка кадров. Снятие серийного производства и эксплуатации
М. М. Четвертаков Формулировка концепции. Проектирование. Освоение. Эксплуатация. Модернизация. Ликвидация
Е. Г. Яковенко Исследование. Проектно-конструкторские работы, опытно-экспериментальные работы. Подготовка производства. Освоение и серийное производство. Эксплуатация
В. Н. Спицнадель Исследование. Проектирование. Технологический этап. Производство. Эксплуатация. Ликвидация


Интересный подход к выделению этапов жизненного цикла предприятия предложен в трудах американского исследователя И. Адизеса в конце 80-х гг. XX в.

Проводятся также более глубокие исследования ЖЦ с учетом природных циклов Н. Д. Кондратьева. Предлагается прогнозировать точки начала спада эффективности и выводить систему на новый уровень эквифинальности (см. об этой закономерности в параграфе 1.5), подробности показаны на рис. 1.8.


Согласно данной теории для выживания и развития организации особое значение имеют два параметра: гибкость и контролируемость (управляемость). Все этапы жизненного цикла можно разделить на две группы: этапы роста и этапы старения. Рост начинается с зарождения и заканчивается расцветом (выхаживание, младенчество, стадия быстрого роста, юность, расцвет). Старение берет начало со стабилизации и заканчивается смертью организации (стабилизация, аристократизм, бюрократизация и смерть).

Будем использовать понятие системы, которое учитывает такие важные составляющие любого материального объекта, как элемент, связи, взаимодействия, целеполагание.



Рис. 1. Понятие системы

Система - множество составляющих единство элементов, связей и взаимодействий между ними и внешней средой, образующие присущую данной системе целостность, качественную определенность и целенаправленность.

По определению элемент - это составная часть сложного целого. Сложное целое - это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент - неделимая часть системы.

Элемент - часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними проявлениями в виде связей и взаимосвязей с остальными элементами и внешней средой.

Множество А элементов системы можно описать в виде:

где ai - i-й элемент системы;

n - число элементов в системе.

Каждый ai элемент характеризуется m конкретными свойствами Zi1, . Zim (вес, температура и т.д.), которые определяют его в данной системе однозначно.

Совокупность всех m свойств элемента ai будем называть состоянием элемента Zi:

Состояние элемента, в зависимости от различных факторов (времени, пространства, внешней среды и т.д.), может изменяться.

Последовательные изменения состояния элемента будем называть движением элемента.

Связь - совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами - это значит выявить наличие зависимостей их свойств.

Множество Q связей между элементами ai и aj можно представить в виде:

Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи - совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие - совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Структура системы - совокупность элементов системы и связей между ними в виде множества.

Структура является статической моделью системы и характеризует только строение системы и не учитывает множества свойств (состояний) ее элементов.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система - объект анализа (синтеза), а другая - как внешняя среда.

Внешняя среда - набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда - это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Для данной системы внешняя среда (окружение) есть множество предметов вне системы:

1) изменение признаков которых влияет на систему;

2) признаки которых изменяются вследствие поведения системы.

Решение задачи отнесения предметов к самой системе или к ее окружению является в значительной мере произвольной и зависит от целей изучения системы. Общая проблема выделения окружения весьма сложна. Для того, чтобы указать окружение полностью, необходимо знать все факторы, воздействующие на систему или испытывающие воздействие с ее стороны. Это задача также сложна, как и указание самой системы.

При определении границ системы и ее окружения часто используют метод абстрагирования или идеализации. При использовании этого метода в систему и ее окружение включают те предметы, которые кажутся наиболее важными, описывают связи между ними возможно точнее и исследуют наиболее интересные признаки, пренебрегая теми, которые не играют существенной роли.

Этот метод широко используется в физических и химических исследованиях. Например, пружины без массы, воздух без трения, идеальные газы и т.п.

При создании технических систем в окружение системы включаются следующие универсальные факторы: - состояние технологии; - естественное окружение; - политика организации; - экономические условия для новых технологий; - человеческий фактор.

Примечание: Можно рассмотреть примеры взаимного влияния системы и окружения. Возникновение информационных технологий и изменение общества, как заказчика и потребителя информационных услуг.

ХАРАКТЕРИСТИКИ СИСТЕМЫ

Структура системы есть устойчивая упорядоченность в пространстве и во времени ее элементов и связей.

Структура системы отражает порядок вхождения элементов в подсистемы, а затем последовательное объединение подсистем в целостную систему. Эта структура всегда парно-иерархического типа и имеет не менее двух уровней: старший уровень - система; младший уровень - элемент.

Классификация видов структур:

1). В зависимости от характера организации в системе элементов и их связей выделяют три типа структур: сетевую, иерархическую, скелетную.

2). В плане пространственной организации различают структуры: - плоские; - объемные; - рассредоточенные, когда элементы равномерно распределены в пространстве; - локально сосредоточенные.

3). По временному признаку выделяют: - Экстенсивные структуры, в которых с течением времени происходит рост числа элементов; - интенсивные структуры, в которых происходит рост числа связей и их мощи при неизменном числе элементов; - редуцирующие, противоположные экстенсивным; - деградирующие, противоположные интенсивным; - стабильные.

Структура является наиболее консервативной характеристикой системы.

Функция есть действие, поведение, деятельность системы

Функция элемента возникает как реализация его системоопределенных свойств и при формировании элемента и его связей в системе.

Функция системы или набор функций возникает как специфическое для каждой системы порождение всего комплекса функций и дисфункций элементов ее составляющих.

Основными системными характеристиками функций являются:

- совместимость на элементном уровне;

- возможность активизации на свойствах элементов;

ПРОЦЕСС ФУНКЦИОНИРОВАНИЯ СИСТЕМЫ

СОСТОЯНИЕ СИСТЕМЫ

Состояние системы - совокупность состояний ее n элементов и связей между ними (двухсторонних связей не может быть более чем n(n - 1) в системе с n элементами). Если связи в системе неизменны, то ее состояние можно представить в виде

Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему.

Реальная система не может находиться в любом состоянии.

На ее состояние накладывают ограничения - некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет).

Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть (подпространство) - множество допустимых состояний системы.

Обобщенным входом Х называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора:

Выходы системы - различные точки приложения влияния (воздействия) системы на внешнюю среду называются выходами Yj системы.

Выход системы - это результат преобразования информации, вещества и энергии.

Выходные величины изменяются с течением времени, образуя выходной процесс.

Обратная связь - то, что соединяет выход со входом системы и используется для контроля за изменением выхода.

Ограничения системы - то, что определяет условия реализации процесса (процесс - последовательность операций по преобразованию чего-либо, т.е. то, что преобразует вход и выход).

Ограничения бывают внутренними и внешними. Одним из внешних ограничений является цель функционирования системы. Примером внутренних ограничений могут быть ресурсы, обеспечивающие реализацию того или иного процесса.

Движение системы - процесс последовательного изменения состояния системы.

Вынужденное движение - движение системы под влиянием внешней среды, которое приводит к изменению ее состояния. Вынужденное движение (пример) - перемещение ресурсов под действием приказа (поступившего в систему извне).

Собственное движение - движение системы без воздействия внешней среды (только под действием внутренних причин). Собственным движением человека будет его жизнь как биологического (а не общественного) индивида, т.е. питание, сон, размножение.

ПОНЯТИЕ ПРОЦЕССОВ СИСТЕМЫ

Процесс - совокупность последовательных изменений состояния системы для достижения цели.

Функции входных процессов - задание, по определенному правилу, в определенные моменты времени, управляющих воздействий.

Выходной процесс - множество выходных воздействий на окружающую среду, которые изменяются с течением времени.

Воздействие системы на окружающую среду определяется выходными величинами (реакциями). Выходные величины изменяются с течением времени, образуя выходной процесс, представляющий определенную функцию.

Функции выходных процессов - задание, по определенному правилу, в определенные моменты времени, выходных величин (реакций) системы.

Изменение состояния происходит с течением времени, образуя движение системы.

Функцией входа является возбуждение той силы, которая обеспечивает систему энергией, материалом, информацией, поступающей в процесс.

Пример входных процессов показан на рис. 2.


Рис. 2. Процессы системы

ОБРАТНАЯ СВЯЗЬ

Единственное назначение подсистем обратной связи - изменение идущего процесса.


Рис. 3 Обратная связь

КЛАССИФИКАЦИЯ СИСТЕМ

Для выделения классов систем могут использоваться различные классификационные признаки, основными из них считаются: природа элементов, происхождение, длительность существования, изменчивость свойств, степень сложности, отношение к среде, реакция на возмущающие воздействия, характер поведения и степень участия людей в реализации управляющих воздействий. Классификация систем представлена в табл.

Таблица 1.1 Классификация систем

№ п/п Имя классификационного признака Значение классификационного признака (имя класса)
Природа элементов Реальные (физические) Абстрактные
Происхождение Естественные Искусственные
Длительность существования Постоянные Временные
Изменчивость свойств Статические Динамические
Степень сложности Простые Сложные Большие
Отношение к среде Закрытые Открытые
Реакция на возмущающие воздействия Активные Пассивные
Характер поведения С управлением Без управления
Степень связи с внешней средой Открытые Изолированные Закрытые Открытые равновесные Открытые диссипативные
Степень участия в реализации управляющих воздействий людей Технические Человеко-машинные Организационные

По природе элементов системы делятся на реальные и абстрактные.

Реальными (физическими) системами являются объекты, состоящие из материальных элементов.

Среди них обычно выделяют механические, электрические (электронные), биологические, социальные и другие подклассы систем и их комбинации.

Абстрактные же системы составляют элементы, не имеющие прямых аналогов в реальном мире. Они создаются путем мысленного отвлечения от тех или иных сторон, свойств и (или) связей предметов и образуются в результате творческой деятельности человека. Иными словами, это продукт его мышления. Примером абстрактных систем являются системы уравнений, системы счисления, идеи, планы, гипотезы, теории и т.п.

В зависимости от происхождения выделяют естественные и искусственные системы.

Естественные системы, будучи продуктом развития природы, возникли без вмешательства человека. К ним можно отнести, например, климат, почву, живые организмы, солнечную систему и другие системы. Появление новой естественной системы - большая редкость.

Искусственные системы - это результат созидательной деятельности человека, а, следовательно, со временем их количество увеличивается.

По длительности существования системы подразделяются на постоянные и временные. К постоянным обычно относятся естественные системы, хотя с точки зрения диалектики все существующие системы являются временными.

К постоянным относятся искусственные системы, которые в процессе заданного времени функционирования сохраняют существенные свойства, определяемые предназначением этих систем.

В зависимости от степени изменчивости свойств системы делятся на статические и динамические.

К статическим относятся системы, при исследовании которых можно пренебречь изменениями во времени характеристик их существенных свойств.

Статическая система - это система с одним состоянием. В отличие от статических динамические системы имеют множество возможных состояний, которые могут меняться как непрерывно, так и в дискретные моменты времени.

В зависимости от степени сложности системы делятся на простые, сложные, большие.

Простые системы с достаточной степенью точности могут быть описаны известными математическими соотношениями.

Особенность простых систем - в практически взаимной независимости от свойств, позволяющей исследовать каждое из них в отдельности в условиях классического лабораторного эксперимента и описать методами традиционных технических дисциплин (электротехника, радиотехника, прикладная механика и др.). Простые системы - отдельные детали, элементы электронных схем и т.п.

Сложная система - система, которая состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы (подсистемы).

Сложные системы характеризуются многомерностью (большим числом составленных элементов), многообразием связей, разнородностью структуры, многообразием природы элементов.

Считается, что сложной называется систем, обладающая по крайней мере одним из нижеперечисленных признаков:

1) система допускает разбиение на подсистемы, изучать каждую из которых можно самостоятельно;

2) система функционирует в условиях существенной неопределенности и воздействия среды на нее, обусловливает случайный характер изменения ее показателей;

3) система осуществляет целенаправленный выбор своего поведения.

Сложные системы обладают свойствами, которыми не обладает ни один из составляющих элементов. Сложные системы организм или человек, ЭВМ и т.д. Особенность сложных систем заключается в существенной взаимосвязи их свойств.

Большие системы - это сложные пространственно-распределенные системы, в которых подсистемы (ее составные части) относятся к категориям сложных. Дополнительными особенностями, характеризующими большую систему, являются:

· большие размеры системы;

· сложная иерархическая структура;

· циркуляция в системе больших информационных, энергетических и материальных потоков;

· высокий уровень неопределенности в описании системы.

Большие системы - автоматизированные системы управления, воинские части, системы связи, промышленные предприятия, отрасли промышленности и т.п.

В зависимости от реакции на возмущение воздействия выделяют активные и пассивные системы.

Активные системы способны противостоять воздействиям среды (противника, конкурента и т.д.) и сами могут воздействовать на нее. У пассивных систем это свойство отсутствует.

По характеру поведения все системы подразделяются на системы с управлением и без управления.

Класс систем с управленцем образуют системы, в которых реализуется процесс целеполагания и целеосуществления. Примером системы без управления может служить Солнечная система, в которой траектории движения планет определяются законами механики.

В зависимости от степени участия человека в реализации управляющих воздействий системы подразделяются на технические, человеко-машинные, организационные.

К техническим относятся системы, которые функционируют без участия человека. Как правило, ими являются системы автоматического управления (регулирования), представляющие собой комплексы устройств для автоматического изменения, например, координат объекта управления, с целью поддержания желаемого режима его работы. Такие системы реализуют процесс технологического управления. Они могут быть как адаптивными, т.е. приспосабливающимися с изменению внешних и внутренних условий в процессе работы путем изменения своих параметров или структуры для достижения требуемого качества функционирования, так и неадаптивными.

Примерами человеко-машинных (эргатическux) систем могут служить автоматизированные системы управления различного назначения. Их характерной особенностью является то, что человека сопряжен с техническими устройствами, причем окончательное решение принимает человек (ЛПР), а средства автоматизации лишь помогают ему в обосновании правильности этого решения.

К организационным системам относятся социальные системы-группы, коллективы людей, общество в целом.

Процессы, происходящие в сложных системах, как правило, сразу не удаётся представить в виде математических соотношений или хотя бы алгоритмов. Поэтому для того чтобы хоть как-то охарактеризовать стабильную ситуацию или её изменения, используются специальные термины, заимствованные теорией систем из теории автоматического регулирования, биологии, философии.

Обучающийся должен знать используемые сейчас основные понятия и термины.

Состояние системы– совокупность состояний её n элементов и связей между ними (двусторонних связей не может быть более чем n (n – 1) в системе с n элементами). Если связи в системе неизменны, то её состояние можно представить в виде уравнения

Z = (Z1, Z2, Z3, …, Zk, …, Zm). . (10.5)

Задание конкретной системы сводится к заданию её состояний, начиная с зарождения и кончая гибелью или переходом в другую систему.

Реальная система не может находиться в любом состоянии. Всегда есть известные ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет).

Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть Zсд (подпространство) – множество допустимых состояний системы.

Поведение.Если система способна переходить из одного состояния в другое (например, s1 → s2 → s3 → . ), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер, алгоритм.

С учётом введённых обозначений поведение можно представить как функцию

s(t) = [s(t – 1), y(t), x(t)].

Равновесие.Понятие равновесие определяют как способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять своё состояние сколь угодно долго. Это состояние называют состоянием равновесия.

Устойчивость.Под устойчивостью понимают способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (а в системах с активными элементами – внутренних) возмущавших воздействий. Эта способность обычно присуща системам при постоянном у только тогда, когда отклонения не превышают некоторого предела.

Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия. Возврат в это состояние может сопровождаться колебательным процессом. Соответственно в сложных системах возможны неустойчивые состояния равновесия.

Развитие.Это понятие помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Исследование процесса развития, соотношения развития и устойчивости, изучение механизмов, лежащих в их основе, – наиболее сложные задачи теории систем. Ниже будет показано, что целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.

Обобщённым входом (X) называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора

X = (x1, x2, x3, …, xk, …, xr).

Выходы системы yi – это различные точки приложения влияния (воздействия) системы на внешнюю среду (рис. 10.4). Выход системы представляет собой результат преобразования информации, вещества и энергии.

Обратная связь – то, что соединяет выход со входом системы и используется для контроля за изменением выхода (рис.10.4).




Ограничения системы– то, что определяет условия её функционирования (реализацию процесса). Ограничения бывают внутренними и внешними. Одним из внешних ограничений является цель функционирования системы. Примером внутренних ограничений могут быть ресурсы, обеспечивающие реализацию того или иного процесса.

Движение системы– это процесс последовательного изменения её состояния.

Вынужденное движение системы – изменение её состояния под влиянием внешней среды. Примером вынужденного движения может служить перемещение ресурсов по приказу (поступившему в систему извне).

Рассмотрим зависимости состояний системы от функций (состояний) входов системы, её состояний (переходов) и выходов.


Рисунок 10.4. – Схема системы с единичной обратной связью

Состояние системы Z(t) в любой момент времени t зависит от функции входов X(t)

где Fc – функция состояния системы (переходная функция).

Состояние системы Z(t) в любой момент времени t также зависит от предшествующих её состояний в моменты Z(t – 1), Z(t – 2), …, т.е. от функций её состояний (переходов)

Z(t) = Fc [X(t), Z(t – 1), Z(t – 2), . ], (10.6)

где Fc– функция состояния (переходов) системы.

Связь между функцией входа X(t) и функцией выхода Y(t) системы, без учёта предыдущих состояний, можно представить в виде

где Fв – функция выходов системы.

Система с такой функцией выходов называется статической.

Если же система зависит не только от функций входов X(t), но и от функций состояний (переходов) Z(t – 1), Z(t – 2), . то

Y(t) = Fв [X(t), Z(t), Z(t – 1), Z(t – 2), . (Z –u)]. (10.7)

Системы с такой функцией выходов называются динамическими (или системами с поведением).

В зависимости от математических свойств функций входов и выходов систем различают системы дискретные и непрерывные.

Для непрерывных систем выражения (10.6) и (10.7) выглядят как:

dZ(t) / dt = Fc [X (t), Z(t)]; (10.8)

Уравнение (10.8) определяет состояние системы и называется уравнением переменных состояний системы.

Уравнение (10.9) определяет наблюдаемый нами выход системы и называется уравнением наблюдений.

Функции Fc (функция состояний системы) и Fв (функция выходов) учитывают не только текущее состояние Z(t), но и предыдущие состояния Z(t – 1), Z(t – 2), …, Z(t – u) входов системы.

Процессы системы– это совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся:

– переходный процесс системы.

Выходной процесс– множество выходных воздействий на окружающую среду, которые изменяются с течением времени. Воздействие системы на окружающую среду определяется выходными величинами (реакциями). Выходные величины изменяются с течением времени, образуя выходной процесс, представляющий функцию Y[X] = γ(X).

Переходный процесс системы (процесс системы)– множество преобразований начального состояния и входных воздействий в выходные величины, которые изменяются с течением времени по определённым правилам.

Процессы, происходящие в сложных системах, как правило, сразу не удаётся представить в виде математических соотношений или хотя бы алгоритмов. Поэтому для того чтобы хоть как-то охарактеризовать стабильную ситуацию или её изменения, используются специальные термины, заимствованные теорией систем из теории автоматического регулирования, биологии, философии.

Обучающийся должен знать используемые сейчас основные понятия и термины.

Состояние системы– совокупность состояний её n элементов и связей между ними (двусторонних связей не может быть более чем n (n – 1) в системе с n элементами). Если связи в системе неизменны, то её состояние можно представить в виде уравнения

Z = (Z1, Z2, Z3, …, Zk, …, Zm). . (10.5)

Задание конкретной системы сводится к заданию её состояний, начиная с зарождения и кончая гибелью или переходом в другую систему.

Реальная система не может находиться в любом состоянии. Всегда есть известные ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет).

Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть Zсд (подпространство) – множество допустимых состояний системы.

Поведение.Если система способна переходить из одного состояния в другое (например, s1 → s2 → s3 → . ), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер, алгоритм.

С учётом введённых обозначений поведение можно представить как функцию

s(t) = [s(t – 1), y(t), x(t)].

Равновесие.Понятие равновесие определяют как способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять своё состояние сколь угодно долго. Это состояние называют состоянием равновесия.

Устойчивость.Под устойчивостью понимают способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (а в системах с активными элементами – внутренних) возмущавших воздействий. Эта способность обычно присуща системам при постоянном у только тогда, когда отклонения не превышают некоторого предела.

Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия. Возврат в это состояние может сопровождаться колебательным процессом. Соответственно в сложных системах возможны неустойчивые состояния равновесия.

Развитие.Это понятие помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Исследование процесса развития, соотношения развития и устойчивости, изучение механизмов, лежащих в их основе, – наиболее сложные задачи теории систем. Ниже будет показано, что целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.

Обобщённым входом (X) называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора

X = (x1, x2, x3, …, xk, …, xr).

Выходы системы yi – это различные точки приложения влияния (воздействия) системы на внешнюю среду (рис. 10.4). Выход системы представляет собой результат преобразования информации, вещества и энергии.

Обратная связь – то, что соединяет выход со входом системы и используется для контроля за изменением выхода (рис.10.4).

Ограничения системы– то, что определяет условия её функционирования (реализацию процесса). Ограничения бывают внутренними и внешними. Одним из внешних ограничений является цель функционирования системы. Примером внутренних ограничений могут быть ресурсы, обеспечивающие реализацию того или иного процесса.

Движение системы– это процесс последовательного изменения её состояния.

Вынужденное движение системы – изменение её состояния под влиянием внешней среды. Примером вынужденного движения может служить перемещение ресурсов по приказу (поступившему в систему извне).

Рассмотрим зависимости состояний системы от функций (состояний) входов системы, её состояний (переходов) и выходов.


Рисунок 10.4. – Схема системы с единичной обратной связью

Состояние системы Z(t) в любой момент времени t зависит от функции входов X(t)

где Fc – функция состояния системы (переходная функция).

Состояние системы Z(t) в любой момент времени t также зависит от предшествующих её состояний в моменты Z(t – 1), Z(t – 2), …, т.е. от функций её состояний (переходов)

Z(t) = Fc [X(t), Z(t – 1), Z(t – 2), . ], (10.6)

где Fc– функция состояния (переходов) системы.

Связь между функцией входа X(t) и функцией выхода Y(t) системы, без учёта предыдущих состояний, можно представить в виде

где Fв – функция выходов системы.

Система с такой функцией выходов называется статической.

Если же система зависит не только от функций входов X(t), но и от функций состояний (переходов) Z(t – 1), Z(t – 2), . то

Y(t) = Fв [X(t), Z(t), Z(t – 1), Z(t – 2), . (Z –u)]. (10.7)

Системы с такой функцией выходов называются динамическими (или системами с поведением).

В зависимости от математических свойств функций входов и выходов систем различают системы дискретные и непрерывные.

Для непрерывных систем выражения (10.6) и (10.7) выглядят как:

dZ(t) / dt = Fc [X (t), Z(t)]; (10.8)

Уравнение (10.8) определяет состояние системы и называется уравнением переменных состояний системы.

Уравнение (10.9) определяет наблюдаемый нами выход системы и называется уравнением наблюдений.

Функции Fc (функция состояний системы) и Fв (функция выходов) учитывают не только текущее состояние Z(t), но и предыдущие состояния Z(t – 1), Z(t – 2), …, Z(t – u) входов системы.

Процессы системы– это совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся:

– переходный процесс системы.

Выходной процесс– множество выходных воздействий на окружающую среду, которые изменяются с течением времени. Воздействие системы на окружающую среду определяется выходными величинами (реакциями). Выходные величины изменяются с течением времени, образуя выходной процесс, представляющий функцию Y[X] = γ(X).

Переходный процесс системы (процесс системы)– множество преобразований начального состояния и входных воздействий в выходные величины, которые изменяются с течением времени по определённым правилам.


Понятия, характеризующие функционирование и развитие систем.

Изменения и преобразования, происходящие в сложных системах, как правило, сразу не удается представить в виде математических соотношений или хотя бы алгоритмов. Поэтому для того, чтобы хоть как-то охарактеризовать стабильную ситуацию или ее изменения, используются специальные термины, заимствованные теорией систем из теории управления. Рассмотрим основные из этих терминов.

Поведение. Если система способна переходить из одного состояния в другое (например, с1 → с2 → с3, то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер, алгоритм.

Равновесие. Понятие равновесие определяют как способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое поведение сколь угодно долго.

Устойчивость. Под устойчивостью понимают способность системы возвращаться в состояние равновесие после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий.

Развитие. Это понятие помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Исследование процесса развития, соотношения развития и устойчивости, изучение механизмов, лежащих в их основе, – наиболее сложные задачи теории систем. Целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.

Обобщённым входом (X) называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора

X = (x1, x2, x3, …, xk, …, xr).

Выходы системы yi – это различные точки приложения влияния (воздействия) системы на внешнюю среду (рис. 2.2).

Выход системы представляет собой результат преобразования информации, вещества и энергии.

Обратная связь – то, что соединяет выход со входом системы и используется для контроля за изменением выхода (рис. 2.2).

Рис. 2.2. Схема системы с единичной обратной связью

Ограничения системы – то, что определяет условия её функционирования (реализацию процесса). Ограничения бывают внутренними и внешними. Одним из внешних ограничений является цель функционирования системы. Примером внутренних ограничений могут быть ресурсы, обеспечивающие реализацию того или иного процесса.

Движение системы – это процесс последовательного изменения её состояния.

Вынужденное движение системы – изменение её состояния под влиянием внешней среды. Примером вынужденного движения может служить перемещение ресурсов по приказу (поступившему в систему извне).

Рассмотрим зависимости состояний системы от функций (состояний) входов системы, её состояний (переходов) и выходов.

Состояние системы Z(t) в любой момент времени t зависит от функции входов X(t)

где Fc – функция состояния системы (переходная функция).

Состояние системы Z(t) в любой момент времени t также зависит от предшествующих её состояний в моменты Z(t – 1), Z(t – 2), …, т.е. от функций её состояний (переходов)

Z(t) = Fc [X(t), Z(t – 1), Z(t – 2). ], (2.1)

где Fc – функция состояния (переходов) системы.

Связь между функцией входа X(t) и функцией выхода Y(t) системы, без учёта предыдущих состояний, можно представить в виде

где Fв – функция выходов системы.

Система с такой функцией выходов называется статической.

Если же система зависит не только от функций входов X(t), но и от функций состояний (переходов) Z(t – 1), Z(t – 2), . то

Y(t) = Fв [X(t), Z(t), Z(t – 1), Z(t – 2). (Z – u)]. (2.2)

Системы с такой функцией выходов называются динамическими (или системами с поведением).

В зависимости от математических свойств функций входов и выходов систем различают системы дискретные и непрерывные.

Для непрерывных систем выражения (2.1) и (2.2) выглядят как:

Уравнение (2.3) определяет состояние системы и называется уравнением переменных состояний системы.

Уравнение (2.4) определяет наблюдаемый нами выход системы и называется уравнением наблюдений.

Функции Fc (функция состояний системы) и Fв (функция выходов) учитывают не только текущее состояние Z(t), но и предыдущие состояния Z(t – 1), Z(t – 2), …, Z(t – u) входов системы.

Процессы системы – это совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся: входной процесс; выходной процесс; переходный процесс системы.

Выходной процесс – множество выходных воздействий на окружающую среду, которые изменяются с течением времени. Воздействие системы на окружающую среду определяется выходными величинами (реакциями). Выходные величины изменяются с течением времени, образуя выходной процесс, представляющий функцию Y[X] = γ(X).

Переходный процесс системы – множество преобразований начального состояния и входных воздействий в выходные величины, которые изменяются с течением времени по определённым правилам.

2. Подходы к исследованию систем

Важным для системного подхода является определение структуры системы-совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т.е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.

При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры – это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.

Менее общим является функциональное описание, когда рассматриваются отдельные функции, т.е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы S с внешней средой E, то свойства могут быть выражены в виде либо некоторых характеристик элементов Si(j) и подсистем Si системы, либо системы S в целом.

При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.

Проявление функций системы во времени S(t), т.е. функционирование системы, означает переход системы из одного состояния в другое, т.е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

Следует отметить, что создаваемая модель M с точки зрения системного подхода также является системой, т.е. S′ = S′(M), и может рассматриваться по отношению к внешней среде E. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвязей как внутри самой модели M, так и взаимодействия ее с внешней средой E в значительной степени определяется тем, на каком уровне находится наблюдатель.

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели M на основе классического (индуктивного) подхода представлен на рис. 2.3, а. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т.е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента К будущей модели. Совокупность компонент объединяется в модель M.

Таким образом, разработка модели M на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свой собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) требует образуется путем суммирования отдельных ее компонент и не учитывается возникновение системного эффекта.

Рис. 2.3. Процесс синтеза модели на основе классического (а)
и системного (б) подхода

С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т.е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач. но и создавать систему, являющуюся составной частью метасистемы. Например, если ставится задача проектирования Автоматизхированной Системы Упраывления (АСУ) предприятием, то с позиции системного подхода нельзя забывать о том, что эта система является составной частью АСУ объединением.

Системный подход получил применение в системотехнике в связи с необходимостью исследования реальных систем, когда оказалась
недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды E. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.

Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы S и построения модели M. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного-формулировки цели функционирования. Процесс синтеза модели M на базе системного подхода условно представлен на рис. 2.3, б. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования к модели Т системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элементы Э и осуществляется наиболее сложный этап синтеза – выбор В составляющих системы, для чего используются специальные критерии выбора КВ.

Заключение. Изучены свойства системы: состояние и поведение системы; равновесие и устойчивость системы; движение системы; процессы системы. Рассмотрены подходы к исследованию систем. Описан структурный подход и функциональный подход к разработке математических моделей системы.

Читайте также: