Как из чугуна получают сталь кратко

Обновлено: 04.07.2024

Характеристики железоуглеродистых сплавов в конструкциях зависят от формы сечения, пропорций основных химических элементов, цикла изготовления и сборки.

В рецептуру легированных сталей входят добавки, которые улучшают механические свойства базового состава.

Как получают стальной прокат из чугуна?

Металлургические предприятия выпускают полуфабрикаты, которые отличаются составом, формой, размерами. Сначала минеральное сырье плавят в печах. Выбор технологии зависит от дальнейшего использования:

  • Железорудные окатыши применяют в доменных печах для двухэтапной выплавки. После первой стадии получают литейный и передельный чугун.
  • Из ферросплавов производят легированные металлы.
  • Стальные слитки применяют в двух направлениях. Первая категория — для изготовления сортового проката: труб, листов, кругов. Из продукции второй группы производят изделия специального назначения: крупные роторы, турбины, диски, валы.

Передельный чугун

Состав передельного чугуна включает элементы:

  • углерода: 4,0-4,4%;
  • серы: 0,03…0,07%;
  • фосфора: 0,15…0,3%;
  • марганца: 0,25…1,5%;
  • кремния: 0,6-0,8%.

При плавлении чугуна в печах количества углерода и примесей уменьшается. Вредные вещества окисляются, изменяют физическое состояние, испаряются. Часть примесей образуют твердые соединения: золу и шлак.

Чтобы ускорить выплавку и снизить расходы, к массе добавляют скрап. По сравнению с чугуном, в стальном ломе углерода меньше. Добавка улучшает состав слитка.

Этапы производства стали из чугуна

Для производства сталей применяют оборудование:

  • мартеновские печи;
  • электроплавильные установки;
  • кислородные конвертеры.

Когда слиток готов, полуфабрикат обрабатывают на прокатном стане. Направление деформирования — вдоль, поперек, комбинированным (продольно-винтовым) способом. Цель прокатывания — придать сплаву нужную форму. Заготовку пропускают между расположенными на одной оси валками.

В зависимости от требований к точности, выполняют деформирование по стандартному циклу или назначают дополнительную операцию Соответственно, используют валки с гладкой поверхностью или инструмент для калибровки.

После стандартной обработки получают продукцию массового спроса — сортовой или фасонный прокат. Изделия применяют для обычных конструкций и ответственных сооружений. Калиброванный прокат стоит дороже и выдерживает повышенные нагрузки.

Методы взятия образцов - определение основных химических элементов

Чаще для определения химического состава сплава применяют инструментальные методы.

Разновидности технологий для определения основных химических элементов:

  • спектральный (спектрометрический);
  • эмиссионный химический;
  • рентгенофлуоресцентный;
  • металлографический;
  • рентгенографический (РФА).

Контроль образцов из чугуна и стали

Состав материала проверяют при выплавке, дальнейшей обработке, эксплуатации, капитальном ремонте. Чтобы определить массовую долю химических элементов, берут пробу. Требования к отбору образцов для спектрального анализа перечислены в ГОСТ 7565-81.

Стандарт определяет время взятия пробы стали. Критерий зависит от технологии производства, места и оборудования:

  • после разлива ¾, ½ или ¼ ковша;
  • из тигля, если металл плавят в индукционной печи;
  • до начала разлива, когда используют автоматические линии.

Для испытаний применяют оборудование: стилоскопы, лазерные, рентгенофлуоресцентные и оптико-эмиссионные спектрометры.

Согласно стандарту, масса стали для проведения химического анализа составляет 0,3-2,0 кг. Расплав охлаждают и маркируют: указывают номер ковша, плавки и пробы.

Образец готовят к испытаниям:

  • удаляют смазку;
  • получают стружку строганием, сверлением, фрезерованием;
  • охлаждают массу в дистиллированной воде, чтобы предотвратить появление цветов побежалости.

Если размеры стружки менее 0,4 мм, металл помещают в закрытую емкость.

Для некоторых видов испытаний используют бруски. Расплавленный сплав выливают в форму и дают застыть. Чтобы провести спектральный анализ, у бруска отрезают нижнюю часть толщиной 1,5-2,0 мм.

Для определения основных химических элементов в готовом прокате используют образец, отобранный при выплавке. Максимальное время хранения пробы — не менее трех месяцев. Если срок вышел, из партии проката берут образец. Способы подготовки пробы такие, как при производстве стали.

Что такое спектрографический анализ?

Требования к проверке перечислены в ГОСТ 27809-95. Спектрографический метод — комбинированный (количественный и качественный) способ получения результатов.

В исследовании используют принцип разложения энергии по линиям спектра. В состоянии активности каждый элемент таблицы Менделеева испускает лучи света. Длина волны (цвет, насыщенность) зависит от состава сплава. Энергию пропускают через призму, которая расщепляет световой поток. Массовую долю элемента определяют по интенсивности излучения.

Чтобы возбудить атомы стали, образец подвергают действию электрической дуги. Испытания проводят в нормальных условиях или при пониженном давлении атмосферы. Прибор фиксирует спектр на фотопластинке.

Для определения процентного соотношения веществ сравнивают информацию об исследуемом и эталонном образце. Чем больше почернение спектральных аналитических линий, тем выше плотность вхождения химического элемента.

Вместо эталонного образца используют градуированный чертеж. Прибор сравнивает результаты на фотопластинке и контрольном изображении. По разнице показаний определяют массовую долю железа, марганца, серы и других веществ.

Оборудование для проведения испытаний:

  • генераторы (высоковольтного тока и электрической дуги);
  • микрофотометры;
  • спектропроекторы;
  • образцы (СОП, ГСО, ОСО);
  • фотопластинки, химреактивы, другие устройства.

В стандарте о методе проведения анализа указана таблицы с перечислением названий основных химических элементов, длиной спектральных волн (отдельно — при действии искры и дуги), интервалами массовых долей веществ.

Рентгенографические методы проверки целостности трубы

Пустотелый прокат используют для транспортировки жидкостей и газов. От целостности стенок зависит расходование энергоресурсов, чистота окружающей среды, безопасность людей.

Рентгенографический анализ относят к неразрушающим методам проверки. Принцип действия основан на проникновении лучей через стенки трубы. О состоянии объекта судят по изображению на рентгенографической пленке. Если структура нарушена, лучи легко проходят через стенки. Чтобы определить место с дефектом, на снимке находят светлые участки.

Все требования к неразрушающим способам контроля сварных конструкций перечислены в ГОСТ 23055-78. Номер инструкции по проведению исследования рентгенографическим способом — РДИ 38.18.020-95.

Это основные способы проверки стальных изделий после выплавке и во время эксплуатации.

Ключевые слова конспекта: производство чугуна, производство стали, железная руда, чугун, сталь, руда, кокс, силикат кальция, пирит, доменная печь.

ПРОИЗВОДСТВО ЧУГУНА. ДОМЕННАЯ ПЕЧЬ

По объёму производства и потребления железо является важнейшим металлом. Обычно железо используется в виде сплавов. Отрасль промышленности, производящая железо и его сплавы, – чёрная металлургия.

Источником получения железа является железная руда. В руде основными компонентами являются соединения железа:

  • Fe3O4 – магнетит (магнитный железняк),
  • Fe2O3 – гематит (красный железняк),
  • Fe2O3nH2O – лимонит (бурый железняк),
  • FeS2 – пирит (железный колчедан, серный колчедан).

Пирит сначала обжигают (в ходе производства серной кислоты), а огарок (Fe2O3) используют в производстве чугуна.

Продуктами производства являются чугун и сталь.

Чугун – сплав железа с углеродом, в котором массовая доля углерода составляет более 2%, а также имеются примеси кремния, фосфора, серы и марганца.

Производство чугуна осуществляют в доменных печах (см. рис). Сырьём для производства являются железная руда, кокс, известняк и горячий воздух.


Руда последовательно претерпевает превращения:

В руде присутствует также пустая порода, которую образует главным образом кремнезём – SiO2. Это тугоплавкое вещество. Для превращения его в легкоплавкие соединения к руде добавляется флюс. Обычно это известняк. При взаимодействии его с кремнезёмом (SiO2) образуется силикат кальция:

СаСO3 + SiO2 = CaSiO3 + CO2↑ (800 °С)

Образующийся силикат легко отделяется в виде шлака.

При восстановлении руды железо получается в твёрдом состоянии. Постепенно оно опускается в более горячую часть печи – распар – и растворяет в себе углерод. Образуется чугун. Последний плавится и стекает в нижнюю часть домны, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки периодически выпускают через особые отверстия.

Когда металлическое железо выделяется в жидком состоянии, в нём сравнительно хорошо растворяется углерод. При кристаллизации такого раствора образуется чугун – сплав железа с углеродом. Он обладает высокой хрупкостью из-за большого содержания в нём карбида железа Fe3C (цементита), который образуется в результате побочных реакций:

3Fe + С = Fe3C
3Fe + 2СО = Fe3C + СO2

В чугуне содержатся примеси фосфора, серы. Сера ухудшает текучесть чугуна и вызывает красноломкость стали – хрупкость при нагревании до температуры красного каления. Фосфор вызывает хладноломкость стали – хрупкость при обычной температуре.

ПРОИЗВОДСТВО СТАЛИ

Сталь – сплав железа с углеродом, в котором массовая доля углерода составляет менее 2%.

Сущность получения стали из чугуна заключается в уменьшении содержания углерода в металле и возможно более полном удалении примесей – серы и фосфора, а также в доведении содержания кремния, марганца и других элементов до требуемых пределов.

Существует несколько способов переработки чугуна в сталь : мартеновский, бессемеровский и томасовский. Они различаются методами окисления.

В бессемеровском и томасовском способах окисление осуществляется кислородом воздуха, продуваемого через расплавленный металл. Во всех процессах углерод, содержащийся в металле, окисляется до СО и СO2, удаляемых из реакционной зоны. Кремний Si, марганец Мn, хром Сг и другие металлы, окисляясь, переходят в шлак в виде SiO2, МnО и т. д.

Механизм процесса окисления может быть представлен следующим образом. В первую очередь окисляется часть железа. Часть образующихся оксидов растворяется в металле и взаимодействует с примесями:

С + FeO ⇆ Fe + СО
Si + 2FeO ⇆ 2Fe + SiO2
2P + 5FeO ⇆ 5Fe + P2O5

Для максимального удаления примесей серы и фосфора необходимо, чтобы в процессе передела чугуна получались основные шлаки; это достигается путём добавления известняка или извести. Сера, содержащаяся в чугуне в виде FeS, реагирует с оксидом кальция СаО:

FeS + СаО = CaS + FeO

Образующийся сульфид кальция переходит в шлак. Образовавшийся P2O5 также взаимодействует с известью, образуя фосфат кальция, переходящий в шлак:

3СаО + P2O5 = Са3(РO4)2

Бессемеровский и томасовский способы осуществляют в конвертерах. Конвертеры – аппараты грушевидной формы, изготовленные из специальной котельной стали (кожух) и футерованные изнутри огнеупорными материалами.

Сталь получают из чугуна путем удаления из него части угле­рода и примесей. Существуют три основных способа производства стали: конвертерный, мартеновский и электроплавильный.

Конвертерный основан на продувке расплавленного чугуна в больших грушевидных сосудах-конвертерах сжатым воздухом. Кислород воздуха окисляет примеси, переводя их в шлак; углерод выгорает. При малом содержании в чугуне фосфора конвертеры фу­теруют кислыми огнеупорами, например динасом, при повышен­ном — основными, периклазовыми. Соответственно выплавляемую в них сталь по традиции называют бессемеровской и томасовской. Конвертерный способ отличается высокой производительностью, обусловившей его широкое распространение. К недостаткам его от­носятся повышенный угар металла, загрязнение шлаком и наличие пузырьков воздуха, ухудшающих качество стали. Применение вме­сто воздуха кислородного дутья в сочетании с углекислым газом и водяным паром значительно улучшает качество конвертерной стали.

Мартеновский способ осуществляется в специальных печах, в которых чугун сплавляется вместе с железной рудой и металлоло­мом (скрапом). Выгорание примесей происходит за счет кислорода воздуха, поступающего в печь вместе с горючими газами и железной рудой в составе оксидов. Состав стали хорошо поддается регулиро­ванию, что позволяет получать в мартеновских печах высококачест­венные стали для ответственных конструкций.

Электроплавление является наиболее совершенным спосо­бом получения высококачественных сталей с заданными свойствами, но требует повышенного расхода электроэнергии. По способу ее подведения электропечи подразделяются на дуговые и индукцион­ные. Наибольшее применение в металлургии имеют дуговые печи. В электропечах выплавляют специальные виды сталей — средне - и высоколегированные, инструментальные, жаропрочные, магнитные и другие.

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ. Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

Производство стали

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства. Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки. Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

Выплавка стали в электропечи

Выплавка стали в электропечи

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

Схема мартеновской печи

Схема мартеновской печи

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

  1. Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
  2. Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
  3. На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

  1. Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
  2. Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
  3. Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
  4. При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
  5. В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
  6. На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
  7. Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.

Кислородно-конверторный способ

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей. Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью. Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Читайте также: