Химический анализ это кратко

Обновлено: 05.07.2024

Аналитическая химия — наука о методах определения химического состава вещества и его структуры. Выделяют качественный и количественный анализ.

Качественный анализ — установление присутствия или отсутствия отдельных компонентов в анализируемом объекте.

В качественном анализе различают:

  • • элементный анализ (определение входящих в пробу элементов);
  • • вещественный анализ (определение химических соединений).

В зависимости от массы пробы вещества, используемого для проведения анализа, методы анализа классифицируют следующим образом:

  • • макрометод (0,1 г вещества и более);
  • • полумикрометод (0,1–0,01 г);
  • • микрометод (10 –2 –10 –3 г);
  • • ультрамикрометод (10 –3 –10 –6 г);
  • • субмикрометод (10 –6 –10 –9 г).

Методы анализа подразделяются на химические и физико-химические (инструментальные). Химические методы анализа основаны на способности определяемого компонента вступать в химическую реакцию с последующим определением его количества.

Достоинства химического метода анализа:

  • • точность;
  • • простота;
  • • универсальность.

Недостатки химического метода анализа

  • • требуется много времени;
  • • сложная подготовка пробы.

Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом. Это может быть:

  • выделение газа;
  • изменение окраски раствора;
  • выпадение осадка;
  • растворение осадка;
  • образование кристаллов характерной формы.

В первых четырех случаях за протеканием реакции наблюдают невооруженным глазом, кристаллы рассматривают под микроскопом. Классификация видов химического анализа по объектам определения приведена в табл. 1.1.

Таблица 1.1 Классификация видов химического анализа по объектам определения


В физико-химических методах анализа конец реакции определяют не визуально, как в химических методах, а при помощи приборов, которые фиксируют изменения физических свойств исследуемого вещества.

Качественный анализ

Для получения достоверных результатов анализа конкретного иона необходимы реакции, выполнению которых не мешает присутствие других ионов. Для этого нужны специфические реагенты (взаимодействующие только с определяемым ионом).

Примером реакции с участием специфического реагента является выделение газообразного аммиака NH 3 при действии щелочей (KOH или NaOH) на вещество, содержащее ион аммония NH4 +. Ни один катион не помешает обнаружению иона NH4+, потому что только он реагирует со щелочами с выделением аммиака:


. Еще один пример — специфические реагенты на ионы железа. Специфический реактив гексацианоферрат (III) калия К3[Fе(СN)6] (красная кровяная соль) образует синий осадок (турнбуллева синь) только с ионами двухвалентного железа Fe 2+. Гексацианоферрат (II) калия K4[Fe(CN)6] (желтая кровяная соль) образует синий осадок (берлинская лазурь) только с ионами трехвалентного железа Fe3+. Специфический реагент на ионы меди (II) — аммиак:


Окрашивание пламени горелки является также способом определения некоторых катионов, т. е. качественной реакцией на их присутствие:

Li + — окрашивание пламени в красный цвет;

Na + — окрашивание пламени в желтый цвет;

K + — окрашивание пламени в фиолетовый цвет.

Селективные реагенты — это реагенты, которые реагируют лишь с немногими веществами. Диметилглиоксим (реагент Чугаева) служит примером селективного реагента в щелочной среде он реагирует с ионами Ni +2, Co +2, Fe +2; в кислой — только с ионами Pd +2.

К сожалению, селективных, а тем более специфических реагентов очень мало. Поэтому смеси катионов и анионов разделяют на части с помощью реактива, который называется групповым реактивом.

Действуя на смесь катионов в строго определенном порядке растворами соляной кислоты HCl, серной кислоты H2SO4, аммиака NH3 и гидроксида натрия NaOH, можно разделить содержащиеся в смеси катионы на шесть аналитических групп. Эти растворы называются групповыми реагентами, а схема — кислотно-щелочной (по используемым групповым реагентам).

В сероводородной схеме групповыми реагентами являются соляная кислота HCl, сероводород H2S и карбонат аммония (NH4)2CO3.

Разделение катионов на пять аналитических групп основано на различии свойств образуемых ими хлоридов, сульфидов и карбонатов:

  • I группа K +, Na +, NH +4, Mg +2 — группового реагента нет, поэтому эти катионы остаются в растворе после отделения других групп;
  • II группа Ba +2, Ca +2, Sr +2 — групповой реагент (NH4) 2 CO 3 осаждает карбонаты этих катионов;
  • III группа Al +3, Cr +3, Fe +3, Fe +2, Ni +2, Co +2, Mn +2, Zn +2 — групповой реагент (NH4) 2 S осаждает гидроксиды Al +3 и Cr +3 и сульфиды остальных катионов;
  • IV группа Cu +2, Cd +2, Hg +2, Bi +3, As +3, Sn +2, Sn +4, Sb +2 — групповой реагент H 2 S осаждает сульфиды этих катионов;
  • V группа Ag +, Pb +2 и Hg +2 — групповой реагент HCl — осаждает хлориды этих катионов.

Общепринятой классификации для разделения анионов, как для разделения катионов, не существует. Используют разделение анионов на три аналитические группы по растворимости солей бария и серебра.

Методы качественного анализа классифицируют следующим образом:

— анализ сложных смесей.

Количественный анализ

Количественный анализ проводят после проведения качественного химического анализа, т. е. после установления компонентов анализируемой пробы.

Например, общие свойства спиртов изучают химики-органики, а способы определения спиртов как класса органических соединений и каждого отдельного спирта (например, этанола) разрабатывают аналитики. Для этого они выявляют те особенности химических и физических свойств спиртов, которые отличают их от других органических соединений. Еще важнее выявить характеристические свойства отдельных спиртов (например, этанола), отличающие их друг от друга.

Изучение характеристических свойств индивидуальных объектов особенно важно в тех случаях, когда изучают материалы сложного состава, содержащие смеси родственных веществ.

Также аналитическая химия воспринимает и развивает знания, полученные в рамках смежных научных дисциплин. Разумеется, знания, полученные одной наукой и используемые другой, всегда существенно перерабатываются, подобно тому, как в организме продукты питания превращаются в новые соединения, а уже из них строятся собственные ткани организма. Эта аналогия подходит и для рассматриваемого случая. На основе творчески переработанных достижений других наук и собственных фундаментальных исследований аналитики выявляют общие закономерности химического анализа, создают новые методы и методики.

К химическим методам количественного анализа относятся:

В ходе количественного анализа можно выделить основные его этапы:

  • 1) отбор средней пробы;
  • 2) взятие навески;
  • 3) перевод пробы в раствор;
  • 4) отделение определяемого компонента и его концентрирование;
  • 5) количественное измерение;
  • 6) расчет результатов анализа.

Волюмометрические методы анализа основаны на измерении объема реагента, израсходованного на взаимодействие с веществом.

Кинетические методы анализа заключаются в определении зависимости скорости химической реакции от концентрации реагирующих веществ.

Методика исследования. Чтобы подобрать оптимальную (лучшую) методику химического анализа, в каждом случае следует учитывать ряд практических требований

1. Точность. Это главное требование. Оно означает, что относительная или абсолютная погрешность анализа не должна превышать некоторого предельного значения. Для разных видов анализа, безусловно, требуется разная точность. В одних случаях достаточно, чтобы результат был получен с относительной погрешностью, не превышающей 10 или даже 20%, в других — чтобы погрешность была менее 2 %. При проведении арбитражных анализов относительная погрешность не должна превышать 0,1 или даже 0,01%. Столь высокую точность могут дать лишь некоторые методы и немногие методики. 15 Не следует добиваться высокой точности, если она не требуется, ведь высокая точность обходится очень дорого.

4. Экспрессность. Речь идет о продолжительности анализа одной пробы — от пробоотбора до выдачи заключения. Чем быстрее будут получены результаты, тем лучше.

5. Стоимость. Эта характеристика методики не требует комментариев. В массовом масштабе можно применять лишь относительно недорогие анализы. Стоимость аналитического контроля в промышленности обычно не превышает 1 % стоимости продукции. Очень дорого стоят уникальные по сложности и редко выполняемые анализы.

Существуют и другие требования к методике — безопасность выполнения анализа, возможность проводить анализ без непоредственного участия человека, устойчивость результатов к случайным колебаниям условий и т. п.

Для наиболее распространенных и часто выполняемых анализов методики изложены в специальных нормативных документах, например государственных стандартах (ГОСТах). В стандартных методиках используют распространенные приборы, общеизвестные способы расчета, привычные приемы анализа. Периодически (один раз в 5–10 лет) ГОСТы обновляют и утверждают заново.

Отбор средней пробы. Это очень важная стадия анализа. С отбора проб начинается проведение химического анализа. Техника отбора средней пробы описывается в специальных инструкциях, ГОСТах. Нужно найти такую пробу по составу, чтобы она отвечала действительному среднему составу анализируемого вещества. Особенно трудно выбрать среднюю пробу твердого вещества. В этом случае используются следующие действия размалывание, высверливание, распиливание, дробление.

При санитарно-эпидемиологической экспертизе отбор проб пищевых продуктов проводит, как правило, врач по гигиене питания, при его отсутствии — помощник санитарного врача. При производственном контроле его проводит специально обученный работник данного предприятия, имеющий свидетельство о прохождении обучения.

Порядок отбора проб пищевых продуктов при экспертизе партии включает выделение однородной партии, определение числа и отбор точечных проб, составление объединенной пробы и формирование из нее средней, которая направляется на лабораторные исследования. Экспертиза партии проводится в соответствии с действующей инструкцией о порядке проведения гигиенической экспертизы пищевых продуктов в учреждениях госсанэпидслужбы. Пример отбора и хранения проб представлен на рис. 1.1.


Рис. 1.1. Отбор и хранение проб тканей и кормов

Измерения в аналитической химии

Результаты количественного химического анализа оценивают такими метрологическими характеристиками, как правильность, воспроизводимость и точность.

Правильность — качество измерений, отражающее близость к нулю систематических погрешностей.

Воспроизводимость — качество измерений, выполненных в различных условиях, но свидетельствующих о близости результатов друг другу.

Точность — качество измерений, показывающее близость их результатов к истинному значению измеряемой величины. Точность измерения соответствует малым погрешностям всех видов. Количественно она выражается обратной величиной модуля относительной погрешности. Погрешность в расчетах приводит к получению неверных результатов химического анализа. Кроме того, есть еще погрешность (ошибка) измерений (∆). Это отклонение результата измерения (Х) от истинного значения измеряемой величины (μ). Абсолютная погрешность определяется по формуле:

относительная погрешность (%) — по формуле

Истинное значение можно получить путем анализа образца множеством различных независимых методов анализа. Анализ его проводят в форме межлабораторного эксперимента (проводится анализ разными лабораториями). Затем проводят оценку массива данных. Также можно использовать стандартный образец (с известным содержанием компонента) для анализа.

Если погрешность при повторных измерениях остается постоянной, то это систематическая погрешность (имеет знак плюс или минус). Если погрешность изменяется случайным образом, то это случайная погрешность (имеет знак и плюс, и минус). Грубые погрешности, существенно отличающиеся от истинного значения, называются грубой ошибкой.

Все погрешности зависят от класса точности прибора и от профессионализма химика-аналитика. Применение статистической обработки образцов рассмотрим на примере анализа пробы сточной воды. Трижды было определено содержание фенола стандартной методикой (DIN 38 409 H 16). Найдено среднее значение содержания фенола в пробе (0,51 гл). Предельно допустимая концентрация фенола в сточных водах в странах ЕС составляет 0,5 гл. Можно ли сказать, что концентрация превышена Статистические тесты помогут учесть степень разброса данных.

Предел обнаружения — минимальная концентрация вещества, которая может быть обнаружена методом. Возможность обнаружения вещества с помощью любой аналитической методики ограничена. Особенно это важно при определении следовых количеств веществ.

Основной химической величиной является количество вещества (n), а основной единицей измерения — моль. По определению, 1 моль — количество вещества, содержащее столько частиц, сколько атомов содержится в 0,012 кг изотопно чистого простого вещества 12 C. Оно составляет приблизительно 6,02214·10 23 частиц. Таким образом, по смыслу количество вещества есть число частиц, составляющих вещество. Эту величину не следует отождествлять ни с массой, ни с объемом, ни с какими иными физическими характеристиками.

Наряду с количеством вещества в химии широко используют и производные от него величины. Важнейшая из них — концентрация (c), представляющая собой количество вещества (n) в единице объема V:

При проведении анализа часто компонент переводится в раствор. Состав раствора количественно выражается через относительные величины — доли (массовые, мольные, молярные) и размерные величины — концентрации.

Массовая доля — безразмерная относительная величина, равная отношению массы компонента к общей массе образца, раствора, смеси веществ.

Единицей измерения массовой доли является также процент (сотая доля числа — %), промилле (тысячная доля числа, 110 доля процента — ‰), ppm (миллионная доля числа), ppb (миллиардная доля числа).

1‰ = 0,1 %, 1 ppm = 10 –4 %, 1 ppb = 10 –7 %.

Концентрация показывает отношение массы или количества растворенного вещества к объему раствора или массе растворителя.

Химический эквивалент

Это условная частица, которая может присоединять или высвобождать один ион водорода в кислотно-основных реакциях или один электрон в окислительно-восстановительной реакции. Под частицей понимается молекула, ион, электрон и т. д. Фактор эквивалентности f показывает, какая доля реальной частицы вещества эквивалентна одному иону водорода в реакции или одному электрону в окислительно-восстановительной реакции. Рассмотрим реакцию:


Фактор эквивалентности соляной кислоты f экв (HCl) = 1, f экв (Na2CO3) =12.

Для окислительно-восстановительной реакции:


Для реакций комплексообразования фактор эквивалентности определяют из числа координационных мест у комплексообразователя:


Масса одного моль-эквивалента сложного вещества (Мэ), называемая молярной массой эквивалента, равна молярной массе вещества М, деленной на число реакционноспособных химических связей (n х.св):

Число реакционноспособных химических связей n х.св в зависимости от класса соединения можно определить следующим образом:

— для кислот — число протонов (n H +);

— для оснований — число гидроксильных групп (n OH –);

— для солей — произведение числа катионов на его заряд (nkt * Zkt).

Эквивалентность реагирующих и образующихся веществ отражает закон эквивалентов.

Титр раствора

Титр раствора характеризует его концентрацию. Это масса вещества в 1 мл раствора

Т = m в-ва / V р-р, г/мл.

Например, титр раствора соляной кислоты Т(HCl) = 0,003648 г/мл показывает, что в 1 мл раствора кислоты содержится 0,003648 г HCl.

Запись Т(HCl/NaOH) = 0,004000 г/мл означает, что 1 мл раствора кислоты реагирует с 0,004000 г NaOH.

Титр (Т) раствора вещества связан с молярной концентрацией вещества в растворе:


Таким образом, использование законов аналитической химии позволяет разрабатывать и идентифицировать состав пищевых продуктов, устанавливать механизм их воздействия на организм человека. Необходимость количественной и качественной оценки питания обусловлена его влиянием на здоровье и работоспособность человека. При количественной оценке суточного рациона определяется не его объем, а энергия, высвобождающаяся при метаболизме в организме основных пищевых веществ. Качественная характеристика рациона исходит из содержания в нем отдельных пищевых веществ (белков, жиров, углеводов, витаминов, минеральных веществ) и их соотношений. Только при количественной достаточности и благоприятных соотношениях пищевых веществ обеспечиваются наиболее полное проявление их биологических свойств и максимальное использование, а также оптимальное течение обменных процессов.

Химический анализ – это совокупность методов, с помощью которых определяют химический состав веществ. Химический анализ разделяют на качественный и количественный.

Задача качественного анализа – идентификация веществ, т. е. обнаружение наличия химических элементов в соединениях или химических соединений в смесях. Задача количественного анализа – определение количеств элементов или их соединений в исследуемом веществе.

Химический анализ – сложный многостадийный процесс, состоящий из нескольких этапов: отбор пробы, выбор метода анализа, подготовка пробы к анализу, проведение измерений, обработка результатов измерений.

Одно из ключевых понятий химического анализа – аналитический сигнал, который представляет собой экспериментальную информацию о качественном и количественном составе исследуемого вещества.

Методы идентификации веществ основаны на получении аналитического сигнала в результате проведения химической реакции. Определяемый ион или элемент переводят в другое химическое соединение, обладающее характерными свойствами (выпадение осадка, выделение газа, изменение окраски и т. д.). Данные изменения указывают на присутствие того или иного иона (элемента, групп ионов) в пробе. При проведении качественного анализа используют систематический и дробный методы. Систематический метод основан на разделении смеси ионов на группы и подгруппы с помощью групповых реагентов. Дробный метод основан на определении данного элемента или иона в анализируемом образце с помощью качественной реакции (см. табл. 14.1 и 14.2).

При проведении количественного анализа аналитическим сигналом является физическая величина, функционально связанная с содержанием компонента. По величине этого сигнала (массе осадка, силе тока, интенсивности линий спектра и т. д.) рассчитывают содержание компонента в исследуемом образце.

Для количественного определения концентраций (количеств) химических элементов (соединений) и их форм в анализируемом образце используют методы химические и инструментальные (физико-химические и физические). К химическим методам относятся гравиметрический (весовой) анализ и волюмометрический (объемный) анализ. Волюмометрические методы в зависимости от агрегатного состояния вещества делятся на газоволюмометрические, основанные на измерении объема газа, и титриметрические, основанные на измерении объема жидкого реагента (титранта) с известной концентрацией, взаимодействующего с определяемым веществом

Таблица 14.1

Качественные реакции на катионы

Окончание табл. 14.1




железа (II) (турнбулева синь)

Гравиметрический метод основан на точном измерении массы определяемого компонента пробы анализируемого вещества, выделенного в виде соединения определенного состава. Гравиметрическое определение методом осаждения проводят в несколько этапов. Навеску анализируемого вещества растворяют, после чего определяемый элемент осаждают в виде какого-либо малорастворимого соединения, называемого осаждаемой формой. Выпавший осадок отделяют фильтрованием, тщательно промывают и прокаливают. Полученную так называемую гравиметрическую форму взвешивают, и по массе осадка и его химической формуле рассчитывают массовую долю ω определяемого компонента в анализируемом веществе:

где m1 – масса навески вещества, взятого для анализа;

m2 – масса гравиметрической формы;

F – гравиметрический фактор.

Гравиметрическим фактором называют отношение молярной массы M1 определяемого компонента к молярной массе M2 гравиметрической формы.

Таблица 14.2

Качественные реакции на анионы

Анион Реактив Аналитический признак реакции
Cl – Нитрат серебра в азотно-кислой среде Белый осадок хлорида серебра, растворимый в избытке аммиака
Br – Хлорная вода Окисление бромид-иона до Br2, который окрашивает органический растворитель в желтый цвет
I – Хлорная вода или нитрат калия Окисление йодид-иона до I2, который окрашивает крахмал в синий цвет, а органический растворитель в красно-фиолетовый
CO3 2– Разбавленные кислоты Выделение CO2 обнаруживается по помутнению известковой воды
SO4 2– Хлорид бария Белый осадок, нерастворимый в азотной кислоте
PO4 3– Магнезиальная смесь (MgCl2 + NH4OH + NH4Cl) Белый осадок
NO3 Дифениламин Синее окрашивание

Химический анализ – это совокупность методов, с помощью которых определяют химический состав веществ. Химический анализ разделяют на качественный и количественный.

Задача качественного анализа – идентификация веществ, т. е. обнаружение наличия химических элементов в соединениях или химических соединений в смесях. Задача количественного анализа – определение количеств элементов или их соединений в исследуемом веществе.

Химический анализ – сложный многостадийный процесс, состоящий из нескольких этапов: отбор пробы, выбор метода анализа, подготовка пробы к анализу, проведение измерений, обработка результатов измерений.

Одно из ключевых понятий химического анализа – аналитический сигнал, который представляет собой экспериментальную информацию о качественном и количественном составе исследуемого вещества.

Методы идентификации веществ основаны на получении аналитического сигнала в результате проведения химической реакции. Определяемый ион или элемент переводят в другое химическое соединение, обладающее характерными свойствами (выпадение осадка, выделение газа, изменение окраски и т. д.). Данные изменения указывают на присутствие того или иного иона (элемента, групп ионов) в пробе. При проведении качественного анализа используют систематический и дробный методы. Систематический метод основан на разделении смеси ионов на группы и подгруппы с помощью групповых реагентов. Дробный метод основан на определении данного элемента или иона в анализируемом образце с помощью качественной реакции (см. табл. 14.1 и 14.2).

При проведении количественного анализа аналитическим сигналом является физическая величина, функционально связанная с содержанием компонента. По величине этого сигнала (массе осадка, силе тока, интенсивности линий спектра и т. д.) рассчитывают содержание компонента в исследуемом образце.

Для количественного определения концентраций (количеств) химических элементов (соединений) и их форм в анализируемом образце используют методы химические и инструментальные (физико-химические и физические). К химическим методам относятся гравиметрический (весовой) анализ и волюмометрический (объемный) анализ. Волюмометрические методы в зависимости от агрегатного состояния вещества делятся на газоволюмометрические, основанные на измерении объема газа, и титриметрические, основанные на измерении объема жидкого реагента (титранта) с известной концентрацией, взаимодействующего с определяемым веществом

Таблица 14.1

Качественные реакции на катионы

Окончание табл. 14.1

железа (II) (турнбулева синь)

Гравиметрический метод основан на точном измерении массы определяемого компонента пробы анализируемого вещества, выделенного в виде соединения определенного состава. Гравиметрическое определение методом осаждения проводят в несколько этапов. Навеску анализируемого вещества растворяют, после чего определяемый элемент осаждают в виде какого-либо малорастворимого соединения, называемого осаждаемой формой. Выпавший осадок отделяют фильтрованием, тщательно промывают и прокаливают. Полученную так называемую гравиметрическую форму взвешивают, и по массе осадка и его химической формуле рассчитывают массовую долю ω определяемого компонента в анализируемом веществе:

где m1 – масса навески вещества, взятого для анализа;

m2 – масса гравиметрической формы;

F – гравиметрический фактор.

Гравиметрическим фактором называют отношение молярной массы M1 определяемого компонента к молярной массе M2 гравиметрической формы.


Для меня химия всегда была далека, как Марс (а может и дальше). И об аналитической химии я даже и мечтать не могла. Если вы хотите быть немного лучше и умнее меня, предлагаем вам почитать о том, что представляет собой аналитическая химия.

Аналитическая химия – что это такое и где применяется?


В основе аналитической химии лежит химический анализ. Именно он помогает контролировать качество продукции в разных промышленностях – химической, фармацевтической, нефтеперерабатывающей, горнодобывающей, металлургической, в сфере народного хозяйства и много где еще.

Без химического анализа невозможна разведка полезных ископаемых. А еще эта сфера ответственна за контроль за загрязнением окружающей среды, определение состава почвы, удобрения, корма, сельхозпродукцию. Без всего этого невозможно полноценное функционирование агропромышленной сферы.

Вот еще несколько сфер, в которых не обойтись без химического анализа:

  • Биотехнологии,
  • Медицинская диагностика и пр.

А аналитическая химия – это основа химического анализа. Данная наука многие годы считалась просто составной частью химии. Лишь недавно люди стали выделять ее как отдельную сферу, а иногда – и как отдельную науку. Почему мужчины отращивают бороду вы можете узнать из другой нашей статьи.

Роль аналитической химии


Представьте себе, аналитическая химия – такая же наука, как и все остальные. Она представляет собой огромную практическую ценность для общества. Именно благодаря ей стал возможен химический анализ, без которого невозможно полноценное существование и функционирование передовых отраслей жизни общества – охраны природы, экономики, здравоохранения, оборонной сферы, а также многих смежных областей.

Было разработано множество методов аналитической химии, за которые неоднократно присуждалась Нобелевская премия (полярография, органический микроанализ, фотоэлектронная спектроскопия, некоторые виды хроматографического анализа и пр.).

Аналитическая химия – это учение, помогающее определить химический состав объектов материального мира. Ее методы помогут ответить на разные интересные вопросы: что из чего состоит, какие компоненты входят в состав вещества, а что более важно – какое количество этих компонентов должно быть (или какова должна быть их концентрация).

Иногда аналитическая химия позволяет определить и расположение компонентов в пространстве.

Короче, если коротко и сухо, то:

Аналитическая химия – наука о методах и средствах химанализа и в некоторой степени установления химического строения.

При этом средства химанализа – это разные реактивы, приборы, образцы и даже компьютерные программы. В общем, все, что помогает в исследовательской деятельности.

Зачем еще нужна аналитическая химия? Или, если говорить проще и более научно, каковы функции этой сферы химии? Их три:

  • Развивать общую теорию, решать вопросы анализа;
  • Разрабатывать аналитические методы;
  • Решать конкретные задачи анализа.

Но решать все эти глобальные задачи вам не придется. Ваша задача – изучать и наблюдать. Оставайтесь с нами, и мы продолжим объяснять вам сложные вещи более простым языком. А вот если вам нужна практическая помощь (скажем, в написании реферата, контрольной или даже в создании дипломной работы), наши авторы с радостью помогут с этой задачей. И не важно, будет эта работа по аналитической химии, по географии или русской литературе.

Графит в стали, кварц в граните

Металлургия, геология, технология стройматериалов.

В ходе элементного анализа идентифицируют или количественно определяют тот или иной элемент, независимо от его степени окисления или от вхождения в состав тех или иных молекул. Полный элементный состав исследуемого материала определяют в редких случаях. Обычно достаточно определить некоторые элементы, существенно влияющие на свойства исследуемого объекта.

Молекулярный анализ особенно важен при исследовании органических веществ и материалов биогенного происхождения. Примером может быть определение бензола в бензине или ацетона в выдыхаемом воздухе. В подобных случаях необходимо учитывать не только состав, но и структуру молекул. Ведь в исследуемом материале могут находиться изомеры и гомологи определяемого компонента. Так, содержание глюкозы обычно приходится определять в присутствии ее изомеров и других родственных соединений, например сахарозы.

Прямая противоположность экспресс-анализу - арбитражный анали з. Основное требование к нему - обеспечить как можно большую точность результатов. Арбитражные анализы проводят редко (например, для разрешения конфликта между изготовителем и потребителем некоторой продукции). Для выполнения таких анализов привлекают наиболее квалифицированных исполнителей, применяют самые надежные и многократно проверенные методики. Время выполнения и стоимость такого анализа не имеют принципиального значения.

Промежуточное место между экспрессным и арбитражным анализом по точности, длительности, стоимости и другим показателям занимают рутинные анализы. Основная часть анализов, выполняемых в заводских и других контрольно-аналитических лабораториях, относится именно к этому типу.

1.3. Методы анализа

Существуют три основных группы методов (рис.1). Одни из них нацелены преимущественно на разделение компонентов исследуемой смеси (последующий анализ без этой операции оказывается неточным или вообще невозможным). В ходе разделения обычно происходит и концентрирование определяемых компонентов (см. главу 8). Примером могут быть методы экстрагирования или методы ионного обмена. Другие методы применяют в ходе качественного анализа, они служат для достоверного опознания (идентификации) интересующих нас компонентов. Третьи, наиболее многочисленные, предназначены для количественного определения компонентов. Соответствующие группы называют методами разделения и концентрирования, методами идентификации и методами определения. Методы двух первых групп, как правило, играют вспомогательную роль. Наибольшее значение для практики имеют методы определения.

Методы разделения и концентрирования

Микрокристаллоскопия , ЯМР-спектрометрия , проведение качественных реакций и др.

Экстракция, сорбция, дистилляция, ионный обмен, электрофорез и др .

Спектральный анализ, рефрактометрия, кондуктометрия и др.

Гравиметрия, титриметрия и др.

Спектрофотометрия , кулонометрия и др.

Рис.1. Классификация методов анализа

Кроме трех основных групп, существуют гибридные методы. На рис.1. они не показаны. В гибридных методах разделение, идентификация и определение компонентов органично сочетаются в одном приборе (или в едином приборном комплексе). Важнейшим из таких методов является хроматографический анализ. В специальном приборе (хроматографе) компоненты исследуемой пробы (смеси) разделяются, поскольку они с разной скоростью двигаются сквозь колонку, заполненную порошком твердого вещества (сорбента). По времени выхода компонента из колонки судят о его природе и таким образом опознают все компоненты пробы. Вышедшие из колонки компоненты по очереди попадают в другую часть прибора, где специальное устройство – детектор - измеряет и записывает сигналы всех компонентов. Нередко тут же проводится автоматическое отнесение сигналов тем или иным веществам, а также расчет содержания каждого компонента пробы. Понятно, что хроматографический анализ нельзя считать только методом разделения компонентов, или только методом количественного определения, это именно гибридный метод.

1.4. Методики анализа и требования к ним

Не следует путать понятия метода и методики.

Методика - это четкое и подробное описание того, как следует выполнять анализ, применяя некоторый метод для решения конкретной аналитической задачи.

Обычно методика разрабатывается специалистами, проходит предварительную проверку и метрологическую аттестацию, официально регистрируется и утверждается. В названии методики указывают используемый метод, объект определения и объект анализа

Чтобы подобрать оптимальную (лучшую) методику, в каждом случае надо учитывать целый ряд практических требований.

  1. Т очность. Это главное требование. Оно означает, что относительная или абсолютная погрешность анализа не должна превышать некоторого предельного значения

2. Чувствительность. Этим словом в разговорной речи заменяют более строгие термины “предел обнаружения” и “нижняя граница определяемых концентраций”. Высокочувствительные методики - это те, по которым мы можем обнаружить и определить компонент даже при низком его содержании в исследуемом материале. Чем ниже ожидаемое содержание, тем более чувствительная методика требуется .

3. Селективность (избирательность). Важно, чтобы на результат анализа не оказывали влияние посторонние вещества, входящие в состав пробы.

4. Экспрессность . Речь идет о продолжительности анализа одной пробы - от пробоотбора до выдачи заключения. Чем быстрее будут получены результаты, тем лучше.

5. Стоимость. Эта характеристика методики не требует комментариев. В массовом масштабе могут применяться лишь относительно недорогие анализы. Стоимость аналитического контроля в промышленности обычно не превышает 1% стоимости продукции. Очень дорого стоят уникальные по своей сложности и редко выполняемые анализы.

Существуют и другие требования к методике - безопасность выполнения анализа, возможность проводить анализ без непосредственного участия человека, устойчивость результатов к случайным колебаниям условий, и т.п.

1.5. Основные стадии (этапы) количественного анализа

Методику количественного анализа можно мысленно разделить на несколько последовательных стадий (этапов), причем практически любая методика имеет одни и те же стадии. Соответствующая логическая схема анализа показана на рис.1.2. Основными этапами при проведении количественного анализа являются: постановка аналитической задачи и выбор методики, пробоотбор , пробоподготовка , измерение сигнала, расчет и оформление результатов.

Четко сформулированная аналитическая задача является основой для выбора оптимальной методики. Поиск ведут, пользуясь сборниками нормативных документов (в т. ч. стандартных методик), справочниками, обзорами по отдельным объектам или методам. Например, если собираются определять фотометрическим методом содержание нефтепродуктов в сточной воде, то просматривают монографии, посвященные, во-первых, фотометрическому анализу, во-вторых, методам анализа сточных вод, в-третьих, разным способам определения нефтепродуктов. Существуют серии книг, каждая из которых посвящена аналитической химии какого-либо элемента. Выпущены руководства по отдельным методам и по отдельным объектам анализа. Если в справочниках и монографиях подходящих методик найти не удалось, поиск продолжают, пользуясь реферативными и научными журналами, поисковыми системами Интернета, консультациями специалистов и т. п. После отбора подходящих методик выбирают ту, что наилучшим образом отвечает поставленной аналитической задаче.

Нередко для решения конкретной задачи не только не существует стандартных методик, но и вообще нет ранее описанных технических решений (особо сложные аналитические задачи, уникальные объекты). С такой ситуацией часто приходится сталкиваться при проведении научных исследований. В этих случаях приходится разрабатывать методику анализа самостоятельно. Но, выполняя анализы по собственной методике, следует особо тщательно проверять правильность получаемых результатов.

Отбор пробы. Разработать метод анализа, который позволял бы измерять концентрацию интересующего нас компонента непосредственно в исследуемом объекте, удается довольно редко. Примером может быть датчик содержания углекислого газа в воздухе, который устанавливают в подводных лодках и в других замкнутых помещениях. Гораздо чаще из исследуемого материала отбирают небольшую часть - пробу - и доставляют ее для дальнейшего исследования в аналитическую лабораторию. Проба должна быть представительной (репрезентативной), то есть ее свойства и состав должны приблизительно совпадать со свойствами и составом исследуемого материала в целом. Для газообразных и жидких объектов анализа взять представительную пробу довольно легко, поскольку они гомогенны. Надо лишь правильно выбрать время и место отбора. Например, при отборе проб воды из водоемов учитывают, что вода поверхностного слоя отличается по своему составу от воды из придонного слоя, вода вблизи берегов загрязнена сильнее, состав речной воды в разное время годы неодинаков и т.п. В больших городах пробы атмосферного воздуха отбирают с учетом направления ветра и размещения источников выброса примесей. Пробоотбор не вызывает проблем и в том случае, когда исследуются чистые химические вещества, даже твердые, или однородные мелкодисперсные порошки.

Гораздо труднее правильно отобрать представительную пробу неоднородного твердого вещества (почвы, руды, угля, зерна и т.п.). Если взять пробы почвы в разных местах одного и того же поля, или с разной глубины, или в разное время - результаты анализа однотипных проб окажутся неодинаковыми. Они могут отличаться в несколько раз, особенно если сам материал был неоднороден, состоял из частиц разного состава и размера.

Дело осложняется тем, что пробоотбор зачастую проводит не сам аналитик, а недостаточно квалифицированные работники или, что гораздо хуже, - лица, заинтересованные в получении определенного результата анализа. Так, в рассказах М.Твена и Брет Гарта красочно описано, как перед продажей золотоносного участка продавец стремился выбирать для анализа кусочки породы с явными вкраплениями золота, а покупатель - пустую породу. Не удивительно, что результаты соответствующих анализов давали противоположную, но в обоих случаях неправильную характеристику исследуемого участка.

Для обеспечения правильности результатов анализа для каждой группы объектов разработаны и приняты специальные правила и схемы пробоотбора . Примером может быть анализ почвы. В этом случае следует отбирать несколько больших порций исследуемого материала в разных местах исследуемого участка и затем объединять их. Заранее рассчитывается, сколько должно быть точек пробоотбора , на каком расстоянии друг от друга должны располагаться эти точки. Указывается, с какой глубины должна быть взята каждая порция почвы, какой она должна быть массы, и т.п. Существует даже специальная математическая теория, позволяющая рассчитать минимальную массу объединенной пробы с учетом размера частиц, неоднородности их состава и т.п. Чем больше масса пробы, тем она представительнее, поэтому для негомогенного материала общая масса объединенной пробы может достигать десятков и даже сотен килограммов. Объединенную пробу высушивают, измельчают, тщательно перемешивают и начинают постепенно уменьшать количество исследуемого материала (для этой цели существуют специальные приемы и устройства). Но даже после многократного уменьшения масса пробы может достигать нескольких сот граммов. Уменьшенную пробу в герметически закрытой таре доставляют в лабораторию. Там продолжают измельчение и перемешивание исследуемого материала (с целью усреднения состава), и лишь затем берут на аналитических весах навеску усредненной пробы для проведения дальнейшей пробоподготовки и последующего измерения сигнала.

Пробоподготовка . Это собирательное название всех операций, которым в лаборатории подвергают доставленную туда пробу перед измерением аналитического сигнала. В ходе пробоподготовки проводят самые разные операции: упаривание, высушивание, прокаливание или сжигание пробы, ее растворение в воде, кислотах или органических растворителях, предварительное окисление или восстановление определяемого компонента специально добавляемыми реагентами, удаление или маскирование мешающих примесей. Часто приходится проводить концентрирование определяемого компонента - из пробы большого объема компонент количественно переводят в малый объем раствора (концентрат), где и проводят потом измерение аналитического сигнала. Близкие по свойствам компоненты пробы в ходе пробоподготовки стараются отделить друг от друга, чтобы легче было определить концентрацию каждого в отдельности. Пробоподготовка требует большего времени и труда, чем другие операции анализа; ее довольно трудно автоматизировать. Следует помнить, что каждая операция пробоподготовки - это дополнительный источник погрешностей анализа. Чем меньше будет таких операций, тем лучше. Идеальными являются методики, вовсе не включающие стадию пробоподготовки (“пришел, измерил, рассчитал”), но таких методик сравнительно немного.

Расчет и оформление результатов - самая быстрая и легкая стадия анализа. Надо только выбрать подходящий способ расчета (по той или иной формуле, по графику и т.п.). Так, для определения урана в урановой руде сопоставляют радиоактивность пробы с радиоактивностью стандартного образца (руды с известным содержанием урана), а затем содержание урана в пробе находят, решая обычную пропорцию. Однако этот простой способ годится далеко не всегда, а применение неподходящего расчетного алгоритма может привести к серьезным ошибкам. Некоторые способы расчета весьма сложны и требуют применения компьютера. В последующих главах будут детально охарактеризованы способы расчета, применяемые в разных методах анализа, их преимущества, условия применимости каждого способа. Результаты анализа должны быть статистически обработаны. Все данные, относящиеся к анализу данной пробы, отражают в лабораторном журнале, а результат анализа вносят в специальный протокол. Иногда сам аналитик сопоставляет результаты анализа нескольких веществ друг с другом или с некоторыми нормативами и делает содержательные выводы. Например, о соответствии или несоответствии качества исследуемого материала установленным требованиям (аналитический контроль).

Читайте также: