Как графически изображается магнитное поле кратко

Обновлено: 02.05.2024

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта ( рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник ( рис. 9 ).

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

Магнитное поле графически изображается с помощью силовых линий или линий магнитной индукции. Силовая линия магнитного поля – это линия, касательная к которой в каждой точке поля совпадает с направлением вектора магнитной индукции B.


Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии,

http://annamain.org/images/uploads/!-2015/04-2015/magnit-1.jpg

принято считать северным полюсом, а противоположный конец, в который входят силовые линии,— южным полюсом. Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы. Для магнитного поля


в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий .

В случае проводника с током магнитные линии образуют замкнутые концентрические окружности вокруг проводника. Если

посмотреть на проводник с током и образованное им магнитное поле в разрезе, то мы увидим набор кругов различного диаметра. На рисунке слева изображен как раз проводник с током.

При прохождении электрического тока по проводнику вокруг него образуется магнитное поле. Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34).

Рис. 34. Схемы действия магнитного поля на движущиеся электрические заряды: положительный ион (а) и электрон (б).

Рис. 34. Схемы действия магнитного поля на движущиеся электрические заряды: положительный ион (а) и электрон (б).

Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.



Графическое изображение магнитного поля.

Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки.

Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,— южным полюсом (силовые линии, проходящие внутри магнита, не показаны).

Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б).

Рис. 35. Магнитное поле, созданное постоянным магнитом

Рис. 35. Магнитное поле, созданное постоянным магнитом.

Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).


Рис. 36. Однородное магнитное поле между полюсами постоянного магнита

Рис. 36. Однородное магнитное поле между полюсами постоянного магнита.

Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,— дальше друг от друга. Силовые линии нигде не пересекаются.

Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

Магнитная индукция и магнитный поток.

Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю.

Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

Ф = BS (40)

где S — площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

B = Ф/S (41)

Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф2 будет меньше Ф1.

В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

Рис. 37. Магнитный поток, пронизывающий катушку при перпендиклярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

Магнитная проницаемость.

Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).

В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума.

Абсолютную магнитную проницаемость вакуума называют магнитной постоянной,

μa = 4π*10 -7 Гн/м.

Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости μа какого-либо вещества к магнитной проницаемости вакуума μо называют относительной магнитной проницаемостью:

Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).


Мы переходим к следующему разделу, который будет посвящён электромагнитным явлениям. И на этом уроке мы вспомним, что такое магнитное поле и что является его источником. Рассмотрим графический способ изображения магнитных полей. А также узнаем, чем отличаются однородные и неоднородные магнитные поля.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Магнитное поле и его графическое изображение"

В восьмом классе мы с вами затрагивали тему магнитных полей. Тогда мы говорили о том, что магнитное поле порождается электрическим током. Подобно другим физическим полям, магнитное поле не действует на наши органы чувств. Но реальность его существования проявляется, например, в том, что между проводниками с током возникают силы взаимодействия, которые принято называть магнитными силами.

То, что между электричеством и магнетизмом существует связь, можно показать с помощью опыта, проведённого в тысяча восемьсот двадцатом году датским физиком Хансом Кристианом Эрстедом. Установка состоит из магнитной стрелки, укреплённой на острие, и проводника, соединённого с источником тока. До включения тока стрелка располагается в магнитном поле Земли, ориентируясь с севера на юг. Проводник располагают над магнитной стрелкой, параллельно ей. Замкнув цепь, мы увидим, как магнитная стрелка начнёт поворачиваться, пока не установится перпендикулярно проводнику с током. Разомкнём цепь — стрелка возвращается в своё исходное положение.

Если изменить направление тока в проводнике на противоположное, то стрелка также поворачивается и устанавливается перпендикулярно к проводнику, но уже в противоположном направлении.

Таким образом, можно говорить о том, что магнитная стрелка взаимодействует с проводником с током. Следовательно, вокруг проводника с током существует магнитное поле, которое и совершает работу по повороту магнитной стрелки.

На основании подобных многочисленных опытов было установлено, что во всех случаях при движении заряженных частиц обязательно появляется магнитное поле, независимо от рода проводника или среды, в которой эти частицы движутся.


А теперь давайте вспомним, как объясняется наличие магнитного поля у постоянных магнитов. Итак, согласно гипотезе великого французского физика Андре Мари Ампера, внутри каждой молекулы вещества, подобного железу или его сплавам, циркулируют кольцевые электрические токи.


И если эти элементарные токи ориентированы одинаково, то вокруг них существуют магнитные поля, которые также будут иметь одинаковое направление. В результате эти поля усиливают друг друга, создавая поле внутри и вокруг магнита. Гипотеза Ампера была очень прогрессивна для начала девятнадцатого века, поскольку ещё не было известно ни о строении атома, ни о движении заряженных частиц — электронов вокруг ядра.

Существование магнитного поля вокруг магнита можно обнаружить множеством способов. На практике удобнее использовать мелкие железные опилки, насыпанные на картонный или пластиковый экран.

Изучим магнитное поле прямого проводника с током. Для этого сквозь лист картона пропустим проводник, соединённый с источником тока. Насыплем на картон тонкий слой железных опилок. При включении тока железные опилки под действием магнитного поля переориентируются, показывая картину линий магнитного поля.


Несколько изменим опыт: вместо металлических опилок поставим на лист картона магнитные стрелки. При замыкании электрической цепи стрелки расположатся вдоль линий магнитного поля. Если же изменить направление тока в проводнике, то все стрелки повернутся на 180 о .


Наш опыт позволяет наглядно показать так называемые силовые линии магнитного поля (или просто магнитные линии). В восьмом классе мы говорили о том, что магнитные линии — это воображаемые линии, вдоль которых расположились бы магнитные стрелки, помещённые в магнитное поле.

Исходя из результатов опыта, мы можем утверждать, что линии магнитного поля имеют определённое направление, которое связано с направлением тока в проводнике. В настоящее время принято считать, что направление линий магнитного поля в каждой точке совпадает с направлением, которое указывает северный полюс магнитной стрелки, помещённый в эту точку поля.


Магнитную линию можно провести через любую точку пространства, в которой существует магнитное поле. При этом надо помнить, что она проводится так, чтобы в любой точке этой линии касательная к ней совпала с осью магнитной стрелки, помещённой в эту точку.

Теперь давайте вспомним, как выглядят линии магнитного поля постоянного полосового магнита. Для этого расположим маленькие магнитные стрелки вокруг магнита. Они мгновенно придут в движение и расположатся в строго определённом порядке.


Из курса физики восьмого класса вы уже знаете, что магнитные линии полосового магнита выходят из его северного полюса и входят в южный. При этом они не имеют ни начала ни конца: они либо замкнуты, либо уходят на бесконечность, в чём легко убедиться с помощью железных опилок.


Не трудно заметить, что опилки располагаются в виде цепочек, причём с разной плотностью вокруг магнита. Это говорит о том, что действия, которые оказывает магнит на опилки, в разных точках поля различны. Наиболее сильно это действие проявляется возле полюсов магнита. А чем дальше от полюсов, тем слабее подобное действие, следовательно, тем слабее магнитное поле.

Такое магнитное поле в физике называют неоднородным. Его магнитные линии искривлены, а густота меняется от точки к точке.

Примером неоднородного магнитного поля служит и поле прямого проводника с током.

На рисунке вы видите схематические изображения двух участков таких проводников.


Давайте вспомним, что кружочек в центре обозначает сечение проводника, крестик — что ток направлен от нас за чертёж, а точка — что ток направлен наоборот, из-за чертежа к нам. Эти обозначения именуют правилом стрелы. Точка обозначает острие, летящей в нашу сторону стрелы, а крестик её хвостовое оперение, которое можно было бы увидеть, если бы стрела улетела от нас.

Обратите внимание на то, что магнитные линии прямого тока представляют собой концентрические окружности, центром которых является сам проводник с током. В тех областях пространства, где магнитное поле сильнее, магнитные линии изображаются ближе друг к другу (то есть гуще), и наоборот.

Таким образом, по картине магнитных линий можно судить не только о направлении магнитного поля, но и о его величине.

Что касается однородного магнитного поля, то его есть смысл рассматривать только в некотором приближении. Дело в том, что однородное магнитное поле — это поле, в каждой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

Поскольку линии магнитного поля всегда искривлены, то об однородности поля и говорят только приблизительно. Примером однородного магнитного поля может служить поле внутри полосового магнита вблизи его середины.

Ещё одним примером практически однородного поля является поле, возникающее внутри соленоида, если длина соленоида намного больше его диаметра. Однако вне катушки с током, поле неоднородно и его магнитные линии располагаются примерно также, как и у полосового магнита.


Также видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.


Исходя из результата этого опыта, говорить о том, что линии магнитного поля имеют определённое направление, которое связано с направлением тока в проводнике.

Эта связь может быть выражена с помощью правила буравчика (или правила правого винта). Он заключается в следующем: если вращать ручку буравчика так, чтобы его остриё двигалось по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока.


Направление линий магнитного поля можно определить и иначе, например, с помощью правила правой руки: если обхватить проводник с током ладонью правой руки так, чтобы отставленный большой палец был сонаправлен с током, то согнутые четыре пальца укажут направление линий магнитного поля.


Похожее правило применимо и для определения направления магнитного поля внутри соленоида: если обхватить соленоид ладонью правой руки так, чтобы согнутые четыре пальца указывали направление тока в витках, то отставленный на девяносто градусов большой палец, укажет направление линий магнитного поля внутри соленоида.


И последнее, на что хотелось бы обратить ваше внимание. Для изображения однородного магнитного поля, перпендикулярного плоскости чертежа, пользуются таким приёмом. Если линии магнитного поля направлены от нас за чертёж, то их изображают крестиками.

А если из-за чертежа к нам — то точками. Как и в случае с током, крестик — это как бы видимое нами оперение стрелы, летящей от нас, а точка — это остриё стрелы, летящей к нам.

Читайте также: