Из каких команд составляется линейный вычислительный алгоритм кратко

Обновлено: 04.07.2024

Этапы решения задачи на ЭВМ. Работа по решению любой задачи с использованием компьютера делится на следующие этапы:

1. Постановка задачи.

2. Формализация задачи.

3. Построение алгоритма.

4. Составление программы на языке программирования.

5. Отладка и тестирование программы.

6. Проведение расчетов и анализ полученных результатов.

Часто эту последовательность называют технологической цепочкой решения задачи на ЭВМ. Непосредственно к программированию в этом списке относятся пункты 3, 4, 5.

На этапе постановки задачи должно быть четко сформулировано, что дано и что требуется найти. Здесь очень важно определить полный набор исходных данных, необходимых для получения решения.

Второй этап — формализация задачи. Здесь чаще всего задача переводится на язык математических формул, уравнений, отношений. Если решение требует математического описания какого-то реального объекта, явления или процесса, то формализация равносильна получению соответствующей математической модели.

Третий этап — построение алгоритма. Опытные программисты часто сразу пишут программы на языках, не прибегая к каким-либо специальным способам описания алгоритмов (блок-схемам, псевдокодам). Однако в учебных целях полезно использовать эти средства, а затем переводить полученный алгоритм на язык программирования.

. Дальше следует собственно программирование на определенном языке, в определенной системе программирования. Последний (шестой) этап — это использование уже разработанной программы в практических целях.

Таким образом, программист должен обладать следующими знаниями и навыками:

• уметь строить алгоритмы;

• знать языки программирования;

• уметь работать в соответствующей системе программирования.

Основой программистской грамотности является развитое алгоритмическое мышление.

трактата, из которого европейцы узнали о десятичной позиционной системе счисления и правилах арифметики многозначных чисел. Именно эти правила в то время называли алгоритмами. Сложение, вычитание, умножение столбиком, деление уголком многозначных чисел — вот первые алгоритмы в математике. Правила алгебраических преобразований, способы вычислений корней уравнений также можно отнести к математическим алгоритмам.

В наше время понятие алгоритма трактуется шире.

. В школьном курсе информатики с понятием алгоритма, с методами построения алгоритмов ученики знакомятся на примерах учебных исполнителей: Робота, Черепахи, Чертежника и т.д. Эти исполнители ничего не вычисляют. Они создают рисунки на экране, перемещаются в лабиринтах, перетаскивают предметы с места на место. Таких исполнителей принято называть исполнителями, работающими в обстановке.

Данные и величины. Совокупность величин, с которыми работает компьютер, принято называть данными. По отношению к программе данные делятся на исходные, результаты (окончательные данные) и промежуточные (рис. 1), которые получаются в пр моцессе вычислений.


Например, при решении квадратного уравнения ax2 + bx + с = 0 исходными данными являются коэффициенты а, b, с, результатами — корни уравнения х1, х2, промежуточным данным — дискриминант уравнения D = b2 — 4aс.

У всякой величины имеются три основных свойства: имя, значение и тип. На уровне команд процессора величина идентифицируется при помощи адреса ячейки памяти, в которой она хранится. В алгоритмах и языках программирования величины делятся на константы и переменные

Константа — неизменная величина, и в алгоритме она представляется собственным значением, например: 15, 34.7, k, true и т.д. Переменные величины могут изменять свои значения в ходе выполнения программы и представляются символическими именами — идентификаторами, например: X, S2, codl5. Любая константа, как и переменная, занимает ячейку памяти, а значение этих величин определяется двоичным кодом в этой ячейке.

Теперь о типах величин — типах данных. С понятием типа данных вы уже, возможно, встречались, изучая в курсе информатики базы данных и электронные таблицы. Это понятие является фундаментальным для программирования.

В каждом языке программирования существует своя концепция типов данных, своя система типов. Тем не менее в любой язык входит минимально необходимый набор основных типов данных, к которому относятся: целый, вещественный, логический и символьный типы. С типом величины связаны три ее характеристики: множество допустимых значений, множество допустимых операций, форма внутреннего представления. В табл. 1.1 представлены эти характеристики основных типов данных.



Типы констант определяются по контексту (т. е. по форме записи в тексте), а типы переменных устанавливаются в описаниях переменных.

Есть еще один вариант классификации данных — классификация по структуре. Данные делятся на простые и структурированные. Для простых величин (их еще называют скалярными) справедливо утверждение: одна величина — одно значение, для структурированных: одна величина — множество значений. К структурированным величинам относятся массивы, строки, множества и т.д.

ЭВМ — исполнитель алгоритмов. Как известно, всякий алгоритм (программа) составляется для конкретного исполнителя в рамках его системы команд. О каком же исполнителе идет речь при обсуждении вопроса о программировании для ЭВМ? Ответ очевиден: исполнителем является компьютер. Точнее говоря, исполнителем является комплекс ЭВМ + Система программирования (СП). Программист составляет программу на том языке, на который ориентирована СП. Иногда в литературе такой комплекс называют виртуальной ЭВМ. Например, компьютер с работающей системой программирования на Бэйсике называют Бэйсик-машиной; компьютер с работающей системой программирования на Паскале называют Паскаль-машиной и т.п. Схематически это изображено на рис. 2.


Независимо от того, на каком языке программирования будет написана программа, алгоритм решения любой задачи на ЭВМ может быть составлен из команд:

• обращения к вспомогательному алгоритму;

Для описания алгоритмов в дальнейшем мы будем использовать блок-схемы и учебный алгоритмический язык, применяемый в школьном курсе информатики.

Алгоритмы и величины

Этапы решения задачи на ЭВМ. Работа по решению любой задачи с использованием компьютера делится на следующие этапы:

1. Постановка задачи.

2. Формализация задачи.

3. Построение алгоритма.

4. Составление программы на языке программирования.

5. Отладка и тестирование программы.

6. Проведение расчетов и анализ полученных результатов.

Часто эту последовательность называют технологической цепочкой решения задачи на ЭВМ. Непосредственно к программированию в этом списке относятся пункты 3, 4, 5.

На этапе постановки задачи должно быть четко сформулировано, что дано и что требуется найти. Здесь очень важно определить полный набор исходных данных, необходимых для получения решения.

Второй этап — формализация задачи. Здесь чаще всего задача переводится на язык математических формул, уравнений, отношений. Если решение требует математического описания какого-то реального объекта, явления или процесса, то формализация равносильна получению соответствующей математической модели.

Третий этап — построение алгоритма. Опытные программисты часто сразу пишут программы на языках, не прибегая к каким-либо специальным способам описания алгоритмов (блок-схемам, псевдокодам). Однако в учебных целях полезно использовать эти средства, а затем переводить полученный алгоритм на язык программирования.

. Дальше следует собственно программирование на определенном языке, в определенной системе программирования. Последний (шестой) этап — это использование уже разработанной программы в практических целях.

Таким образом, программист должен обладать следующими знаниями и навыками:

• уметь строить алгоритмы;

• знать языки программирования;

• уметь работать в соответствующей системе программирования.

Основой программистской грамотности является развитое алгоритмическое мышление.

трактата, из которого европейцы узнали о десятичной позиционной системе счисления и правилах арифметики многозначных чисел. Именно эти правила в то время называли алгоритмами. Сложение, вычитание, умножение столбиком, деление уголком многозначных чисел — вот первые алгоритмы в математике. Правила алгебраических преобразований, способы вычислений корней уравнений также можно отнести к математическим алгоритмам.

В наше время понятие алгоритма трактуется шире.

. В школьном курсе информатики с понятием алгоритма, с методами построения алгоритмов ученики знакомятся на примерах учебных исполнителей: Робота, Черепахи, Чертежника и т.д. Эти исполнители ничего не вычисляют. Они создают рисунки на экране, перемещаются в лабиринтах, перетаскивают предметы с места на место. Таких исполнителей принято называть исполнителями, работающими в обстановке.

Данные и величины. Совокупность величин, с которыми работает компьютер, принято называть данными. По отношению к программе данные делятся на исходные, результаты (окончательные данные) и промежуточные (рис. 1), которые получаются в пр моцессе вычислений.


Например, при решении квадратного уравнения ax2 + bx + с = 0 исходными данными являются коэффициенты а, b, с, результатами — корни уравнения х1, х2, промежуточным данным — дискриминант уравнения D = b2 — 4aс.

У всякой величины имеются три основных свойства: имя, значение и тип. На уровне команд процессора величина идентифицируется при помощи адреса ячейки памяти, в которой она хранится. В алгоритмах и языках программирования величины делятся на константы и переменные

Константа — неизменная величина, и в алгоритме она представляется собственным значением, например: 15, 34.7, k, true и т.д. Переменные величины могут изменять свои значения в ходе выполнения программы и представляются символическими именами — идентификаторами, например: X, S2, codl5. Любая константа, как и переменная, занимает ячейку памяти, а значение этих величин определяется двоичным кодом в этой ячейке.

Теперь о типах величин — типах данных. С понятием типа данных вы уже, возможно, встречались, изучая в курсе информатики базы данных и электронные таблицы. Это понятие является фундаментальным для программирования.

В каждом языке программирования существует своя концепция типов данных, своя система типов. Тем не менее в любой язык входит минимально необходимый набор основных типов данных, к которому относятся: целый, вещественный, логический и символьный типы. С типом величины связаны три ее характеристики: множество допустимых значений, множество допустимых операций, форма внутреннего представления. В табл. 1.1 представлены эти характеристики основных типов данных.



Типы констант определяются по контексту (т. е. по форме записи в тексте), а типы переменных устанавливаются в описаниях переменных.

Есть еще один вариант классификации данных — классификация по структуре. Данные делятся на простые и структурированные. Для простых величин (их еще называют скалярными) справедливо утверждение: одна величина — одно значение, для структурированных: одна величина — множество значений. К структурированным величинам относятся массивы, строки, множества и т.д.

ЭВМ — исполнитель алгоритмов. Как известно, всякий алгоритм (программа) составляется для конкретного исполнителя в рамках его системы команд. О каком же исполнителе идет речь при обсуждении вопроса о программировании для ЭВМ? Ответ очевиден: исполнителем является компьютер. Точнее говоря, исполнителем является комплекс ЭВМ + Система программирования (СП). Программист составляет программу на том языке, на который ориентирована СП. Иногда в литературе такой комплекс называют виртуальной ЭВМ. Например, компьютер с работающей системой программирования на Бэйсике называют Бэйсик-машиной; компьютер с работающей системой программирования на Паскале называют Паскаль-машиной и т.п. Схематически это изображено на рис. 2.


Независимо от того, на каком языке программирования будет написана программа, алгоритм решения любой задачи на ЭВМ может быть составлен из команд:

• обращения к вспомогательному алгоритму;

Для описания алгоритмов в дальнейшем мы будем использовать блок-схемы и учебный алгоритмический язык, применяемый в школьном курсе информатики.

Линейные вычислительные алгоритмы

Основным элементарным действием в вычислительных алгоритмах является присваивание значения переменной величине. Если значение константы определено видом ее записи, то переменная величина получает конкретное значение только в результате присваивания. Присваивание может осуществляться двумя способами: с помощью команды присваивания и с помощью команды ввода.

Рассмотрим пример. В школьном учебнике математики правила деления обыкновенных дробей описаны так:

1. Числитель первой дроби умножить на знаменатель второй дроби.

2. Знаменатель первой дроби умножить на числитель второй дроби.

3. Записать дробь, числитель которой есть результат выполнения пункта 1, а знаменатель — результат выполнения пункта 2. В алгебраической форме это выглядит следующим образом:


Построим алгоритм деления дробей для ЭВМ. В этом алгоритме сохраним те же обозначения для переменных, которые использованы в записанной выше формуле. Исходными данными являются целочисленные переменные а, b, с, d. Результатом — также целые величины тип. Блок-схема и текст алгоритма на учебном алгоритмическом языке приведены ниже (в дальнейшем для краткости будем обозначать учебный алгоритмический язык буквами АЯ).


Формат команды присваивания следующий:

Команда присваивания обозначает следующие действия, выполняемые компьютером:

1. Вычисляется выражение.

2. Полученное значение присваивается переменной.

В приведенном выше алгоритме присутствуют две команды присваивания. В блок-схемах команда присваивания записывается в прямоугольнике. Такой блок называется вычислительным блоком.

В описаниях алгоритмов необязательно соблюдать строгие правила в записи выражений. Их можно писать в обычной математической форме. Это еще не язык программирования со строгим синтаксисом.

В приведенном алгоритме присутствует команда ввода:

В блок-схеме команда ввода записывается в параллелограмме — блоке ввода-вывода. При выполнении данной команды процессор прерывает работу и ожидает действий пользователя. Пользователь должен набрать на устройстве ввода (клавиатуре) значения вводимых переменных и нажать на клавишу ввода Enter. Значения следует вводить в том же порядке, в каком соответствующие переменные расположены в списке ввода

Обычно с помощью команды ввода присваиваются значения исходных данных, а команда присваивания используется для получения промежуточных и конечных величин.

Полученные компьютером результаты решения задачи должны быть сообщены пользователю. Для этих целей предназначена команда вывода:

С помощью этой команды результаты выводятся на экран или на устройство печати на бумагу.

Поскольку присваивание является важнейшей операцией в вычислительных алгоритмах, обсудим ее более подробно.

Рассмотрим последовательное выполнение четырех команд присваивания, в которых участвуют две переменные величины а и b.

В приведенной ниже таблице напротив каждой команды присваивания указываются значения переменных, которые устанавливаются после ее выполнения.


Этот пример иллюстрирует три основных свойства команды присваивания:

• пока переменной не присвоено значение, она остается неопределенной;

• значение, присвоенное переменной, сохраняется в ней вплоть до выполнения следующей команды присваивания этой переменной;

• новое значение, присваиваемое переменной, заменяет ее предыдущее значение.

Рассмотрим один очень полезный алгоритм, который приходится часто использовать при программировании. Даны две величины: X и Y. Требуется произвести между ними обмен значениями. Например, если первоначально было Х = 1, Y = 2, то после обмена должно стать: Х = 2, Y = 1.

Хорошей моделью для решения этой задачи является следующая ситуация: имеются два стакана — один с молоком, другой с водой. Требуется произвести обмен их содержимым. Всякому ясно, что в этом случае нужен дополнительный третий пустой стакан. Последовательность действий будет следующей: 1) перелить из первого стакана в третий; 2) перелить из второго в первый; 3) перелить из третьего во второй. Цель достигнута!

По аналогии для обмена значениями двух переменных нужна третья дополнительная переменная. Назовем ее Z. Тогда задача обмена решается последовательным выполнением трех команд присваивания:


Аналогия со стаканами не совсем точна в том смысле, что при переливании из одного стакана в другой первый становится пустым. В результате же присваивания (Х: = Y) переменная, стоящая справа (Y), сохраняет свое значение.

Алгоритм для деления дробей имеет линейную структуру. В нем все команды выполняются в строго однозначной последовательности, каждая по одному разу. Линейный алгоритм составляется из команд присваивания, ввода, вывода и обращения к вспомогательным алгоритмам (об этом позже).

При описании алгоритмов в блок-схемах типы, как правило, не указываются (но подразумеваются). В алгоритмах на АЯ для всех переменных типы указываются явно. Описание типов переменных производится сразу после заголовка алгоритма. В них используются следующие обозначения типов: цел — целый тип, вещ — вещественный тип, лит — символьный (литерный) тип, лог — логический тип. В алгоритме для деления дробей для всех переменных указан целый тип.

Каждый человек на протяжении своей жизни решает множество задач разной сложности. Но даже самые простые из задач выполняются последовательно, то есть за несколько шагов. Эту последовательность можно назвать алгоритмом. Последовательности бывают разные, но начинать их изучение лучше всего с линейных.

Прежде чем приступить к рассмотрению основной темы статьи, следует сделать краткое отступление и сказать несколько слов про алгоритмический язык.

Алгоритмический язык

Алгоритмический язык является средством описания алгоритмов, а уже алгоритм, в свою очередь, представляет собой чёткое описание определённой последовательности действий, направленных на решение необходимой задачи.

Свойства алгоритма

Их несколько: — конечность. Любой алгоритм должен быть завершённым, а окончание наступает после выполнения определённого числа шагов; — однозначность, понятность. Не допускается разных толкований, неопределённости и двусмысленности — всё должно быть чётко и ясно, а также понятно исполнителю — и правила выполнения действий линейного алгоритма, и сами действия; — результативность. Итог работы — результат, полученный за конечное число шагов; — универсальность, массовость. Качественный алгоритм способен решать не одну задачу, а целый класс задач, имеющих схожую постановку/структуру.

Линейная структура

Любой алгоритм составляется из ряда базовых структур. Простейшей базовой структурой является следование — структура с линейными характеристиками. Из этого можно сформулировать определение.

Линейный алгоритм — это алгоритм, образуемый командами, которые выполняются однократно и именно в той последовательности, в которой записаны. Линейная структура, по сути, проста. Записать её можно как в текстовой, так и в графической форме.

Представим, что у нас стоит задача пропылесосить ковёр в комнате. В текстовой форме алгоритм будет следующим: — принести пылесос к месту уборки; — включить; — пропылесосить; — выключить; — унести пылесос.

И каждый раз, когда нам надо будет пылесосить, мы будем выполнять один и тот же алгоритм.

Теперь поговорим про графическую форму представления.

Блок-схема

Для изображения алгоритма графически используют блок-схемы. Они представляют собой геометрические фигуры (блоки), соединённые стрелками. Стрелки показывают связь между этапами и последовательность их выполнения. Каждый блок сопровождается надписью.

Рассмотрим фигуры, которые используются при визуализации типичной линейной последовательности.

Screenshot_1-1801-a35d16.jpg

Блок ввода-вывода данных (отображает список вводимых и выводимых переменных):

Screenshot_2-1801-52cab0.jpg

Арифметический блок (отображает арифметическую операцию/группу операций):

Screenshot_3-1801-df500e.jpg

Условный блок (позволяет описать условие). Алгоритмы с таким блоком используются при графической визуализации алгоритмов с ветвлением:

Screenshot_4-1801-3103cc.jpg

Условного блока нет в классическом линейном алгоритме, так как в нём, как уже было сказано ранее, все операции выполняются последовательно, то есть одна за другой. В линейном алгоритме размещение блоков выглядит следующим образом:

Screenshot_5-1801-f1511b.jpg

А вот, как решается задача по нахождению площади треугольника по формуле Герона. Здесь a, b, c – это длины сторон, S – площадь треугольника, P – периметр.

Screenshot_6-1801-c010e2.jpg

Примеры линейных алгоритмов

Если рассмотреть примеры решения на языке Pascal (именно этот язык до сих пор используется для изучения основ алгоритмизации и программирования), то можно увидеть следующую картину:

Screenshot_7-1801-f9ba66.jpg

И, соответственно, блок-схема программы линейной структуры будет выглядеть следующим образом:

Как составить программу линейной структуры?

Порядок следующий: — определите, что именно относится к исходным данными, а также каков типы/класс этих данных, выберите имена переменных; — определите, каков тип данных будет у искомого результата, выберите название переменных (переменной); — определите, какие математические формулы связывают результат и исходные данные; — если требуется наличие промежуточных данных, определите класс/типы этих данных и выберите имена; — опишите все используемые переменные; — запишите окончательный алгоритм. Он должен включать в себя ввод данных, вычисления, вывод результатов.

На этом всё, в следующий раз рассмотрим на примерах программу разветвлённой структуры. Если же вас интересует тема алгоритмизации в контексте разработки программного обеспечения, ждём вас на профессиональном курсе OTUS!

This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

  • Open with Desktop
  • View raw
  • Copy raw contents Copy raw contents

Copy raw contents

Copy raw contents

Основные алгоритмические конструкции

Алгоритм применительно к вычислительной машине — точное предписание, т.е. набор операций и правил их чередования, при помощи которого, начиная с некоторых исходных данных, можно решить любую задачу фиксированного типа.

Алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

Линейный алгоритм — набор команд (указаний), выполняемых последовательно друг за другом.

Основным элементарным действием в линейных алгоритмах является присваивание значения переменной величине. Если значение константы определено видом ее записи, то переменная величина получает конкретное значение только в результате присваивания. Присваивание может осуществляться двумя способами: с помощью команды присваивания и с помощью команды ввода.

Рассмотрим пример. В школьном учебнике математики правила деления обыкновенных дробей описаны так:

  1. Числитель первой дроби умножить на знаменатель второй дроби.
  2. Знаменатель первой дроби умножить на числитель второй дроби.
  3. Записать дробь, числитель которой есть результат выполнения пункта 1, а знаменатель — результат выполнения пункта 2.

В алгебраической форме это выглядит следующим образом:


Построим алгоритм деления дробей для ЭВМ. В этом алгоритме сохраним те же обозначения для переменных, которые использованы в записанной выше формуле. Исходными данными являются целочисленные переменные а, Ь, с, d. Результатом — также целые величины m и n. Блок-схема и текст алгоритма на языке программирования (ЯП) Kotlin приведены ниже.


Формат команды присваивания следующий:

Команда присваивания обозначает следующие действия, выполняемые компьютером:

  1. Вычисляется выражение.
  2. Полученное значение присваивается переменной.

В приведенном выше алгоритме присутствуют две команды присваивания. В блок-схемах команда присваивания записывается в прямоугольнике. Такой блок называется вычислительным блоком.

В описаниях алгоритмов необязательно соблюдать строгие правила в записи выражений. Их можно писать в обычной математической форме. Это еще не язык программирования со строгим синтаксисом.

В приведенном алгоритме присутствуют команды ввода:

В блок-схеме команда ввода записывается в параллелограмме — блоке ввода-вывода. При выполнении данной команды процессор прерывает работу и ожидает действий пользователя. Пользователь должен набрать на устройстве ввода (клавиатуре) значения вводимых переменных и нажать на клавишу ввода Enter. Обычно с помощью команды ввода присваиваются значения исходных данных, а команда присваивания используется для получения промежуточных и конечных величин.

Полученные компьютером результаты решения задачи должны быть сообщены пользователю. Для этих целей предназначена команда вывода:

С помощью этой команды результаты выводятся на экран или на устройство печати на бумагу.

Поскольку присваивание является важнейшей операцией в вычислительных алгоритмах, обсудим ее более подробно.

Рассмотрим последовательное выполнение четырех команд присваивания, в которых участвуют две переменные величины a и b.

В приведенной ниже таблице напротив каждой команды присваивания указываются значения переменных, которые устанавливаются после ее выполнения.

Команда a b
a=1 1 -
b=a*2 1 2
a=b 2 2
b=a+b 2 4

Этот пример иллюстрирует три основных свойства команды присваивания:

  • пока переменной не присвоено значение, она остается неопределенной;
  • значение, присвоенное переменной, сохраняется в ней вплоть до выполнения следующей команды присваивания этой переменной;
  • новое значение, присваиваемое переменной, заменяет ее предыдущее значение.

Рассмотрим один очень полезный алгоритм, который приходится часто использовать при программировании. Даны две величины: Х и Y. Требуется произвести между ними обмен значениями. Например, если первоначально было Х=1, Y=2, то после обмена должно стать: Х=2, Y=1.

Хорошей моделью для решения этой задачи является следующая ситуация: имеются два стакана — один с молоком, другой с водой. Требуется произвести обмен их содержимым. Всякому ясно, что в этом случае нужен дополнительный третий пустой стакан. Последовательность действий будет следующей: 1) перелить из первого стакана в третий; 2) перелить из второго в первый; 3) перелить из третьего во второй. Цель достигнута!

По аналогии для обмена значениями двух переменных нужна третья дополнительная переменная. Назовем ее Z. Тогда задача обмена решается последовательным выполнением трех команд присваивания:

Команда X Y Z
ввод X, Y 1 2 -
Z = X 1 2 1
X = Y 2 2 1
Y = Z 2 1 1

Аналогия со стаканами не совсем точна в том смысле, что при переливании из одного стакана в другой первый становится пустым. В результате же присваивания (Х = Y) переменная, стоящая справа (Y), сохраняет свое значение.

Алгоритм для деления дробей имеет линейную структуру. В нем все команды выполняются в строго однозначной последовательности, каждая по одному разу. Линейный алгоритм составляется из команд присваивания, ввода, вывода и обращения к вспомогательным алгоритмам (об этом позже).

При описании алгоритмов в блок-схемах типы, как правило, не указываются (но подразумеваются). В алгоритмах для всех переменных типы указываются явно. В них используются следующие обозначения типов: Int — целый тип, Float — вещественный тип, String — символьный (литерный) тип, Boolean — логический тип. В алгоритме для деления дробей для всех переменных указан тип Int.

Разветвляющийся алгоритм — алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.

Циклический алгоритм — алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы — последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторому условию.

Составим алгоритм решения квадратного уравнения: ax 2 +bx+c=0

Задача хорошо знакома из математики. Исходными данными здесь являются коэффициенты а, b, с. Решением в общем случае будут два корня х1 и х2, которые вычисляются по формуле:


Чтобы построить универсальный алгоритм, сначала требуется тщательно проанализировать математическое содержание задачи.

Решение уравнения зависит от значений коэффициентов а, b, с. Вот анализ рассмотренной выше задачи (ограничиваемся только поиском вещественных корней):

  1. Если числа равны, то взять их общее значение в качестве ответа; в противном случае продолжить выполнение алгоритма
  2. Определить большее из чисел
  3. Заменить большее число разностью большего и меньшего значений
  4. Вернуться к выполнению пункта 1

блок-схема НОД

Алгоритм имеет структуру цикла с вложенным ветвлением. Проделайте самостоятельно трассировку этого алгоритма для случая М = 18, N = 12. В результате получится НОД = 6, что, очевидно, верно.

Вспомогательные алгоритмы и процедуры

В теории алгоритмов известно понятие вспомогательного алгоритма. Вспомогательным называется алгоритм решения некоторой подзадачи из основной решаемой задачи. В таком случае алгоритм решения исходной задачи называется основным алгоритмом.

В качестве примера рассмотрим следующую задачу: требуется составить алгоритм вычисления степенной функции с целым показателем у = х к , где к — целое число, х<>0. В алгебре такая функция определена следующим образом:


Для данной задачи в качестве подзадачи можно рассматривать возведение числа в целую положительную степень.

Учитывая, что 1/х -n = (1/х) -n , запишем основной алгоритм решения этой задачи.

Здесь дважды присутствует команда обращения к вспомогательному алгоритму с именем stepen. Это алгоритм возведения вещественного основания в целую положительную степень путем его многократного перемножения. Величины, стоящие в скобках в команде обращения к вспомогательному алгоритму, называются фактическими параметрами.

В котлине вспомогательные алгоритмы оформляются в виде функций. Запишем функцию stepen.

  • по количеству (сколько формальных, столько и фактических параметров)
  • по последовательности (первому формальному соответствует первый фактический параметр, второму — второй и т.д.)
  • по типам (типы соответствующих формальных и фактических параметров должны совпадать)

Фактические параметры-аргументы могут быть выражениями соответствующего типа.

Обращение к процедуре инициирует следующие действия:

  1. Значения параметров-аргументов присваиваются соответствующим формальным параметрам.
  2. Выполняется тело процедуры (команды внутри процедуры).
  3. Значение результата возвращается командой return, и происходит переход к выполнению следующей команды основного алгоритма.

В функции stepen нет команд ввода исходных данных и вывода результатов. Здесь присваивание начальных значений аргументам (x, n) производится через передачу параметров-аргументов. А получение результата происходит командой return. Таким образом, передача значений параметров процедур — это третий способ присваивания (наряду с командой присваивания и командой ввода).

Использование процедур позволяет строить сложные алгоритмы методом последовательной детализации.

Любой алгоритм можно составить из нескольких базовых структур. Простейшей из них является линейная (следование).

Линейный алгоритм (следование) образуется командами, выполняемыми однократно в той последовательности, в которой они записаны.

Программа на языке Pascal

var a, b, c: integer;

2. Объявление переменных

3. Начало блока операторов

4. Ввод исходных данных

5. Вычисление по формуле

6. Вывод результата

7. Конец блока операторов

    1. Определить, что является исходными данными, какие будут у них типы. Выбрать имена переменных.
    2. Определить, что является искомыми результатами, какие будут у них типы. Выбрать имена переменных.
    3. Определить, какие формулы связывают исходные данные с результатами.
    4. Если нужны промежуточные данные, определить их типы и выбрать имена вспомогательных переменных.
    5. Описать все используемые переменные.
    6. Записать алгоритм, который должен включать:
        1. ввод всех исходных данных;
        2. вычисления;
        3. вывод результатов.

        Для ввода данных в языке Pascal используются процедуры

        read(переменные); например, read(a, b, c);

        readln(переменные); например, readln(a, b, c);

        Для вывода данных в языке Pascal используются процедуры

        write(выражения); например, write('a =', a, 'b + c =', b + c);

        writeln(выражения); например, writeln('a =', a, 'b + c =', b + c);

        Процедуры readln и writeln отличаются от read и write тем, что после ввода/вывода производят перевод строки.

        В языке программирования Pascal имеется 6 арифметических операции и несколько встроенных функций. Обратите внимание, что существуют довольно строгие ограничения на использование арифметических операций с разными типами данных.

        Поскольку присваивание является важнейшей операцией в алгоритмах, работающих с величинами, то поговорим о ней более подробно.

        Переменная величина получает значение в результате присваивания.

        Присваивание производится компьютером при выполнении одной из двух команд из представленной выше системы: команды присваивания или команды ввода.

        Рассмотрим последовательность выполнения четырех команд присваивания, в которых участвуют две переменные а и b. В приведенной ниже таблице против каждой команды указываются значения переменных, которые устанавливаются после ее выполнения. Такая таблица называется трассировочной таблицей, а процесс ее заполнения называется трассировкой алгоритма. Компьютер выполняет команды в порядке их записи в алгоритме.

        Команда а b
        а:= 1 1 -
        b:= 2 х а 1 2
        а:= b 2 2
        b:= a + b 2 4

        Прочерк в таблице обозначает неопределенное значение переменной. Конечные значения, которые получают переменные а и b, соответственно равны 2 и 4.

        Этот пример иллюстрирует три основных свойства присваивания. Вот эти свойства:

        1) пока переменной не присвоено значения, она остается неопределенной;

        2) значение, присвоенное переменной, сохраняется вплоть до выполнения следующего присваивания этой переменной нового значения;

        3) новое значение, присвоенное переменной, заменяет ее предыдущее значение.

        Обмен значениями двух переменных

        Рассмотрим еще один очень полезный алгоритм, с которым при программировании часто приходится встречаться. Даны две переменные величины X и Y. Требуется произвести между ними обмен значениями. Например, если первоначально было: X = 1; Y = 2, то после обмена должно стать: X = 2, У = 1.

        Хорошим аналогом для решения такой задачи является следующая: даны два стакана, в первом - молоко, во втором - вода; требуется произвести обмен их содержимым. Всякому ясно, что в этом случае нужен дополнительный третий пустой стакан. Последовательность действий будет следующей:

        1) перелить из 1-го в 3-й;

        2) перелить из 2-го в 1-й;

        3) перелить из 3-го во 2-й.

        По аналогии для обмена значениями двух переменных нужна третья дополнительная переменная. Назовем ее Z. Тогда задача решается последовательным выполнением трех операторов присваивания (пусть начальные значения 1 и 2 для переменных X и Y задаются вводом):

        Команда X Y Z
        ввод X, Y 1 2 -
        Z:=X 1 2 1
        Х:=Y 2 2 1
        Y:=Z 2 1 1
        вывод X, У 2 1 1

        Действительно, в итоге переменные X и Y поменялись значениями. На экран будут выведены значения X и У в таком порядке: 2, 1. В трассировочной таблице выводимые значения выделены жирным шрифтом.

        Аналогия со стаканами не совсем точна в том смысле, что при переливании из одного стакана в другой первый становится пустым. В результате же присваивания (X:=Y) переменная, стоящая справа (Y), сохраняет свое значение.

        Описание линейного вычислительного алгоритма

        И наконец, рассмотрим пример составления алгоритма для решения следующей математической задачи: даны две простые дроби; получить дробь, являющуюся результатом их деления.

        В школьном учебнике математики правила деления обыкновенных дробей описаны так:

        1. Числитель первой дроби умножить на знаменатель второй.

        2. Знаменатель первой дроби умножить на числитель второй.

        3. Записать дробь, числителем которой является результат выполнения пункта 1, а знаменателем - результат выполнения пункта 2.

        В алгебраической форме это выглядит следующим образом:

        Теперь построим алгоритм деления дробей для компьютера. В этом алгоритме сохраним те же обозначения для переменных, которые использованы в записанной выше формуле. Исходными данными являются целочисленные переменные а, b, с, d. Результатом - также целые величины m и n.

        Ниже алгоритм представлен в двух формах: в виде блок-схемы и на Алгоритмическом языке (АЯ).

        Раньше прямоугольник в схемах алгоритмов управления мы называли блоком простой команды. Для вычислительных алгоритмов такой простой командой является команда присваивания. Прямоугольник будем называть блоком присваивания, или вычислительным блоком. В форме параллелограмма рисуется блок ввода/вывода. Полученный алгоритм имеет линейную структуру (рис. 3.5).

        В алгоритме на АЯ строка, стоящая после заголовка алгоритма, называется описанием переменных. Служебное слово цел означает целый тип. Величины этого типа могут иметь только целочисленные значения.

        Описание переменных имеет вид:

        Список переменных включает все переменные величины данного типа, входящие в алгоритм.

        В блок-схемах типы переменных не указываются, но подразумеваются. Запись алгоритма на АЯ ближе по форме к языкам программирования, чем блок-схемы.

        1. Из каких команд составляется линейный вычислительный алгоритм?

        2. Что такое трассировка? Как она производится?

        3. В каком случае значение переменной считается неопределенным?

        4. Что происходит с предыдущим значением переменной после присваивания ей нового значения?

        5. Как вы думаете, можно ли использовать в арифметическом выражении оператора присваивания неопределенную переменную? К каким последствиям это может привести?

        6. Напишите на АЯ алгоритм сложения двух простых дробей (без сокращения дроби).

        7. Напишите на АЯ алгоритм вычисления y по формуле
        y = (1 - х 2 + 5х 4 ) 2 ,
        где х - заданное целое число. Учтите следующие ограничения: 1) в арифметических выражениях можно использовать только операции сложения, вычитания и умножения; 2) выражение может содержать только одну арифметическую операцию. Выполните трассировку алгоритма при х = 2.

        8. Пользуясь ограничениями предыдущей задачи, напишите наиболее короткие алгоритмы вычисления выражений: y = х 8 ; y = х 10 ; y = х 15 ; y = х 19 .

        Постарайтесь использовать минимальное количество дополнительных переменных. Выполните трассировку алгоритмов.

        Читайте также: