Как и для чего строят временные диаграммы токов и напряжений в схеме выпрямителя кратко

Обновлено: 03.07.2024

Выпрямитель. Казалось бы, что может быть проще? Основные схемы выпрямителей (без умножения напряжения) известны давно и во всех подробностях.

Схемы выпрямления могут использоваться не только с трансформатором, но и без трансформатора (кроме схемы со средней точкой).

Данная статья носит по большей части описательный и теоретический характер . И рассчитана на начинающих любителей электроники и тех, кто не имеет профильного образования, но хочет получше узнать о процессах происходящих в выпрямителе при различных условиях работы . Профессионалам и студентам радиотехнических и электротехнических специальностей ВУЗов она будет не интересна . Практические методики расчета выпрямителей я приведу в следующей статье , которая будет сугубо практической.

Сначала рассмотрим, как эти схемы выпрямителей работают на активную нагрузку. Рассмотрение будет довльно кратким, так это, действительно хорошо известно. Затем рассмотрю работу выпрямителя (мостовую схему) на активно-индуктивную и активно-емкостную нагрузки. Это соответствует двум способам сглаживания, уменьшения пульсаций, выпрямленного напряжения. Не обойду стороной и влияние сопротивления источника на работу выпрямителя.

Но сначала напомню пару общих моментов. Коэффициент пульсаций Кп на выходе выпрямителя определяется как отношение амплитуда первой (основной) гармоники U1 к постоянной составляющей выпрямленного напряжения

Постоянная составляющая U0 выпрямленного напряжения представляет собой среднее значение выпрямленного напряжения за период Т

Все временные диаграммы в статье, для упрощения, получены на симуляторе TINA версии 9.3.200.277 SF-TI, а не сняты осциллографом с реальных схем.

Однополупериодный выпрямитель

В течении положительной полуволны входного переменного напряжения диод открыт и напряжение на нагрузке равно по величине входному напряжению, за вычетом падения напряжения на диоде, и совпадает с ним по форме. В течении обратной полуволны диод закрыт и напряжение на нагрузке можно считать нулевым.

На этой иллюстрации входное напряжение показано фиолетовом цветом, его амплитуда 10 В, а частота 50 Гц. Выпрямленное напряжение показано синим цветом. Хорошо видно, что амплитуда выпрямленного напряжения меньше, чем входного. Однако, здесь не видно одной тонкости. Диод открыт только когда к нему приложено достаточное напряжение (разное для Si и Ge). Я увеличил этот момент, что бы было видно. Линейный участок на графике выпрямленного напряжения, при приближении к нулевому уровню, не ошибка моделирования. Он отражает процесс, в данном случае, закрывания диода.

Постоянная составляющая выпрямленного напряжения, без учета падения напряжения на диоде

Обратите внимание, здесь Uвх это амплитудное напряжение, а не действующее . Интегрирование выполняется на интервале 0-π, так как выходное напряжение отлично от 0 только в течении половины периода.

Коэффициент пульсаций Kп=1.57 . Вывод амплитуды первой гармоники выпрямленного напряжения я оставлю за скобками, так как это уже упражнение в математике и к теме статьи отношения не имеет.

Обратите внимание, что к диоду в закрытом состоянии прикладывается полное амплитудное напряжение. Например, для привычного действующего напряжения 220 В бытовой сети переменного тока амплитудное составит 310 В.

Кроме больших пульсаций выпрямленного напряжения однополупериодная схема обладает еще одним недостатком - она создает подмагничивание сердечника трансформатора (если он используется) постоянным током, так как ток в обмотке протекает только в одном направлении. И это надо учитывать при расчете трансформатора.

Двухполупериодный выпрямитель со средней точкой

Фактически, является объединением двух однополупериодных выпрямителей, входной сигнал которых сдвинут на половину периода за счет использования вторичной обмотки трансформатора с отводом от средней точки. Диоды в этой схеме открываются поочередно, каждый в свою половину периода.

Параметры входного напряжения и цвета кривых точно такие же, как и для однополупериодного выпрямителя. Хорошо видно, частота пульсаций выпрямленного напряжения равна удвоенной частоте выходного переменного напряжения. Видно, что амплитуда выпрямленного напряжения меньше амплитуды входного из-за падения напряжения на диодах, как и для однополупериодного выпрямителя. Я не буду приводить увеличенного участка диаграммы, что бы показать моменты открывания и закрывания диодов. Тут все в точности, как и в однополупериодном выпрямителе.

Постоянная составляющая выпрямленного напряжения для двухполупериодной схемы, без учета падения напряжения на диодах.

Обратите внимание, здесь Uвх это амплитудное напряжение каждой из половин вторичной обмотки трансформатора . Интегрирование выполняется на интервале 0-π, так как каждый из диодов открыт только половину периода. Коэффициент пульсаций Кп=0.67 .

Двухполупериодная схема обеспечивает в два раза меньшие пульсации выпрямленного напряжения и исключает подмагничивание сердечника трансформатора постоянным током, но имеет два существенных недостатка. Во первых, в два раза увеличиваются затраты на изготовление вторичной обмотки, да и места она занимает в два раза больше. Во вторых, к закрытому диоду приложено удвоенное амплитудное напряжение.

Мостовой двухполупериодный выпрямитель

Временная диаграмма работы мостового выпрямителя похожа на диаграмму для двухполупериодного со средней точкой. Но в мостовой схеме ток нагрузки протекает через два диода, поэтому амплитуда выпрямленного напряжения меньше. И это хорошо видно на иллюстрации.

Постоянная составляющая выпрямленного напряжения, без учета падения напряжения на диодах, такая же, как для схемы со средней точкой

Обратите внимание, здесь Uвх это амплитудное напряжение каждой из половин вторичной обмотки трансформатора . Коэффициент пульсаций Кп=0.67 .

К закрытым диодам в мостовой схеме приложено полное амплитудное напряжение. Мостовая схема не подмагничивает сердечник трансформатора (если он используется) постоянным током и не требует дополнительных затрат на вторичную обмотку. Но в ней используется в два раза больше диодов, чем в схеме со средней точкой. И потери на диодах в два раза больше.

Работа выпрямителя на активно-индуктивную нагрузку

Работа выпрямителя на активную нагрузку встречается не часто. Давайте сначала посмотрим, что изменится, если нагрузка активно-индуктивная. Например, обмотка реле, или последовательно с активной нагрузкой включен сглаживающий дроссель. Для краткости я буду рассматривать лишь мостовую схему.

Сначала приведу временные диаграммы для напряжений

Здесь коричневым цветом показано напряжение на активной составляющей нагрузки, Rн, а синим напряжение на выходе выпрямителя, то есть, на последовательно включенных Lн и Rн.

А теперь диаграммы токов

Здесь зеленым цветом показан ток в нагрузке (Lн+Rн). А красным ток во вторичной обмотке трансформатора, то есть, входной ток выпрямителя с нагрузкой. Там, где красная линия пропадает, она совпадает с зеленой. На значения токов можно не обращать внимания, но если кому то интересно, то для моделирования выбрано сопротивление нагрузки 10 Ом и индуктивность 20 мГн.

Интересная картина, правда? Почему же так получилось? Во время положительного полупериода входного напряжения открыты диоды VD1 и VD4, а диоды VD2 и VD3 закрыты. Когда полярность входного напряжения меняется диоды VD1 и VD4 закрываются, а VD2 и VD3 открываются. Но при этом ток в нагрузке сохраняет прежнее направление.

Если нагрузка активная, то ток в ней повторяет по форме напряжение, а ток вторичной обмотки, входной ток выпрямителя, имеет синусоидальную форму.

Однако, наличие индуктивности препятствует изменению тока и ток нагрузки будет отставать от напряжения. Кроме того, пульсации тока будут сглаживаться, что видно на графике токов (зеленая линия). Если реактивное сопротивление индуктивности большое, примерно XL=ωпLн>10Rн (ωп частота пульсаций), ток нагрузки можно считать постоянным (пульсации отсутствуют), а следовательно и напряжение на активной составляющей нагрузки постоянно. При этом ток через диоды и ток вторичной обмотки трансформатора принимают практически прямоугольную форму.

При активно-индуктивной нагрузке длительность проводящего состояния диодов равна длительности полупериода входного переменного напряжения.

Если принять потери в индуктивности нулевыми, ток нагрузки идеально сглаженным, то напряжение на активном сопротивлении нагрузки будет равно постоянной составляющей выпрямленного напряжения для двухполупериодной схемы выпрямителя. При этом к закрытым диодам прикладывается полное амплитудное входное напряжение, как и в обычной мостовой схеме.

Таким образом, индуктивность в цепи нагрузки выпрямителя можно использовать для сглаживания пульсаций выпрямленного напряжения. Однако, форма входного тока в таком случае не будет синусоидальной.

Работа выпрямителя на активно-емкостную нагрузку

Это гораздо более часто встречающийся случай. Почти всегда пульсации выпрямленного напряжения сглаживаются подключенным параллельно нагрузке конденсатором

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.


Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическ.

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.


Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax

где: π - константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax

где: π - константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго - положительный):

Трёхфазные выпрямители

- максимальное обратное напряжение диода – Uобр ;

- максимальный ток диода – Imax ;

- прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей предназначены для преобразования переменного - изменяющего полярность напряжения в однополярное - не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителя

Схема однополупериодного выпрямителя

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкой

Двухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка "видит" первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему "видит" половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкой

Двуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем.

Двухполупериодный мостовой выпрямитель

Двухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодов Двухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителя

Альтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителя

Схема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителя

Схема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более "гладкое" (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является "чистое" постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества "импульсов" постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph1W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph1W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph2W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph2W6P.

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph2W12P)

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph2W12P)

Двухполупериодный выпрямитель более распространен, чем однополупериодный, это связано с многочисленными преимуществами такой схемы. Чтобы объяснить, в чем именно заключается преимущество, следует обратиться к теоретическим основам электротехники.

В первую очередь рассмотрим отличие двухполупериодного выпрямителя от однополупериодного, для этого нужно понять принцип работы каждого из них. Примеры схем с осциллограммами дадут наглядное представление о преимуществах и недостатках этих устройств.

Однополупериодный преобразователь

Ниже приведена типичная схема подобного устройства с минимумом элементов.

Простейший преобразователь

Схема: простейший преобразователь

Обозначения:

  • Tr – трансформатор;
  • DV- вентиль (диод);
  • Cf – емкость (играет роль сглаживающего фильтра);
  • Rn – подключенная нагрузка.

Теперь рассмотрим осциллограмму в контрольных точках U1, U2 и Un.

Осциллограмма, снятая в контрольных точках U1, U2 и Un

Осциллограмма, снятая в контрольных точках U1, U2 и Un

Пояснение:

  • в контрольной точке U1 отображается диаграмма снятая на входе устройства;
  • U2 – диаграмма перед емкостным сглаживающим фильтром;
  • Un – осциллограмма на нагрузке.

Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.

Недостатки такой схемы очевидны — это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.

Принцип действия двухполупериодной схемы

Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.

Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом

Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом

Используемые элементы:

  • Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
  • DV1 и DV2 – вентили (диоды);
  • Cf – емкостной фильтр;
  • Rn – сопротивление нагрузки.

Приведем сразу для наглядности осциллограмму в контрольных точках.

Данная схема — это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U2. Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.

Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:

Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.

Пример использования диодного моста

Схема: Пример использования диодного моста

Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.

Видео: Двухполупериодный выпрямительный мост

Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.

Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).

Преобразователь на двуханодном кенотроне 6Ц4П

Схема: преобразователь на двуханодном кенотроне 6Ц4П

Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.

Как организовать двухполярное питание

Сочетая балансную схему и мостовую, можно получить преобразователь, который будет давать на выходе двухполярное питание с общей (нулевой) точкой. Причем, для одного она будет отрицательной, а для другого – положительной. Такие устройства широко применяются в БП для цифровой радиотехнике.

Пример преобразователя с двухполярным выходом

Схема: пример преобразователя с двухполярным выходом

Как реализовать удвоение напряжения

Ниже представлена схема, позволяющая получить на выходе устройства напряжение, вдвое выше исходного.

Схема с удвоением напряжения

Схема с удвоением напряжения

В преобразователе с таким умножителем можно применять трансформаторы с меньшим напряжением вторичной обмотки.

Использование операционных усилителей

Как известно, у диодов вольтамперная характеристика нелинейная, создавая однофазный прецизионный (высокоточный) выпрямитель двухполупериодного типа на микросхеме ОУ, можно существенно снизить погрешность. Помимо этого, имеется возможность создать преобразователь, позволяющий стабилизировать ток на нагрузке. Пример схемы такого устройства показан ниже.

Простой стабилизатор на операционном усилителе

Схема: простой стабилизатор на операционном усилителе

На рисунке изображен простейший стабилизатор тока. Используемый в нем ОУ — это управляемый по напряжению источник. Такая реализация позволяет добиться, чтобы ток на выходе преобразователя не зависел от потери напряжения на нагрузке Rн и диодном мосту D1-D4.

Если требуется стабилизация напряжения, схему преобразователя можно незначительно усложнить, добавив в нее стабилитрон. Он подключается параллельно сглаживающей емкости.

Кратко об управляемых преобразователях

Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.

Простой тиристорный преобразователь (на управляемых вентилях)

Простой тиристорный преобразователь (на управляемых вентилях)

Трехфазный выпрямитель

Мы рассматривали различные реализации однофазных двухполупериодных преобразователей, но подобные устройства используются и для трехфазных источников. Ниже, в качестве примера, показано устройство, созданное по схеме Ларионова.

Пример реализации схемы Ларионова Осциллограмма на выходе схемы Ларионова

Как показывает расположенный выше график, реализация мостовой схемы между парами фаз позволяет получить на выходе незначительные пульсации. Благодаря этому фильтрующую емкость можно существенно снизить, или вообще обойтись без нее.

Проектирование

Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.

Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.

Читайте также: